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Abstract
Constructing correct replicated data types is a challenging
endeavour due to the complexity of reasoning about indepen-
dently evolving states of the replicas. Mergeable Replicated
Data Types (MRDTs) simplify the construction by allowing
the merge of concurrent states to be expressed as a 3-way
merge function between the two concurrent states and the
state of the lowest common ancestor where the replicas di-
verged. While MRDTs bring in additional benefits of reason-
ing about intent preservation and composition, there is still
an air-gap between the efficient implementations of MRDTs
and their intended specifications.
In this work, we present principled approach to develop-

ing MRDTs that are correct-by-construction using F* solver-
aided programming language. In our system, an MRDT is
described as a triple of the state, operations that manipu-
late the state and the 3-way merge function. In addition,
we expect proofs of algebraic properties of the 3-way merge
functions – idempotence, associativity and commutativity. In
return, the system ensures that MRDT is convergent (assum-
ing only the algebraic properties) for arbitrary number of
replicas and merges. Such certified MRDT implementations
in F* are extracted to OCaml for use in Irmin, a distributed
database built on the principles of Git.

1 Introduction
Mergeable Replicated Data Types (MRDTs) are inspired from
the Git version control system. Similar to Git, an MRDT data
store maintains a causal history of the states, and the states
at different replicas may evolve on separate branches. How-
ever, unlike Git, the objects in the data store may be arbitrary
data types equipped with a 3-way merge function to recon-
cile conflicting updates. When conflicting updates need to
be reconciled, the causal history is used to determine the
lowest common ancestor for use in the 3-way merge func-
tion along with the conflicting states. This branch-consistent
view of replication not only makes it easier to develop indi-
vidual data types, but also leads to a natural transactional
semantics [Crooks et al. 2016; Dubey et al. 2020].

One of the challenges of replicated data types is that in a
weakly consistent setting, it becomes tricky to reason about
whether the implementation preserves the high-level intent.
Indeed, individually correct data types may fail to preserve
convergence when put together [Kleppmann 2020]. Kaki et
al [Kaki et al. 2019] present a relational interpretation of
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replicated data types, where the characteristic properties of
complex data types are captured as relations over its con-
stituent elements. Then, the merge function devolves to a
merge of these relations (sets) expressed as MRDTs.

While useful as a reasoning technique, mapping complex
data types to sets does not lead to efficient implementations.
For example, a queue in Kaki et al. is represented by two
characteristic relations – a unary relation membership and
a binary relation ordering. For a queue with 𝑛 elements,
the ordering relation contains 𝑂 (𝑛2) elements. Mapping the
queue to its characteristic relations and back for every merge
is inefficient.
The goal of the work is to provide a principled approach

to construct certified MRDTs that are guaranteed to con-
verge and preserve the high-level intent of the data type.
Our primary contribution is an F* library for implementing
MRDTs and verifying their convergence and intent preser-
vation. The client of the library implements the MRDT as
a state, the operations that transform the state, the 3-way
merge function and proofs of associativity, commutativity
and idempotence of merge. The library returns an OCaml
implementation that satisfies convergence in the presence
of many replicas. This OCaml implementation of MRDT is
compatible with Irmin [Irmin 2021], a distributed database
built on the principles of Git.

2 Merge function
As is the tradition, consider an increment-only counterMRDT
which supports one operation: Inc n that increments the
counter value by n. The state of the counter is the current
counter value type state = nat, and the only operation is in-
crement type op = Inc of nat. The operation is interpreted
by the apply_op function:
let apply_op s (Inc n) = s + n

with the merge function
let merge lca a b = a + b - lca

where lca is the state of the lowest common ancestor of
the two commits whose states a and b are being merged.
Surprisingly, F* reports a type error in the merge function.
Since the merge involves subtraction, without the context, F*
is unable to prove that the result would be a natural number.

To overcome this problem, we associate a history with the
merge function that captures the causal relationship between
the three states. In particular, since the only operation al-
lowed in the increment-only counter is increment, both a and
b are greater than or equal to the lca. With this additional
lemma, the merge function successfully type checks.
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We can buildmore complex data types using the increment-
only counter. For example, we can build a enables-wins flag,
which is a replicated boolean flag with an enable and dis-
able operation, and in the case of concurrent enable and
disable, the flag is enabled in the merged state. The state of
the enable-wins flag is:

type state = counter * bool

which maintains a pair of counter (which keeps track of
enables) and the current state of the flag. The operations are:

type op = Enable | Disable

and their interpretations are:

let apply_op (c,_) o =

match o with

| Enable -> (increment c, true)

| Disable -> (c, false)

The merge function in this case is:

let merge (lc,lf) (ac,af) (bc,bf) =

(Counter.merge lc ac bc,

(* if both flags are enabled *)

if af && bf then true

(* if both flags are disabled *)

else if not af && not bf then false

(* otherwise , check if there is

a concurrent enable *)

else if af then ac > lc

else bc > lc)

Thanks to F* discharging the proof obligations to the SMT
solver, the proof of convergence of enables-wins flag is auto-
matically discharged, building upon the proof of convergence
of the counter.

3 History
As we’ve seen in the case of increment-only counter, we
need to associate the causal history of the execution to de-
rive invariants such as monotonicity of the counter value
to be used in the implementation of the merge functions
and the proofs of its algebraic properties. To this end, we
model history as a directed-acyclic graph (DAG) of commits,
starting from an initial commit.

Each commit has a state, and is related to its descendants
through a trace of operations defined on the datatype – the
child state is obtained by applying the trace of operations to
the parent state. The history also captures the branching and
merging behaviour that is observed in a Git-like replicated
store.
We also impose an additional requirement that any pair

of commits in a well-formed history has a unique lowest
common ancestor (LCA). This requirement mirrors the effect
of recursive merges in Git in the case when a pair of commits
have more than one LCA.
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Figure 1. Recursive merge

A well-formed history of an increment-only counter is
shown in Figure 1. The states of the replicas are represented
by circles. The solid edge between the nodes represents the
trace and the dashed edges represent the merge. In the merge
of 𝐷 and 𝐸, we see that there are two LCAs 𝐵 and 𝐶 . Using
either one of them as the LCA for the merge would lead to
an incorrect result. Hence, just like Git, we assume that there
is a recursive merge commit 𝐺 , which is the merge of the
two LCAs 𝐵 and 𝐶 . Using 𝐺 as the LCA gives us the correct
merge result.
We use the notion of well-formed histories to identify

sufficient conditions for convergence of a MRDT. In par-
ticular, our strategy is to show that if the merge operation
of the MRDT satisfies simple algebraic properties such as
commutativity, associativity and idempotence, then in any
well-formed history, all replicas would eventually converge
to the same state.

4 Final Remarks
Using the MRDT library we have proved the convergence
properties of three MRDTs – increment-only counter, grow-
only set, and enable-wins flag. In the future, we plan to verify
more complex MRDTs like queues, graphs, ropes, etc., and
build a library of certified MRDTs for Irmin.
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