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LABELLED TRANSITION SYSTEM

* We express the program c as a labelled transition system
==L L7 1)

« Vs the set of program variables

« L is the set of program locations
[y is the start location
[, is the end location

T CLxcXListhe set of labelled transitions between
locations.




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

e U
assume(i > le

assume(i < n)




PROGRAMS AS LTS

There are various ways to construct the LTS of a program

* We can use control flow graph

* We can use basic paths as defined by the book (BM Chapter 5). A
basic path is a sequence of instructions that begins at the start of
the program or a loop head, and ends at a loop head or the end of

the program.

Program State (o, [) consists of the values of the variables (6 : V — R)
and the location.

An execution is a sequence of program states, (o, [y), (6,1,), ..., (0,, 1),
such-thatforally, @ <1 <=n- 1 (L.el g €T and(c,c) 5" (0 (;5kip)

A program satisfies its specification {P}c{Q} if Vo € P, for all
executions (o, [y), (61, 1,), ..., (6,1) of ', 6’ € Q.




INDUCTIVE ASSERTION MAP

With each location, we associate a set of states which are
reachable at that location in any execution.

s L — (V)

To express that such a map is an inductive assertion map, we will
use Strongest Post-condition.

s Vilealye T spaulycr— nl)

Then, if u is an inductive assertion map on I',, the Hoare triple
{P}c{Q} is valid it P — u(ly) and u(l,) = Q.




GENERATING THE INDUCTIVE ASSERTION MAP

* We can express the inductive assertion map as a solution of a
system of equations:

.XZ=P
0

. For all other locations [ € L\ {y}, X; = \/ sp(Xy, ¢)

(lGehel




GENERATING THE INDUCTIVE ASSERTION MAP

ForwardPropagate(I',,P)
S := {l()};
) o= Py
wil)y = Ly =fordle I\l)s
while S # @ do{
/.= Ghepse S:
Sa:— S i)
foreach (I,c,l')) € T do{
F = sp(u(D), c);
if =(F - u(l")) then{
u(l') = p(l) v F:
Gas- Skl




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

e U
assume(i > le

assume(i < n)




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

[rue

e U
assume(i > le

assume(i < n)

(= V(I =FEAn>) Vi =2An >V,




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

[rue

(= V(I =FEAn>) Vi =2An >V,

e U
assume(i > le

assume(i < n)

FORWARDPROPAGATE WILL NOT TERMINATE




ABSTRACT INTERPRETATION: OVERVIEW

Instead of maintaining an arbitrary set of states at each location, maintain
an artificially constrained set of states, coming from an abstract domain D.

e f:L—>D

Let States = V — R be the set of all possible concrete states.

« Abstraction function, a : P(States) — D

« Concretization function, y : D — P(States)

ji over approximates the set of states at every location.
» For all locations I, y(si(l)) 2 u(l)

Use abstract strongest post-condition operator sp : D X ¢ — D

« y(sp(d, ) 2 sp(y(d), c)




GENERATING THE INDUCTIVE ASSERTION MAP

ForwardPropagate(I',,P)
S := {l()};
) o= Py
wil)y = Ly =fordle I\l)s
while S # @ do{
/.= Ghepse S:
Sa:— S i)
foreach (I,c,l')) € T do{
F = sp(u(D), c);
if =(F - u(l")) then{
u(l') = p(l) v F:
Gas- Skl




ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate(I',,P)
S := {l()};
Aly) = a(P);
o)y =Ly efordle I\, )s
while S # @ do{
/.= Ghoose S;
Sa:— S i)
foreach (I,c,l')) € T do{
F = sp(ud), c);
if =(F < 4A(l") then{
pl’) == all’) U F;
Sea= S L]




ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate(I',,P)
Sei= Alory
fly) = a(P);
o)y =Ly efordle I\, )s
while S #* ¢ dod Abstract Domain D

[ := Choose S: is a lattice (D, <, U)

Sa:— S i)
foreach (I,c,l')) € T do{
Fi= (), O;
if =(F < 4A(l") then{
pl’) = pd) U F;
Sea= S L]




ABSTRACT INTERPRETATION: OVERVIEW

+ At the end, we will check whether /i(/,) < a(Q).

« Equivalently, y(#(l,)) C O




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

e U
assume(i > le

assume(i < n)

Suppose we want to prove the post-condition: i > 0




EXAMPLE

i = O
while(i < n) do
Tel= T F-1]:

o= ()
Sign Abstract Domain: :
assume(l 2 n
peib i B —
el

W+)=i>0 [i=1i+ 1 assume(i < n)

W—Ji=1=0
)L = 1L




EXAMPLE

i = O
while(i < n) do
Tel= T F-1]:

o= ()
Sign Abstract Domain: :
assume(l 2 n
peib i B —
el

W+)=i>0 [i=1i+ 1 assume(i < n)

W—Ji=1=0
)L = 1L




EXAMPLE

i = O
while(i < n) do
Tel= T F-1]:

=+

=0
Sign Abstract Domain: dsim F
D:{+_,+,_’J_} E lQ

el
W+)=i>0 [i=1i+ 1 assume(i < n)

W—Ji=1=0
)L = 1L




ABSTRACT INTERPRETATION: OVERVIEW

» Desirable properties of Abstract Interpretation

« Soundness: /i over approximates the set of states at every
location.

* Guaranteed termination of AbstractForwardPropagate

* We will use concepts from lattice theory to characterise the
conditions required for these properties.




SNEAK PEEK
SOUNDNESS OF ABSTRACT INTERPRETATION

* An abstract interpretation (D, <, a,y) is sound if:

e (D, £)is complete lattice.

= (Pldrafe) € ) é (D, <) is a Galois Connection.
y

« Sp is a consistent abstraction of sp.




SNEAK PEEK

GUARANTEED TERMINATION OF ABSTRACT FORWARD
PROPAGATE

» AbstractForwardPropagate on abstract domain (D, <) is
guaranteed to terminate if:

* (D, <) is a complete lattice.

e Sp is monotonic.

* (D, <) satisfies the ascending chain condition.




PARTIAL ORDER

» Given a set D, a binary relation < C D X D is a partial order on D if
« <isreflexive: Vde D.d<d

« <is anti-symmetric: Vd,d' € D.d<d' ANd'<d—->d=d

« <Zis transitive: Vd|,d,,ds € D,d| <d,ANd, < d; = d| < d;

« Examples
« <on N is a partial order.

« Given aset §, C on P(S) is a partial order.




PARTIAL ORDER - EXAMPLES

S=dab !
RSy = 4@ 0k Wi, (eh a0y, ib, el (i el (a,b:cl ]

td, bic)

A B T

ja. bl b . = g c}

T
1= bl o

M

%)

Partially Ordered Set: (P(S), C )




PARTIAL ORDER - EXAMPLES

S=dab !
RSy = 4@ 0k Wi, (eh a0y, ib, el (i el (a,b:cl ]

la,b,c} Hasse diagram:

/T\ « Doesn't show

fao. bl {h. &= 1ac) reflexive edges
T (self-loops)
la) [b) {c) * Doesn’t show

\T / transitive edges

%)

Partially Ordered Set: (P(S), C )




PARTIAL ORDER - MORE EXAMPLES

* Which of the following are partially ordered sets (posets)?

s (NDeN @D (cd)la=c])
o. (NXNel(@b)led |a=ecnb=d})
o« (NX N l@@bllc.dl|a<cwvb=d}




LEAST UPPER BOUND

* Given a poset (D, <)and X C D, u € D is called an upper bound
en X il -vxc X . ¥y u

* u € D is called the least upper bound (lub) of X, if u is an upper
bound of X, and for every other upper bound u' of X, u < u'.

« We use the notation LI X to denote the least upper bound of X.
Also called the join of X.

 Exercise: Prove that the least upper bound, if it exists, is
unique.




GREATEST LOWER BOUND

e Givenaposet (D, <)and XC D, [ € D is called a lower bound on
XiEvre X |l <¢

e [ € D is called the greatest lower bound (glb) of X, if [ is a lower
bound of X, and for every other lower bound [, I' < .

* We use the notation M X to denote the greatest lower bound
of X. Also called the meet of X.

 Homework: Prove that the greatest lower bound, if it exists, is
unique.




LUB - EXAMPLE

S=dab !
RSy = 4@ 0k Wi, (eh a0y, ib, el (i el (a,b:cl ]

b  Consider X = {{a}, {b}}
 {a,b},{a,b,c} are both

la. by ek lac) upper bounds of X

T

{a) {b) {c) * {a,b} is the least upper

\T/ bound.

%)




LATTICE

» A lattice is a poset (D, < ) such that Vx,ye D, xUUyand xMy
exist.

* A complete lattice is a lattice such that VX C D, LUX and MX
exists.

« Example: (P(S), C ) is a complete lattice.




LATTICE - MORE EXAMPLES

« What is the simplest example of a poset that is not a lattice?

* ({a,b},{(a,a),(b,b)})

* What is an example of a lattice which is not a complete lattice?




LATTICE - MORE EXAMPLES

« What is the simplest example of a poset that is not a lattice?

* ({a,b},{(a,a),(b,b)})

* What is an example of a lattice which is not a complete lattice?

* Sign Lattice:




SOME PROPERTIES OF LATTICES

« (D, <)is alattice, x,y,z€ D
e Iy then e lly —y and A ELY = ¥,
 X¥llx=xanda P x—2x

v ey s = byt =Libe y 2}

 If D is finite, then D is also a complete lattice.




MINIMUM AND MAXIMUM

» Given a poset (D, <), x € D is called the minimum element if
VyveD.x<y.

« Also called the bottom element. Denoted by L.

* Given a poset (D, <), x € D is called the maximum element if
vveD vy

* Also called the top element. Denoted by T.

* Complete lattices are guaranteed to have top and bottom
elements.

« D ="F [ D=2
e Bi@ — [ R =]




MONOTONIC FUNCTIONS

Given two posets (D, <, ) and (D,, <, ), functionf: D; = D, is
called monotonic (or order-preserving) if

e Vx,y€D, .x<,y - f(x) <, f()

In the special case when D, =D, =D, f: D — D is monotonic if

s U, Y ER sy =il = (V)




MONOTONIC FUNCTIONS - EXAMPLE

S=dab !
RSy = 4@ 0k Wi, (eh a0y, ib, el (i el (a,b:cl ]

i « Consider f: P(S) - P(S),

/TV\ J(X) = XU {a}.

la. by ek lac) - fis monotonic.

{2} (c)  What about f(X) =Xn {a}?

\T / - Example of a non-monotonic

function on P(5)?




JOIN PRESERVING

» Given posets (D, <, ) and (D,, <, ), a monotonic function
f:D;—= D,,and S C D, if U; S and L, f(S) exist, then
LI, f(S) <5 fA(LS).




JOIN PRESERVING

» Given posets (D, <, ) and (D,, <, ), a monotonic function
f:D;—= D,,and S C D, if U; S and L, f(S) exist, then
LI, f(S) <5 fA(LS).




JOIN PRESERVING

+ Given posets (D, <, ) and (D,, <, ), a monotonic function
f:D;—= D,,and S C D, it U; S and L, f(S) exist, then
LI, f(S) <5 fA(LS).

Proof:




JOIN PRESERVING

+ Given posets (D, <, ) and (D,, <, ), a monotonic function
f:D;—= D,,and S C D, it U; S and L, f(S) exist, then

LI, f(S) <5 fA(LS).
Proof: Let u = LU, S.

Then Vx € §.x <, u. This implies that Vx € S.f(x) <, f(w).

Thus f(u) is an upper bound of f(S).
Hence, L, f(S) <, f(w).




FIXPOINTS

A fixpoint of a function f: D — D is an element x € D such that

Jx) = x.

A pre-fixpoint of a function f: D — D is an element x € D such
that o< 1().

A post-fixpoint of a function f: D — D is an element x € D such
that f(x) < x.




FIXPOINTS - EXAMPLE

s Bixpoint: ¢

* Pre-fixpoints : a,b,c

* Post-fixpoint : c,d




KNASTER-TARSKI FIXPOINT THEOREM

* Let (D, <) be a complete lattice, and f : D — D be a monotonic
function on (D, <). Then:

 fhas at least one fixpoint.

 fhas a least fixpoint (Ifp), which is the same as the glb of the set
of post-fixpoints of f, and a greatest fixpoint (gfp) which is the
same as the lub of the set of pre-fixpoints of f.

« The set of fixpoints of fitself forms a complete lattice under <.




KNASTER-TARSKI FIXPOINT THEOREM
ILLUSTRATION

Complete Lattice

Monotonic Function

Pre-fixpoints: a,c,e,f

Post-fixpoints: c,d,f

Fixpoints: c,f




PROOF OF KNASTER-TARSKI THEOREM

* Pre = {x|x < f(»)}

« We will show that LI Pre is a fixpoint.

* Notice that Pre cannot be empty. Why?

Proof:




PROOF OF KNASTER-TARSKI THEOREM

s Pre—xlx < (0]

« We will show that LI Pre is a fixpoint.

* Notice that Pre cannot be empty. Why?
PEcot: et u —El Pre

Consider x € Pre.Then, x < u. Hence, f(x) < f(u). Since x < f(x), we
have x < f(u). Thus, f(u) is an upper bound of Pre. Since u is the
least upper bound of Pre, we have u < f(u).

u < f(u) = f(u) < f(f(w). Hence, f(u) is a pre-fixpoint. Therefore,
f(w) < u.

This proves that u = f(u).




PROOF OF KNASTER-TARSKI THEOREM

* Pre = {x|x < f(x)}
e Ll Pre is the greatest fixpoint.

Proof: Consider another fixpoint g.

Then, g is also a pre-fixpoint. Hence, g < LI Pre.




PROOF OF KNASTER-TARSKI THEOREM

* Post = {x|f(x) £ x)}
» [ Postis a tixpoint of f.

« T Post is the least fixpoint.

HOMEWORK




PROOF OF KNASTER-TARSKI THEOREM

s B=jul/0) =]
* We will show that (P, <) is a complete lattice.
Proof Sketch: (P, <) is a partial order.
Let X C P. Let u be the U X in D. Consider U={a € D|u < a}
Then (U, <) is a complete lattice. [Prove this.]
Further, f(U) C U. [Prove this.]

Hence, fis a monotonic function on complete lattice (U, < ). By previous part
of Knaster-Tarski Theorem, the least fixpoint of fin U exists.

Let v be the least fixpoint of fin U. Then v is the least upper bound of X in P.
[Prove this.]

Similarly, we can show that M X also exists in P. [Prove this.]




CHAINS

Given a poset (D, <), CC Discalled achainif Vx,ye C.x<yvy<x.

A poset (D <) satisfies the ascending chain condition, if for all sequences
Faxs adic N ik o xo— 5

* We say that the sequence stabilizes to x;.

A poset (D <) satisfies the descending chain condition, if for all sequences
X =2 0k Y >k =0

* A poset that satisfies the descending chain condition is also called well-
ordered.

» Example: Is (N, <) well-ordered?

Poset (D, <) is said to have finite height if it satisfies both the ascending
and descending chain conditions.

« Example: Does (N, <) have finite height?




COMPUTING LFP

« Consider a complete lattice (D, <) and a monotonic function
f:D — D.

»- Consider the seduence L ofcl ) L)l -

- If it stabilizes, it will converge to a fixpoint of f.
 Further, this fixpoint will be the least fixpoint of f.

* Hence, if (D, <) satisfies the ascending chain condition, we can
compute [fp(f) by finding the stable value of

Lo L L e

« Homework: If a € Pre, and the sequence q, f(a), f*(a), ... stabilizes,
it will converge to the least fixpoint greater than a (denoted by

lifp.())).




GALOIS CONNECTION

* Given posets (C, <; ) and (D, <, ), a pair of functions (a, y),
a:C—> Dandy:D — Cis called a Galois connection if

s Vee C . VdeD alc)<yd S e=,yd)

. Also written as: (C, <) é (D, <,)

iz




GALOIS CONNECTION

* Given posets (C, <; ) and (D, <, ), a pair of functions (a, y),
a:C—> Dandy:D — Cis called a Galois connection if

s Vee C . VdeD alc)<yd S e=,yd)

. Also written as: (C, <) é (D, <,)




PROPERTIES OF GALOIS CONNECTION

* ¢ < 7(a(0)

* Proof: Consider d = a(c). Then, a(c) < d. By definition of Galois
connection, ¢ < y(d). Hence, ¢ < y(a(c)).

» a(y(d)) <, d

 Proof: Homework.




PROPERTIES OF GALOIS CONNECTION

* ais monotonic.

* Proof: Consider ¢, c, € C such that ¢; < ¢,.

* We know that ¢, < y(a(c,)). By transitivity, ¢; < y(a(c,)). Hence,
by definition of Galois connection, a(c|) <, a(c,).

* yis monotonic.

e Proof: Homework.




GALOIS CONNECTION AND PROGRAM STATES

Recall: States 2 V — R. The concrete domain C will be (P(States), C ).

The abstract domain D will be a collection of artificially constrained
set of states. We can represent this as D C C.

The abstraction function a will map ¢ € C to the smallest setd € D
such that ¢ C d.

The concretization function y will simply be y(d) = d.

Is this a Galois Connection? We have to show that
ae)-CdseCydll

* Suppose a(c) € d. Now, ¢ C a(c) and y(d) = d. Hence, ¢ C y(d).

« Suppose ¢ C y(d). Hence, ¢ C d. Now, a(c) is the smallest set in D
containing c. Hence, a(c) C d.




GALOIS CONNECTION AND PROGRAM STATES
EXAMPLE

« Assume that V = {v}.

* Hence, State = R, The concrete domain C is(P(R), C )
e Sign Abstract Domain:D={+—-,+,—,1 }.

v L= 2

¢« i —hcR|n 0]

¢« = neR|n<0)

° J_é@

e Clearly D C C.




GALOIS CONNECTION AND PROGRAM STATES
EXAMPLE

. Define the Galois Connection: (P(R), C ) é (D, € )
y

» glc)=+ifnmintc) >0

e alc)=—itmax(c)<O
> alo) =1
e Otherwise, a(c) = + —.
sovld)—d,
+ Example: a({3.5)) = +, a({3,6, — 1,0}) = + -




ONTO GALOIS CONNECTION

The abstraction function a will map ¢ € C to the smallest set
d-€ D slich-that ¢ € d;

The concretization function y will simply be y(d) = d.

Notice that a(y(d)) = d.
 Also called Onto Galois Connection.

« From now onwards, we will assume that Galois Connections are
Onto.




JOIN OVER PATHS

* Recall: Given a programas a LTSI, = (V, L, [y,[,,T), the assertion
map u : L — P(States) associates a set of states with every
location.

« u(l) is the set of states reachable at / during any execution.

* u is also called the Concrete Join Over Paths (JOP) or the
collecting semantics.

* Instead of operating over concrete states, we can also consider
JOP over abstract states.




ABSTRACT TRANSFER FUNCTION

. Given a Galois Connection (P(States), C ) é (D, <), for every program

: & . 2 :
command p, we can define the abstract transfer function f, (previously
called the abstract strongest post-condition operator, sp)

+ f,:D—D.

« We can define the concrete transfer function as follows:
I(0) = {o'|(o,p) < (6, skip)}.

o= e

ocC

 Then, the abstract transfer function must be a consistent abstraction of
the concrete transfer function:

+ Yd € D.f(y()) C y(f,@))
+ Equivalently, Vc € P(States) . a(f,(c)) < f,(a(c))




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command
Da: X =01

o« f+)=277




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command
Da: X =01

A

FACOES:




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command
Da: X =01

A

FACOES:

s =)=




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command




ABSTRACT TRANSFER FUNCTION
EXAMPLE

» Consider the sign abstract domain, and the program command
Da: X =01

=it )=

)=

e
s fly=1

» A straightforward way to define consistent abstractions is to use
v, and the concrete transfer function f:

o £(d) = a(f,(r(d))




ABSTRACT JOP

* Instead of executing the program with concrete states, we
execute the program with abstract state, and the abstract transfer
function for each program command.

* Collect all the abstract states at each location, for every possible
execution

* Their join is the abstract JOP map, ji : L — D.




EXAMPLE

it 0=
while(i < n) do
Tel= T F-1]:

assume(i < n)

+




EXAMPLE - COLLECTING SEMANTICS




EXAMPLE - COLLECTING SEMANTICS




EXAMPLE - ABSTRACT JOP




EXAMPLE - ABSTRACT JOP




SOUNDNESS OF ABSTRACT INTERPRETATION
DEFINITION

A abstract interpretation consisting of
* the abstract domain (D, <),

 abstraction, concretization functions (a, y),

- and abstract transfer functions F/,

is sound,

if for all dy € D, for all programs T,

assuming that ji(/,) = d,, and u(ly) = ¢y where ¢, C y(d,),
the y image of the abstract JOP /i at all locations in I" over
approximates the collecting semantics g,

that is, or all locations [, y(ji(1)) 2 u(l).




SOUNDNESS OF ABSTRACT INTERPRETATION
EXAMPLE




FROM ABSTRACT INTERPRETATION TO VERIFICATION

* In order to show the validity of the Hoare Triple {P}c{Q}, we
instantiate a sound Al (D, <, a,y, Fp) with ji(ly) = d, such that
dy = a(P) and compute the resulting JOP /i at all locations.

« If y(ji(l,)) C Q, then the Hoare Triple is valid.

 Since a(P) = d,, by definition of Galois connection, P C y(d,).

* Hence, by definition of soundness of Al, u(l,) C y(4i(l,)), where u
is the collecting semantics assuming u(/,) = P.




SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS

* An abstract interpretation (D, <, a,7, ﬁD) is sound if:

* (D, £)is complete lattice.

. (P(State), C) 2 (D, <)
4

« Every abstract transfer function in ﬁD is a consistent abstraction
of the corresponding concrete transfer function.




PROOF OF SOUNDNESS OF Al

* Lemma-1: First, let us show that for any abstract transfer function
f € F which is a consistent abstraction of concrete transfer
function f, the following holds:

« Vc € P(States) . Nde D.c Cy(d) = f(c) C y(f(d))




PROOF OF SOUNDNESS OF Al

* Lemma-1: First, let us show that for any abstract transfer function
f € F which is a consistent abstraction of concrete transfer
function f, the following holds:

. V¢ € P(States) . Nd € D .c C y(d) = f(¢) C y(f(d))




PROOF OF SOUNDNESS OF Al

* Lemma-1: First, let us show that for any abstract transfer function
f € F which is a consistent abstraction of concrete transfer
function f, the following holds:

« Vc € P(States) . Nde D.c Cy(d) = f(c) C y(f(d))

Proof:




PROOF OF SOUNDNESS OF Al

* Lemma-1: First, let us show that for any abstract transfer function
f € F which is a consistent abstraction of concrete transfer
function f, the following holds:

. V¢ € P(States) . Nd € D .c C y(d) = f(¢) C y(f(d))

Proof: Consider ¢ € P(State),d € D such that ¢ C y(d).
Note that fis monotonic. (Why?)

Hence, f(c) C f(y(d)).
Sincefis a consistent abstraction of f, f(y(d)) C y(f(d)).

Hence, f(c) C y(f(d)).




PROOF OF SOUNDNESS OF Al
CONCRETE AND ABSTRACT JOP

Given a path 7 : [, = [ Lo L, in the program LTS, the

combined abstract transfer function f is the composition of the
individual transfer functions: f, o...of of

« Similarly, the concrete transfer function f isf, o...ef, of,

Let 1], be the set of all possible paths from [, to /.

Assuming that /i(/;) = d,, the abstract JOP at a location [ is given
by:

A= A

r€ll,

Similarly, assuming u(/y) = ¢, the concrete JOP, u(l) = Ufﬂ(co)

r€ll,




PROOF OF SOUNDNESS OF Al

» Lemma-2: Assuming that ¢, C y(d,)), we will show that for any path
7 to any location in any program, f (cy) € y(f,(dy)).

Proof: We will use induction on the length of the path .




PROOF OF SOUNDNESS OF Al

* Lemma-2: Assuming that ¢, C y(d,), we will show that for any path x to
any location in any program, f_(c,) C y(f,(dy)).

Proof: We will use induction on the length of the path 7.
Base Case: For paths of length 0, we are already given that ¢, C y(d,).

Inductive Case: For paths of length n — 1, assume that the lemma holds.
Consider a path 7z of length n to location [. Consider the prefix 7’ of 7 of
length n — 1 ending at location /'. By inductive hypothesis, f (cy) C y(f,(d)).

Let the edge from [’ to [ in the path be labelled by program command p.

Thenf—f fandf —f f

Letf (o) =¢ andf (dy) = d. We have ¢ C y(d) andf is a consistent
abstraction off Hence, by Lemma-1 f(c) = ;/(f (d))

This proves that f (c)) C y(fﬂ(do)).
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LEMMA-2
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 Finally, we will show that for any location /,

Ufﬂ(co) C( Ll fﬂ(a’o)), assuming that ¢, C y(d,).

r€ll, r€ll,

Proof: By Lemma-2, we know that Vz € I1,.f (c,) C y(fﬂ(do)).




PROOF OF SOUNDNESS OF Al

» Finally, we will show that for any location [,
Ufﬂ(Co) = |_| f.(dy)), assuming that ¢, C y(d,).

r€ll, r€ll,

Proof: By Lemma-2, we know that Vz € I1,.f (c,) C y(fﬂ(do)).

Hence, | ] fi(co) € | r(Fuldp).

r€ll, r€ell,
We know that y is monotonic and (D, <) is a complete lattice, so
that u f,(dy) exists. Hence, by the join-preserving property,
r€ll,

| r(Fudp)) € 7(| | Fuldp))- Hence, | ] filco) € r(| | Futdp))

ﬂEHl ﬂ'EHZ ﬂEHl ﬂEHl




SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS

* An abstract interpretation (D, <, a,7, ﬁD) is sound if:

* (D, £)is complete lattice. [For JOP to exist in D]

= (Pldrafe) € ) é (D, < ). [Monotonicity of y; Relating the

verification prcgblem]

* Note that for soundness, we only need monotonicity of y.

« Every abstract transfer function in ﬁD is a consistent abstraction
of the corresponding concrete transfer function. [For showing
over-approximation over concrete path]




ABSTRACT TRANSFER FUNCTION
SIGN ABSTRACT DOMAIN

D=V—>{+_9+7_7J—}

o= 8

f,(d) £ dlx — g(d,e)]

r if g(d,e;) = + and g(d, e,) = +
g(d’ €1 St 62) =3 = if g(da el) = — and g(d7 62) =%

+ — otherwise
+ if g(d,e;) = + and g(d, e,) = —

g(d’ i 62) == if g(da el) = — and g(da 62) = +
|+ — otherwise
g(d,y) =d(y) ityisaprogram variable

A

) =




