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LABELLED TRANSITION SYSTEM

• We express the program  as a labelled transition system 
 

•  is the set of program variables 

•  is the set of program locations 

•  is the start location 

•  is the end location 

•  is the set of labelled transitions between 
locations.

c
Γc ≡ (V, L, l0, le, T )

V

L

l0
le
T ⊆ L × c × L



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)



PROGRAMS AS LTS

• There are various ways to construct the LTS of a program 

• We can use control flow graph 

• We can use basic paths as defined by the book (BM Chapter 5). A 
basic path is a sequence of instructions that begins at the start of 
the program or a loop head, and ends at a loop head or the end of 
the program. 

• Program State  consists of the values of the variables  
and the location. 

• An execution is a sequence of program states, , 
such that for all , ,  and . 

• A program satisfies its specification  if , for all 
executions  of , .

(σ, l) (σ : V → ℝ)

(σ0, l0), (σ1, l1), …, (σn, ln)
i 0 ≤ i ≤ n − 1 (li, c, li+1) ∈ T (σi, c) ↪* (σi+1, skip)

{P}c{Q} ∀σ ∈ P
(σ, l0), (σ1, l1), …, (σ′ , le) Γc σ′ ∈ Q



INDUCTIVE ASSERTION MAP

• With each location, we associate a set of states which are 
reachable at that location in any execution. 

•  

• To express that such a map is an inductive assertion map, we will 
use Strongest Post-condition. 

•  

• Then, if  is an inductive assertion map on , the Hoare triple 
 is valid if  and .

μ : L → Σ(V )

∀(l, c, l′ ) ∈ T . sp(μ(l), c) → μ(l′ )

μ Γc
{P}c{Q} P → μ(l0) μ(le) → Q



GENERATING THE INDUCTIVE ASSERTION MAP 

• We can express the inductive assertion map as a solution of a 
system of equations: 

•  

• For all other locations  

Xl0 = P

l ∈ L∖{l0}, Xl = ⋁
(l′ ,c,l)∈T

sp(Xl′ , c)



GENERATING THE INDUCTIVE ASSERTION MAP 

ForwardPropagate( ,P) 
S := { }; 

 := P; 
 := , for ; 

while S   do{  
    := Choose S; 
   S := S \ ; 
   foreach  do{ 
      F := ; 
      if  then{ 
          
         S := S ; 
      } 
   } 

  }

Γc
l0

μ(l0)
μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′ ) ∈ T
sp(μ(l), c)

¬(F → μ(l′ ))
μ(l′ ) := μ(l′ ) ∨ F;

∪ {l′ }



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

⊤

le



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

true

(i = 0) ∨ (i = 1 ∧ n > 0) ∨ (i = 2 ∧ n > 1) ∨ …

le



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

true

(i = 0) ∨ (i = 1 ∧ n > 0) ∨ (i = 2 ∧ n > 1) ∨ …

le

FORWARDPROPAGATE WILL NOT TERMINATE



ABSTRACT INTERPRETATION: OVERVIEW

• Instead of maintaining an arbitrary set of states at each location, maintain 
an artificially constrained set of states, coming from an abstract domain . 

•  

• Let  be the set of all possible concrete states. 

• Abstraction function,  

• Concretization function,  

•  over approximates the set of states at every location. 

• For all locations   

• Use abstract strongest post-condition operator  

•

D

̂μ : L → D

States ≜ V → ℝ

α : ℙ(States) → D

γ : D → ℙ(States)

̂μ

l, γ( ̂μ(l)) ⊇ μ(l)

̂sp : D × c → D

γ( ̂sp(d, c)) ⊇ sp(γ(d), c)



GENERATING THE INDUCTIVE ASSERTION MAP 

ForwardPropagate( ,P) 
S := { }; 

 := P; 
 := , for ; 

while S   do{  
    := Choose S; 
   S := S \ ; 
   foreach  do{ 
      F := ; 
      if  then{ 
          
         S := S ; 
      } 
   } 

  }

Γc
l0

μ(l0)
μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′ ) ∈ T
sp(μ(l), c)

¬(F → μ(l′ ))
μ(l′ ) := μ(l′ ) ∨ F;

∪ {l′ }



ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate( ,P) 
S := { }; 

 := ; 
 := , for ; 

while S   do{  
    := Choose S; 
   S := S \ ; 
   foreach  do{ 
      F := ; 
      if  then{ 
          
         S := S ; 
      } 
   } 

  }

Γc
l0

̂μ(l0) α(P)
̂μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′ ) ∈ T

̂sp( ̂μ(l), c)
¬(F ≤ ̂μ(l′ ))
̂μ(l′ ) := ̂μ(l′ ) ⊔ F;

∪ {l′ }



ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate( ,P) 
S := { }; 

 := ; 
 := , for ; 

while S   do{  
    := Choose S; 
   S := S \ ; 
   foreach  do{ 
      F := ; 
      if  then{ 
          
         S := S ; 
      } 
   } 

  }

Γc
l0

̂μ(l0) α(P)
̂μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′ ) ∈ T

̂sp( ̂μ(l), c)
¬(F ≤ ̂μ(l′ ))
̂μ(l′ ) := ̂μ(l′ ) ⊔ F;

∪ {l′ }

Abstract Domain D 
 is a lattice (D, ≤ , ⊔ )



ABSTRACT INTERPRETATION: OVERVIEW

• At the end, we will check whether . 

• Equivalently, 

̂μ(le) ≤ α(Q)

γ( ̂μ(le)) ⊆ Q



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le

Suppose we want to prove the post-condition : i ≥ 0



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain: 
D = { + − , + , − , ⊥ }
γ( + − ) = ⊤
γ( + ) = i ≥ 0
γ( − ) = i < 0
γ( ⊥ ) = ⊥



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain: 
D = { + − , + , − , ⊥ }
γ( + − ) = ⊤
γ( + ) = i ≥ 0
γ( − ) = i < 0
γ( ⊥ ) = ⊥

+-



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain: 
D = { + − , + , − , ⊥ }

+-

+

+

+

γ( + − ) = ⊤
γ( + ) = i ≥ 0
γ( − ) = i < 0
γ( ⊥ ) = ⊥



ABSTRACT INTERPRETATION: OVERVIEW

• Desirable properties of Abstract Interpretation 

• Soundness:  over approximates the set of states at every 
location. 

• Guaranteed termination of AbstractForwardPropagate 

• We will use concepts from lattice theory to characterise the 
conditions required for these properties.

̂μ



• An abstract interpretation  is sound if: 

•  is complete lattice. 

•  is a Galois Connection. 

•  is a consistent abstraction of .

(D, ≤ , α, γ)

(D, ≤ )

(ℙ(State), ⊆ )
α

⇄
γ

(D, ≤ )

̂sp sp

SNEAK PEEK
SOUNDNESS OF ABSTRACT INTERPRETATION



SNEAK PEEK

• AbstractForwardPropagate on abstract domain  is 
guaranteed to terminate if: 
•  is a complete lattice. 
•  is monotonic. 
•  satisfies the ascending chain condition.

(D, ≤ )

(D, ≤ )
̂sp

(D, ≤ )

GUARANTEED TERMINATION OF ABSTRACT FORWARD 
PROPAGATE



PARTIAL ORDER

• Given a set , a binary relation  is a partial order on  if 

•  is reflexive:  

•  is anti-symmetric:  

•  is transitive:  

• Examples 

•  on  is a partial order. 

• Given a set ,  on  is a partial order.

D ≤ ⊆ D × D D

≤ ∀d ∈ D . d ≤ d

≤ ∀d, d′ ∈ D . d ≤ d′ ∧ d′ ≤ d → d = d′ 

≤ ∀d1, d2, d3 ∈ D, d1 ≤ d2 ∧ d2 ≤ d3 → d1 ≤ d3

≤ ℕ

S ⊆ ℙ(S)



PARTIAL ORDER - EXAMPLES
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c}

Partially Ordered Set: (ℙ(S), ⊆ )



PARTIAL ORDER - EXAMPLES
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} Hasse diagram: 
• Doesn’t show 

reflexive edges 
(self-loops) 

• Doesn’t show 
transitive edges

Partially Ordered Set: (ℙ(S), ⊆ )



PARTIAL ORDER - MORE EXAMPLES

• Which of the following are partially ordered sets (posets)? 

•  

•  

•

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c})

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c ∧ b ≤ d})

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c ∨ b ≤ d})



LEAST UPPER BOUND

• Given a poset  and ,  is called an upper bound 
on  if . 

•  is called the least upper bound (lub) of X, if  is an upper 
bound of X, and for every other upper bound  of X, .  

• We use the notation   to denote the least upper bound of . 
Also called the join of X. 

• Exercise: Prove that the least upper bound, if it exists, is 
unique. 

(D, ≤ ) X ⊆ D u ∈ D
X ∀x ∈ X . x ≤ u

u ∈ D u
u′ u ≤ u′ 

⊔ X X



GREATEST LOWER BOUND

• Given a poset  and ,  is called a lower bound on 
 if . 

•  is called the greatest lower bound (glb) of X, if  is a lower 
bound of X, and for every other lower bound , .  

• We use the notation   to denote the greatest lower bound 
of . Also called the meet of X. 

• Homework: Prove that the greatest lower bound, if it exists, is 
unique. 

(D, ≤ ) X ⊆ D l ∈ D
X ∀x ∈ X . l ≤ x

l ∈ D l
l′ l′ ≤ l

⊓ X
X



LUB - EXAMPLE
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} • Consider  

•  are both 
upper bounds of  

•  is the least upper 
bound.

X = {{a}, {b}}

{a, b}, {a, b, c}
X

{a, b}



LATTICE

• A lattice is a poset  such that ,  and  
exist. 

• A complete lattice is a lattice such that ,  and  
exists. 

• Example:  is a complete lattice.

(D, ≤ ) ∀x, y ∈ D x ⊔ y x ⊓ y

∀X ⊆ D ⊔ X ⊓ X

(ℙ(S), ⊆ )



LATTICE - MORE EXAMPLES

• What is the simplest example of a poset that is not a lattice? 

•  

• What is an example of a lattice which is not a complete lattice? 

•

({a, b}, {(a, a), (b, b)})

(ℕ, ≤ )



LATTICE - MORE EXAMPLES

• What is the simplest example of a poset that is not a lattice? 

•  

• What is an example of a lattice which is not a complete lattice? 

•  

• Sign Lattice:

({a, b}, {(a, a), (b, b)})

(ℕ, ≤ )

+−

+ −

⊥



SOME PROPERTIES OF LATTICES

•  is a lattice,  

• If , then  and . 

•  and  

•  

• If  is finite, then  is also a complete lattice.

(D, ≤ ) x, y, z ∈ D

x ≤ y x ⊔ y = y x ⊓ y = x

x ⊔ x = x x ⊓ x = x

(x ⊔ y) ⊔ z = x ⊔ (y ⊔ z) = ⊔ {x, y, z}

D D



MINIMUM AND MAXIMUM

• Given a poset ,  is called the minimum element if 
. 

• Also called the bottom element. Denoted by . 

• Given a poset ,  is called the maximum element if 
. 

• Also called the top element. Denoted by . 

• Complete lattices are guaranteed to have top and bottom 
elements. 

•  

•

(D, ≤ ) x ∈ D
∀y ∈ D . x ≤ y

⊥

(D, ≤ ) x ∈ D
∀y ∈ D . y ≤ x

⊤

⊔ D = ⊤ , ⊓ D = ⊥

⊔ ∅ = ⊥ , ⊓ ∅ = ⊤



MONOTONIC FUNCTIONS

• Given two posets  and , function  is 
called monotonic (or order-preserving) if  

•  

• In the special case when ,  is monotonic if 

•

(D1, ≤1 ) (D2, ≤2 ) f : D1 → D2

∀x, y ∈ D1 . x ≤1 y → f(x) ≤2 f(y)

D1 = D2 = D f : D → D

∀x, y ∈ D . x ≤ y → f(x) ≤ f(y)



MONOTONIC FUNCTIONS - EXAMPLE
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} • Consider , 
. 

•  is monotonic. 

• What about ? 

• Example of a non-monotonic 
function on ?

f : ℙ(S) → ℙ(S)
f(X) = X ∪ {a}

f

f(X) = X ∩ {a}

ℙ(S)



JOIN PRESERVING

• Given posets  and , a monotonic function 
, and , if  and  exist, then 

.

(D1, ≤1 ) (D2, ≤2 )
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)



JOIN PRESERVING

• Given posets  and , a monotonic function 
, and , if  and  exist, then 

.

(D1, ≤1 ) (D2, ≤2 )
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

D1
D2

a b

c

a’ b'

c’

c’’



JOIN PRESERVING

• Given posets  and , a monotonic function 
, and , if  and  exist, then 

. 

Proof:

(D1, ≤1 ) (D2, ≤2 )
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)



JOIN PRESERVING

• Given posets  and , a monotonic function 
, and , if  and  exist, then 

. 

Proof: Let . 

Then . This implies that . 

Thus  is an upper bound of . 

Hence, .

(D1, ≤1 ) (D2, ≤2 )
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

u = ⊔1 S

∀x ∈ S . x ≤1 u ∀x ∈ S . f(x) ≤2 f(u)

f(u) f(S)

⊔2 f(S) ≤2 f(u)



FIXPOINTS

• A fixpoint of a function  is an element  such that 
. 

• A pre-fixpoint of a function  is an element  such 
that . 

• A post-fixpoint of a function  is an element  such 
that .

f : D → D x ∈ D
f(x) = x

f : D → D x ∈ D
x ≤ f(x)

f : D → D x ∈ D
f(x) ≤ x



FIXPOINTS - EXAMPLE

a

b c

d • Fixpoint : c 

• Pre-fixpoints : a,b,c 

• Post-fixpoint : c,d



KNASTER-TARSKI FIXPOINT THEOREM

• Let  be a complete lattice, and  be a monotonic 
function on . Then: 

•  has at least one fixpoint. 

•  has a least fixpoint (lfp), which is the same as the glb of the set 
of post-fixpoints of , and a greatest fixpoint (gfp) which is the 
same as the lub of the set of pre-fixpoints of . 

• The set of fixpoints of  itself forms a complete lattice under .

(D, ≤ ) f : D → D
(D, ≤ )

f

f
f

f

f ≤



KNASTER-TARSKI FIXPOINT THEOREM

a

b c

d e

f
• Complete Lattice  

• Monotonic Function 

• Pre-fixpoints: a,c,e,f 

• Post-fixpoints: c,d,f 

• Fixpoints: c,f

ILLUSTRATION



PROOF OF KNASTER-TARSKI THEOREM

•  

• We will show that  is a fixpoint. 

• Notice that  cannot be empty. Why? 

Proof:

Pre = {x |x ≤ f(x)}

⊔ Pre

Pre



PROOF OF KNASTER-TARSKI THEOREM

•  

• We will show that  is a fixpoint. 

• Notice that  cannot be empty. Why? 

Proof: Let .  

Consider Then, . Hence, . Since , we 
have . Thus,  is an upper bound of . Since  is the 
least upper bound of , we have . 

. Hence,  is a pre-fixpoint. Therefore, 
. 

This proves that .

Pre = {x |x ≤ f(x)}

⊔ Pre

Pre

u = ⊔ Pre

x ∈ Pre . x ≤ u f(x) ≤ f(u) x ≤ f(x)
x ≤ f(u) f(u) Pre u

Pre u ≤ f(u)

u ≤ f(u) ⇒ f(u) ≤ f( f(u)) f(u)
f(u) ≤ u

u = f(u)



PROOF OF KNASTER-TARSKI THEOREM

•  

•  is the greatest fixpoint. 

Proof: Consider another fixpoint .  

Then,  is also a pre-fixpoint. Hence, .

Pre = {x |x ≤ f(x)}

⊔ Pre

g

g g ≤ ⊔ Pre



PROOF OF KNASTER-TARSKI THEOREM

•  

•  is a fixpoint of . 

•  is the least fixpoint. 

Post = {x | f(x) ≤ x)}

⊓ Post f

⊓ Post

HOMEWORK



PROOF OF KNASTER-TARSKI THEOREM

•  

• We will show that  is a complete lattice. 

Proof Sketch:  is a partial order. 

Let . Let  be the  in . Consider  

Then  is a complete lattice. [Prove this.] 

Further, . [Prove this.] 

Hence,  is a monotonic function on complete lattice . By previous part 
of Knaster-Tarski Theorem, the least fixpoint of  in  exists.  

Let  be the least fixpoint of  in . Then  is the least upper bound of  in . 
[Prove this.] 

Similarly, we can show that  also exists in . [Prove this.]

P = {x | f(x) = x}

(P, ≤ )

(P, ≤ )

X ⊆ P u ⊔ X D U = {a ∈ D |u ≤ a}

(U, ≤ )

f(U) ⊆ U

f (U, ≤ )
f U

v f U v X P

⊓ X P



CHAINS

• Given a poset ,  is called a chain if . 

• A poset  satisfies the ascending chain condition, if for all sequences 
, . 

• We say that the sequence stabilizes to . 

• A poset  satisfies the descending chain condition, if for all sequences 
, . 

• A poset that satisfies the descending chain condition is also called well-
ordered. 

• Example: Is  well-ordered? 

• Poset  is said to have finite height if it satisfies both the ascending 
and descending chain conditions. 

• Example: Does  have finite height?

(D, ≤ ) C ⊆ D ∀x, y ∈ C . x ≤ y ∨ y ≤ x

(D, ≤ )
x1 ≤ x2 ≤ … ∃k . ∀n ≥ k . xn = xk

xk

(D, ≤ )
x1 ≥ x2 ≥ … ∃k . ∀n ≥ k . xn = xk

(ℕ, ≤ )

(D, ≤ )

(ℕ, ≤ )



COMPUTING LFP

• Consider a complete lattice  and a monotonic function 
. 

• Consider the sequence  

• If it stabilizes, it will converge to a fixpoint of . 

• Further, this fixpoint will be the least fixpoint of  

• Hence, if  satisfies the ascending chain condition, we can 
compute  by finding the stable value of 

 

• Homework: If , and the sequence  stabilizes, 
it will converge to the least fixpoint greater than  (denoted by 

).

(D, ≤ )
f : D → D

⊥ , f( ⊥ ), f 2( ⊥ ), f3( ⊥ ), …

f

f .

(D, ≤ )
lfp( f )

⊥ , f( ⊥ ), f 2( ⊥ ), f3( ⊥ ), …

a ∈ Pre a, f(a), f 2(a), …
a

lfpa( f )



GALOIS CONNECTION

• Given posets  and , a pair of functions , 
 and  is called a Galois connection if 

•  

• Also written as: 

(C, ≤1 ) (D, ≤2 ) (α, γ)
α : C → D γ : D → C

∀c ∈ C . ∀d ∈ D . α(c) ≤2 d ⇔ c ≤1 γ(d)

(C, ≤1 )
α

⇄
γ

(D, ≤2 )



GALOIS CONNECTION

• Given posets  and , a pair of functions , 
 and  is called a Galois connection if 

•  

• Also written as: 

(C, ≤1 ) (D, ≤2 ) (α, γ)
α : C → D γ : D → C

∀c ∈ C . ∀d ∈ D . α(c) ≤2 d ⇔ c ≤1 γ(d)

(C, ≤1 )
α

⇄
γ

(D, ≤2 )

c α(c)

dγ(d)

α

γ



PROPERTIES OF GALOIS CONNECTION

•  

• Proof: Consider . Then, . By definition of Galois 
connection, . Hence, . 

•  

• Proof: Homework.

c ≤1 γ(α(c))

d = α(c) α(c) ≤ d
c ≤ γ(d) c ≤ γ(α(c))

α(γ(d)) ≤2 d



PROPERTIES OF GALOIS CONNECTION

•  is monotonic. 

• Proof: Consider  such that .  

• We know that . By transitivity, . Hence, 
by definition of Galois connection, . 

•  is monotonic. 

• Proof: Homework.

α

c1, c2 ∈ C c1 ≤1 c2

c2 ≤ γ(α(c2)) c1 ≤ γ(α(c2))
α(c1) ≤2 α(c2)

γ



GALOIS CONNECTION AND PROGRAM STATES

• Recall: . The concrete domain  will be . 

• The abstract domain  will be a collection of artificially constrained 
set of states. We can represent this as . 

• The abstraction function  will map  to the smallest set  
such that . 

• The concretization function  will simply be . 

• Is this a Galois Connection? We have to show that 
. 

• Suppose . Now,  and . Hence, . 

• Suppose . Hence, . Now,  is the smallest set in  
containing . Hence, .

States ≜ V → ℝ C (ℙ(States), ⊆ )

D
D ⊆ C

α c ∈ C d ∈ D
c ⊆ d

γ γ(d) = d

α(c) ⊆ d ⇔ c ⊆ γ(d)

α(c) ⊆ d c ⊆ α(c) γ(d) = d c ⊆ γ(d)

c ⊆ γ(d) c ⊆ d α(c) D
c α(c) ⊆ d



GALOIS CONNECTION AND PROGRAM STATES

• Assume that . 

• Hence, , The concrete domain  is  

• Sign Abstract Domain: . 

•  

•  

•  

•  

• Clearly .

V = {v}

State = ℝ C (ℙ(ℝ), ⊆ )

D = { + − , + , − , ⊥ }

+ − ≜ ℝ

+ ≜ {n ∈ ℝ |n ≥ 0}

− ≜ {n ∈ ℝ | n < 0}

⊥ ≜ ∅

D ⊆ C

EXAMPLE



• Define the Galois Connection:  

•  if  

•  if  

•  

• Otherwise, . 

• . 

• Example: , 

(ℙ(ℝ), ⊆ )
α

⇄
γ

(D, ⊆ )

α(c) = + min(c) ≥ 0

α(c) = − max(c) < 0

α(∅) = ⊥

α(c) = + −

γ(d) = d

α({3,5}) = + α({3,6, − 1,0}) = + −

GALOIS CONNECTION AND PROGRAM STATES
EXAMPLE



ONTO GALOIS CONNECTION

• The abstraction function  will map  to the smallest set 
 such that . 

• The concretization function  will simply be . 

• Notice that . 

• Also called Onto Galois Connection. 

• From now onwards, we will assume that Galois Connections are 
Onto.

α c ∈ C
d ∈ D c ⊆ d

γ γ(d) = d

α(γ(d)) = d



JOIN OVER PATHS

• Recall: Given a program as a LTS , the assertion 
map  associates a set of states with every 
location. 

•  is the set of states reachable at  during any execution. 

•  is also called the Concrete Join Over Paths (JOP) or the 
collecting semantics. 

• Instead of operating over concrete states, we can also consider 
JOP over abstract states.

Γc ≡ (V, L, l0, le, T )
μ : L → ℙ(States)

μ(l) l

μ



ABSTRACT TRANSFER FUNCTION

• Given a Galois Connection , for every program 
command , we can define the abstract transfer function  (previously 
called the abstract strongest post-condition operator, ) 

•  . 

• We can define the concrete transfer function as follows: 
. 

•  

• Then, the abstract transfer function must be a consistent abstraction of 
the concrete transfer function: 

•  

• Equivalently, 

(ℙ(States), ⊆ )
α

⇄
γ

(D, ≤ )
p ̂fp

̂sp
̂fp : D → D

fp(σ) = {σ′ | (σ, p) ↪ (σ′ , skip)}

fp(c) = ⋃
σ∈c

fp(σ)

∀d ∈ D . fp(γ(d)) ⊆ γ( ̂fp(d))

∀c ∈ ℙ(States) . α( fp(c)) ≤ ̂fp(α(c))



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•

p : x := x+1
̂fp( + ) = ???



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•

p : x := x+1
̂fp( + ) = +



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•  

•

p : x := x+1
̂fp( + ) = +
̂fp( − ) = ???



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•  

•

p : x := x+1
̂fp( + ) = +
̂fp( − ) = + −



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•  

•  

•  

•

p : x := x+1
̂fp( + ) = +
̂fp( − ) = + −
̂fp( + − ) = + −
̂fp( ⊥ ) = ⊥



EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command 
. 

•  

•  

•  

•  

• A straightforward way to define consistent abstractions is to use 
 and the concrete transfer function : 

•

p : x := x+1
̂fp( + ) = +
̂fp( − ) = + −
̂fp( + − ) = + −
̂fp( ⊥ ) = ⊥

γ, α fp
̂fp(d) = α( fp(γ(d))



ABSTRACT JOP

• Instead of executing the program with concrete states, we 
execute the program with abstract state, and the abstract transfer 
function for each program command. 

• Collect all the abstract states at each location, for every possible 
execution 

• Their join is the abstract JOP map, .̂μ : L → D



EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le

+-

+

+

,+ +



EXAMPLE - COLLECTING SEMANTICS

l0

l1

l2

i := 1

i := − 1 j := i * i

⊤

i = 1

i = 1 ∧ j = 1

, i = − 1 ∧ j = 1

, i = − 1 ∧ j = 1



EXAMPLE - COLLECTING SEMANTICS

l0

l1

l2

i := 1

i := − 1 j := i * i

i = 1 ∨ (i = − 1 ∧ j = 1)

i = 1 ∧ j = 1
∨ i = − 1 ∧ j = 1

⊤



EXAMPLE - ABSTRACT JOP

l0

l1

l2

i := 1

i := − 1 j := i * i

(+-,+-)

(+,+-)

(+,+)

,(-,+)

,(-,+)



EXAMPLE - ABSTRACT JOP

l0

l1

l2

i := 1

i := − 1 j := i * i

(+-,+-)

(+,+-)

(+,+)

(-,+) = (+-,+-)

(-,+) = (+-,+)

⊔

⊔



SOUNDNESS OF ABSTRACT INTERPRETATION

A abstract interpretation consisting of 
• the abstract domain ,  
• abstraction, concretization functions , 
• and abstract transfer functions   
is sound,  
if for all , for all programs , 
assuming that , and  where , 
the  image of the abstract JOP  at all locations in  over 
approximates the collecting semantics , 
that is, or all locations , .

(D, ≤ )
(α, γ)

̂FD

d0 ∈ D Γ
̂μ(l0) = d0 μ(l0) = c0 c0 ⊆ γ(d0)

γ ̂μ Γ
μ

l γ( ̂μ(l)) ⊇ μ(l)

DEFINITION



l0

l1

l2

i := 1

i := − 1 j := i * i

⊤

i = 1 ∨ (i = − 1 ∧ j = 1)

i = 1 ∧ j = 1
∨ i = − 1 ∧ j = 1

(+-,+-)

(+-,+-)

(+-,+)

SOUNDNESS OF ABSTRACT INTERPRETATION
EXAMPLE



FROM ABSTRACT INTERPRETATION TO VERIFICATION

• In order to show the validity of the Hoare Triple , we 
instantiate a sound AI  with  such that 

 and compute the resulting JOP  at all locations. 

• If , then the Hoare Triple is valid. 

• Since , by definition of Galois connection, .  

• Hence, by definition of soundness of AI, , where  
is the collecting semantics assuming .

{P}c{Q}
(D, ≤ , α, γ, ̂FD) ̂μ(l0) = d0

d0 = α(P) ̂μ

γ( ̂μ(le)) ⊆ Q

α(P) = d0 P ⊆ γ(d0)

μ(le) ⊆ γ( ̂μ(le)) μ
μ(l0) = P



• An abstract interpretation  is sound if: 

•  is complete lattice. 

•  

• Every abstract transfer function in  is a consistent abstraction 
of the corresponding concrete transfer function.

(D, ≤ , α, γ, ̂FD)

(D, ≤ )

(ℙ(State), ⊆ )
α

⇄
γ

(D, ≤ )

̂FD

SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS



PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function 
 which is a consistent abstraction of concrete transfer 

function , the following holds: 

•

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ( ̂f(d))



PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function 
 which is a consistent abstraction of concrete transfer 

function , the following holds: 

•

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ( ̂f(d))

l

l′ 

c

γ(d)

f

l

l′ 

̂f
d

γ

̂f(d)f(c)

γ( ̂f(d))
γ



PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function 
 which is a consistent abstraction of concrete transfer 

function , the following holds: 

•  

Proof:

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ( ̂f(d))



PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function 
 which is a consistent abstraction of concrete transfer 

function , the following holds: 

•  

Proof: Consider  such that . 

Note that  is monotonic. (Why?) 

Hence, . 

Since  is a consistent abstraction of , . 

Hence, . 

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ( ̂f(d))

c ∈ ℙ(State), d ∈ D c ⊆ γ(d)

f

f(c) ⊆ f(γ(d))
̂f f f(γ(d)) ⊆ γ( ̂f(d))

f(c) ⊆ γ( ̂f(d))



• Given a path  in the program LTS, the 
combined abstract transfer function  is the composition of the 
individual transfer functions:  

• Similarly, the concrete transfer function  is  

• Let  be the set of all possible paths from  to . 

• Assuming that , the abstract JOP at a location  is given 
by: 

•  

• Similarly, assuming  the concrete JOP, 

π : l0
p0 l1

p1 … pn−1 ln ̂fπ̂fpn−1
∘ … ∘ ̂fp1

∘ ̂fp0

fπ fpn−1
∘ … ∘ fp1

∘ fp0

Πl l0 l

̂μ(l0) = d0 l

̂μ(l) = ⨆
π∈Πl

̂fπ(d0)

μ(l0) = c0 μ(l) = ⋃
π∈Πl

fπ(c0)

PROOF OF SOUNDNESS OF AI
CONCRETE AND ABSTRACT JOP



PROOF OF SOUNDNESS OF AI

• Lemma-2: Assuming that , we will show that for any path 
 to any location in any program, . 

Proof: We will use induction on the length of the path .  

c0 ⊆ γ(d0)
π fπ(c0) ⊆ γ( ̂fπ(d0))

π



PROOF OF SOUNDNESS OF AI

• Lemma-2: Assuming that , we will show that for any path  to 
any location in any program, . 

Proof: We will use induction on the length of the path .  

Base Case: For paths of length 0, we are already given that . 

Inductive Case: For paths of length , assume that the lemma holds. 
Consider a path  of length  to location . Consider the prefix  of  of 
length  ending at location . By inductive hypothesis, .  

Let the edge from  to  in the path be labelled by program command  

Then,  and . 

Let  and . We have  and  is a consistent 
abstraction of . Hence, by Lemma-1, . 

This proves that . 

c0 ⊆ γ(d0) π
fπ(c0) ⊆ γ( ̂fπ(d0))

π
c0 ⊆ γ(d0)

n − 1
π n l π′ π

n − 1 l′ fπ′ (c0) ⊆ γ( ̂fπ′ (d0))
l′ l p .

fπ = fp ∘ fπ′ 
̂fπ = ̂fp ∘ ̂fπ′ 

fπ′ (c0) = c ̂fπ′ (d0) = d c ⊆ γ(d) ̂fp
fp fp(c) ⊆ γ( ̂fp(d))

fπ(c0) ⊆ γ( ̂fπ(d0))



LEMMA-2

PROOF OF SOUNDNESS OF AI

l′ 

l

c

γ(d)

fp

l′ 

l

̂fp

d

γ

̂fp(d)fp(c)

γ( ̂f(d))
γ

l0 l0
γ(d0)

c0 d0

π′ π′ 



PROOF OF SOUNDNESS OF AI

• Finally, we will show that for any location , 
, assuming that . 

Proof: By Lemma-2, we know that . 

l
⋃
π∈Πl

fπ(c0) ⊆ γ( ⨆
π∈Πl

̂fπ(d0)) c0 ⊆ γ(d0)

∀π ∈ Πl . fπ(c0) ⊆ γ( ̂fπ(d0))



PROOF OF SOUNDNESS OF AI

• Finally, we will show that for any location , 
, assuming that . 

Proof: By Lemma-2, we know that . 

Hence, . 

We know that  is monotonic and  is a complete lattice, so 
that  exists. Hence, by the join-preserving property, 

.  Hence, 

l
⋃
π∈Πl

fπ(c0) ⊆ γ( ⨆
π∈Πl

̂fπ(d0)) c0 ⊆ γ(d0)

∀π ∈ Πl . fπ(c0) ⊆ γ( ̂fπ(d0))

⋃
π∈Πl

fπ(c0) ⊆ ⋃
π∈Πl

γ( ̂fπ(d0))

γ (D, ≤ )

⨆
π∈Πl

̂fπ(d0)

⋃
π∈Πl

γ( ̂fπ(d0)) ⊆ γ( ⨆
π∈Πl

̂fπ(d0)) ⋃
π∈Πl

fπ(c0) ⊆ γ( ⨆
π∈Πl

̂fπ(d0))



• An abstract interpretation  is sound if: 

•  is complete lattice. [For JOP to exist in ] 

• . [Monotonicity of ; Relating the 
verification problem] 

• Note that for soundness, we only need monotonicity of . 

• Every abstract transfer function in  is a consistent abstraction 
of the corresponding concrete transfer function. [For showing 
over-approximation over concrete path]

(D, ≤ , α, γ, ̂FD)

(D, ≤ ) D

(ℙ(State), ⊆ )
α

⇄
γ

(D, ≤ ) γ

γ
̂FD

SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS



SIGN ABSTRACT DOMAIN

ABSTRACT TRANSFER FUNCTION

D =  

 

 

 

 

 

V → { + − , + , − , ⊥ }

p : x := e
̂fp(d) ≜ d[x → g(d, e)]

g(d, e1 + e2) =
+ if g(d, e1) = +  and g(d, e2) = +
− if g(d, e1) = −  and g(d, e2) = −
+ − otherwise

g(d, e1 − e2) =
+ if g(d, e1) = +  and g(d, e2) = −
− if g(d, e1) = −  and g(d, e2) = +
+ − otherwise

g(d, y) = d(y) if y is a program variable
̂fp( ⊥ ) = ⊥


