
COURSE STRUCTURE

• Propositional Logic, SAT solving, DPLL
• First-Order Logic, SMT
• First-Order Theories

CONSTRAINT
SOLVERS

DEDUCTIVE
VERIFICATION

• Operational Semantics
• Strongest Post-condition, Weakest Pre-

condition
• Hoare Logic

MODEL CHECKING AND
OTHER VERIFICATION

TECHNIQUES

• Abstract Interpretation
• Predicate Abstraction, CEGAR
• Property-directed Reachability

ABSTRACT
INTERPRETATION

LABELLED TRANSITION SYSTEM

• We express the program as a labelled transition system

• is the set of program variables

• is the set of program locations

• is the start location

• is the end location

• is the set of labelled transitions between
locations.

c
Γc ≡ (V, L, l0, le, T)

V

L

l0
le
T ⊆ L × c × L

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

PROGRAMS AS LTS

• There are various ways to construct the LTS of a program

• We can use control flow graph

• We can use basic paths as defined by the book (BM Chapter 5). A
basic path is a sequence of instructions that begins at the start of
the program or a loop head, and ends at a loop head or the end of
the program.

• Program State consists of the values of the variables
and the location.

• An execution is a sequence of program states, ,
such that for all , , and .

• A program satisfies its specification if , for all
executions of , .

(σ, l) (σ : V → ℝ)

(σ0, l0), (σ1, l1), …, (σn, ln)
i 0 ≤ i ≤ n − 1 (li, c, li+1) ∈ T (σi, c) ↪* (σi+1, skip)

{P}c{Q} ∀σ ∈ P
(σ, l0), (σ1, l1), …, (σ′ , le) Γc σ′ ∈ Q

INDUCTIVE ASSERTION MAP

• With each location, we associate a set of states which are
reachable at that location in any execution.

•

• To express that such a map is an inductive assertion map, we will
use Strongest Post-condition.

•

• Then, if is an inductive assertion map on , the Hoare triple
 is valid if and .

μ : L → Σ(V)

∀(l, c, l′) ∈ T . sp(μ(l), c) → μ(l′)

μ Γc
{P}c{Q} P → μ(l0) μ(le) → Q

GENERATING THE INDUCTIVE ASSERTION MAP

• We can express the inductive assertion map as a solution of a
system of equations:

•

• For all other locations

Xl0 = P

l ∈ L∖{l0}, Xl = ⋁
(l′ ,c,l)∈T

sp(Xl′ , c)

GENERATING THE INDUCTIVE ASSERTION MAP

ForwardPropagate(,P)
S := { };

 := P;
 := , for ;

while S do{
 := Choose S;
 S := S \ ;
 foreach do{
 F := ;
 if then{

 S := S ;
 }
 }

 }

Γc
l0

μ(l0)
μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′) ∈ T
sp(μ(l), c)

¬(F → μ(l′))
μ(l′) := μ(l′) ∨ F;

∪ {l′ }

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

⊤

le

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

true

(i = 0) ∨ (i = 1 ∧ n > 0) ∨ (i = 2 ∧ n > 1) ∨ …

le

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

true

(i = 0) ∨ (i = 1 ∧ n > 0) ∨ (i = 2 ∧ n > 1) ∨ …

le

FORWARDPROPAGATE WILL NOT TERMINATE

ABSTRACT INTERPRETATION: OVERVIEW

• Instead of maintaining an arbitrary set of states at each location, maintain
an artificially constrained set of states, coming from an abstract domain .

•

• Let be the set of all possible concrete states.

• Abstraction function,

• Concretization function,

• over approximates the set of states at every location.

• For all locations

• Use abstract strongest post-condition operator

•

D

̂μ : L → D

States ≜ V → ℝ

α : ℙ(States) → D

γ : D → ℙ(States)

̂μ

l, γ(̂μ(l)) ⊇ μ(l)

̂sp : D × c → D

γ(̂sp(d, c)) ⊇ sp(γ(d), c)

GENERATING THE INDUCTIVE ASSERTION MAP

ForwardPropagate(,P)
S := { };

 := P;
 := , for ;

while S do{
 := Choose S;
 S := S \ ;
 foreach do{
 F := ;
 if then{

 S := S ;
 }
 }

 }

Γc
l0

μ(l0)
μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′) ∈ T
sp(μ(l), c)

¬(F → μ(l′))
μ(l′) := μ(l′) ∨ F;

∪ {l′ }

ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate(,P)
S := { };

 := ;
 := , for ;

while S do{
 := Choose S;
 S := S \ ;
 foreach do{
 F := ;
 if then{

 S := S ;
 }
 }

 }

Γc
l0

̂μ(l0) α(P)
̂μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′) ∈ T

̂sp(̂μ(l), c)
¬(F ≤ ̂μ(l′))
̂μ(l′) := ̂μ(l′) ⊔ F;

∪ {l′ }

ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate(,P)
S := { };

 := ;
 := , for ;

while S do{
 := Choose S;
 S := S \ ;
 foreach do{
 F := ;
 if then{

 S := S ;
 }
 }

 }

Γc
l0

̂μ(l0) α(P)
̂μ(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′) ∈ T

̂sp(̂μ(l), c)
¬(F ≤ ̂μ(l′))
̂μ(l′) := ̂μ(l′) ⊔ F;

∪ {l′ }

Abstract Domain D
 is a lattice (D, ≤ , ⊔)

ABSTRACT INTERPRETATION: OVERVIEW

• At the end, we will check whether .

• Equivalently,

̂μ(le) ≤ α(Q)

γ(̂μ(le)) ⊆ Q

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le

Suppose we want to prove the post-condition : i ≥ 0

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain:
D = { + − , + , − , ⊥ }
γ(+ −) = ⊤
γ(+) = i ≥ 0
γ(−) = i < 0
γ(⊥) = ⊥

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain:
D = { + − , + , − , ⊥ }
γ(+ −) = ⊤
γ(+) = i ≥ 0
γ(−) = i < 0
γ(⊥) = ⊥

+-

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le
Sign Abstract Domain:
D = { + − , + , − , ⊥ }

+-

+

+

+

γ(+ −) = ⊤
γ(+) = i ≥ 0
γ(−) = i < 0
γ(⊥) = ⊥

ABSTRACT INTERPRETATION: OVERVIEW

• Desirable properties of Abstract Interpretation

• Soundness: over approximates the set of states at every
location.

• Guaranteed termination of AbstractForwardPropagate

• We will use concepts from lattice theory to characterise the
conditions required for these properties.

̂μ

• An abstract interpretation is sound if:

• is complete lattice.

• is a Galois Connection.

• is a consistent abstraction of .

(D, ≤ , α, γ)

(D, ≤)

(ℙ(State), ⊆)
α

⇄
γ

(D, ≤)

̂sp sp

SNEAK PEEK
SOUNDNESS OF ABSTRACT INTERPRETATION

SNEAK PEEK

• AbstractForwardPropagate on abstract domain is
guaranteed to terminate if:
• is a complete lattice.
• is monotonic.
• satisfies the ascending chain condition.

(D, ≤)

(D, ≤)
̂sp

(D, ≤)

GUARANTEED TERMINATION OF ABSTRACT FORWARD
PROPAGATE

PARTIAL ORDER

• Given a set , a binary relation is a partial order on if

• is reflexive:

• is anti-symmetric:

• is transitive:

• Examples

• on is a partial order.

• Given a set , on is a partial order.

D ≤ ⊆ D × D D

≤ ∀d ∈ D . d ≤ d

≤ ∀d, d′ ∈ D . d ≤ d′ ∧ d′ ≤ d → d = d′

≤ ∀d1, d2, d3 ∈ D, d1 ≤ d2 ∧ d2 ≤ d3 → d1 ≤ d3

≤ ℕ

S ⊆ ℙ(S)

PARTIAL ORDER - EXAMPLES
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c}

Partially Ordered Set: (ℙ(S), ⊆)

PARTIAL ORDER - EXAMPLES
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} Hasse diagram:
• Doesn’t show

reflexive edges
(self-loops)

• Doesn’t show
transitive edges

Partially Ordered Set: (ℙ(S), ⊆)

PARTIAL ORDER - MORE EXAMPLES

• Which of the following are partially ordered sets (posets)?

•

•

•

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c})

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c ∧ b ≤ d})

(ℕ × ℕ, {(a, b), (c, d) | a ≤ c ∨ b ≤ d})

LEAST UPPER BOUND

• Given a poset and , is called an upper bound
on if .

• is called the least upper bound (lub) of X, if is an upper
bound of X, and for every other upper bound of X, .

• We use the notation to denote the least upper bound of .
Also called the join of X.

• Exercise: Prove that the least upper bound, if it exists, is
unique.

(D, ≤) X ⊆ D u ∈ D
X ∀x ∈ X . x ≤ u

u ∈ D u
u′ u ≤ u′

⊔ X X

GREATEST LOWER BOUND

• Given a poset and , is called a lower bound on
 if .

• is called the greatest lower bound (glb) of X, if is a lower
bound of X, and for every other lower bound , .

• We use the notation to denote the greatest lower bound
of . Also called the meet of X.

• Homework: Prove that the greatest lower bound, if it exists, is
unique.

(D, ≤) X ⊆ D l ∈ D
X ∀x ∈ X . l ≤ x

l ∈ D l
l′ l′ ≤ l

⊓ X
X

LUB - EXAMPLE
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} • Consider

• are both
upper bounds of

• is the least upper
bound.

X = {{a}, {b}}

{a, b}, {a, b, c}
X

{a, b}

LATTICE

• A lattice is a poset such that , and
exist.

• A complete lattice is a lattice such that , and
exists.

• Example: is a complete lattice.

(D, ≤) ∀x, y ∈ D x ⊔ y x ⊓ y

∀X ⊆ D ⊔ X ⊓ X

(ℙ(S), ⊆)

LATTICE - MORE EXAMPLES

• What is the simplest example of a poset that is not a lattice?

•

• What is an example of a lattice which is not a complete lattice?

•

({a, b}, {(a, a), (b, b)})

(ℕ, ≤)

LATTICE - MORE EXAMPLES

• What is the simplest example of a poset that is not a lattice?

•

• What is an example of a lattice which is not a complete lattice?

•

• Sign Lattice:

({a, b}, {(a, a), (b, b)})

(ℕ, ≤)

+−

+ −

⊥

SOME PROPERTIES OF LATTICES

• is a lattice,

• If , then and .

• and

•

• If is finite, then is also a complete lattice.

(D, ≤) x, y, z ∈ D

x ≤ y x ⊔ y = y x ⊓ y = x

x ⊔ x = x x ⊓ x = x

(x ⊔ y) ⊔ z = x ⊔ (y ⊔ z) = ⊔ {x, y, z}

D D

MINIMUM AND MAXIMUM

• Given a poset , is called the minimum element if
.

• Also called the bottom element. Denoted by .

• Given a poset , is called the maximum element if
.

• Also called the top element. Denoted by .

• Complete lattices are guaranteed to have top and bottom
elements.

•

•

(D, ≤) x ∈ D
∀y ∈ D . x ≤ y

⊥

(D, ≤) x ∈ D
∀y ∈ D . y ≤ x

⊤

⊔ D = ⊤ , ⊓ D = ⊥

⊔ ∅ = ⊥ , ⊓ ∅ = ⊤

MONOTONIC FUNCTIONS

• Given two posets and , function is
called monotonic (or order-preserving) if

•

• In the special case when , is monotonic if

•

(D1, ≤1) (D2, ≤2) f : D1 → D2

∀x, y ∈ D1 . x ≤1 y → f(x) ≤2 f(y)

D1 = D2 = D f : D → D

∀x, y ∈ D . x ≤ y → f(x) ≤ f(y)

MONOTONIC FUNCTIONS - EXAMPLE
S = {a, b, c}

ℙ(S) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

∅

{a} {b} {c}

{a, b} {b, c} {a, c}

{a, b, c} • Consider ,
.

• is monotonic.

• What about ?

• Example of a non-monotonic
function on ?

f : ℙ(S) → ℙ(S)
f(X) = X ∪ {a}

f

f(X) = X ∩ {a}

ℙ(S)

JOIN PRESERVING

• Given posets and , a monotonic function
, and , if and exist, then

.

(D1, ≤1) (D2, ≤2)
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

JOIN PRESERVING

• Given posets and , a monotonic function
, and , if and exist, then

.

(D1, ≤1) (D2, ≤2)
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

D1
D2

a b

c

a’ b'

c’

c’’

JOIN PRESERVING

• Given posets and , a monotonic function
, and , if and exist, then

.

Proof:

(D1, ≤1) (D2, ≤2)
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

JOIN PRESERVING

• Given posets and , a monotonic function
, and , if and exist, then

.

Proof: Let .

Then . This implies that .

Thus is an upper bound of .

Hence, .

(D1, ≤1) (D2, ≤2)
f : D1 → D2 S ⊆ D1 ⊔1 S ⊔2 f(S)
⊔2 f(S) ≤2 f(⊔1S)

u = ⊔1 S

∀x ∈ S . x ≤1 u ∀x ∈ S . f(x) ≤2 f(u)

f(u) f(S)

⊔2 f(S) ≤2 f(u)

FIXPOINTS

• A fixpoint of a function is an element such that
.

• A pre-fixpoint of a function is an element such
that .

• A post-fixpoint of a function is an element such
that .

f : D → D x ∈ D
f(x) = x

f : D → D x ∈ D
x ≤ f(x)

f : D → D x ∈ D
f(x) ≤ x

FIXPOINTS - EXAMPLE

a

b c

d • Fixpoint : c

• Pre-fixpoints : a,b,c

• Post-fixpoint : c,d

KNASTER-TARSKI FIXPOINT THEOREM

• Let be a complete lattice, and be a monotonic
function on . Then:

• has at least one fixpoint.

• has a least fixpoint (lfp), which is the same as the glb of the set
of post-fixpoints of , and a greatest fixpoint (gfp) which is the
same as the lub of the set of pre-fixpoints of .

• The set of fixpoints of itself forms a complete lattice under .

(D, ≤) f : D → D
(D, ≤)

f

f
f

f

f ≤

KNASTER-TARSKI FIXPOINT THEOREM

a

b c

d e

f
• Complete Lattice

• Monotonic Function

• Pre-fixpoints: a,c,e,f

• Post-fixpoints: c,d,f

• Fixpoints: c,f

ILLUSTRATION

PROOF OF KNASTER-TARSKI THEOREM

•

• We will show that is a fixpoint.

• Notice that cannot be empty. Why?

Proof:

Pre = {x |x ≤ f(x)}

⊔ Pre

Pre

PROOF OF KNASTER-TARSKI THEOREM

•

• We will show that is a fixpoint.

• Notice that cannot be empty. Why?

Proof: Let .

Consider Then, . Hence, . Since , we
have . Thus, is an upper bound of . Since is the
least upper bound of , we have .

. Hence, is a pre-fixpoint. Therefore,
.

This proves that .

Pre = {x |x ≤ f(x)}

⊔ Pre

Pre

u = ⊔ Pre

x ∈ Pre . x ≤ u f(x) ≤ f(u) x ≤ f(x)
x ≤ f(u) f(u) Pre u

Pre u ≤ f(u)

u ≤ f(u) ⇒ f(u) ≤ f(f(u)) f(u)
f(u) ≤ u

u = f(u)

PROOF OF KNASTER-TARSKI THEOREM

•

• is the greatest fixpoint.

Proof: Consider another fixpoint .

Then, is also a pre-fixpoint. Hence, .

Pre = {x |x ≤ f(x)}

⊔ Pre

g

g g ≤ ⊔ Pre

PROOF OF KNASTER-TARSKI THEOREM

•

• is a fixpoint of .

• is the least fixpoint.

Post = {x | f(x) ≤ x)}

⊓ Post f

⊓ Post

HOMEWORK

PROOF OF KNASTER-TARSKI THEOREM

•

• We will show that is a complete lattice.

Proof Sketch: is a partial order.

Let . Let be the in . Consider

Then is a complete lattice. [Prove this.]

Further, . [Prove this.]

Hence, is a monotonic function on complete lattice . By previous part
of Knaster-Tarski Theorem, the least fixpoint of in exists.

Let be the least fixpoint of in . Then is the least upper bound of in .
[Prove this.]

Similarly, we can show that also exists in . [Prove this.]

P = {x | f(x) = x}

(P, ≤)

(P, ≤)

X ⊆ P u ⊔ X D U = {a ∈ D |u ≤ a}

(U, ≤)

f(U) ⊆ U

f (U, ≤)
f U

v f U v X P

⊓ X P

CHAINS

• Given a poset , is called a chain if .

• A poset satisfies the ascending chain condition, if for all sequences
, .

• We say that the sequence stabilizes to .

• A poset satisfies the descending chain condition, if for all sequences
, .

• A poset that satisfies the descending chain condition is also called well-
ordered.

• Example: Is well-ordered?

• Poset is said to have finite height if it satisfies both the ascending
and descending chain conditions.

• Example: Does have finite height?

(D, ≤) C ⊆ D ∀x, y ∈ C . x ≤ y ∨ y ≤ x

(D, ≤)
x1 ≤ x2 ≤ … ∃k . ∀n ≥ k . xn = xk

xk

(D, ≤)
x1 ≥ x2 ≥ … ∃k . ∀n ≥ k . xn = xk

(ℕ, ≤)

(D, ≤)

(ℕ, ≤)

COMPUTING LFP

• Consider a complete lattice and a monotonic function
.

• Consider the sequence

• If it stabilizes, it will converge to a fixpoint of .

• Further, this fixpoint will be the least fixpoint of

• Hence, if satisfies the ascending chain condition, we can
compute by finding the stable value of

• Homework: If , and the sequence stabilizes,
it will converge to the least fixpoint greater than (denoted by

).

(D, ≤)
f : D → D

⊥ , f(⊥), f 2(⊥), f3(⊥), …

f

f .

(D, ≤)
lfp(f)

⊥ , f(⊥), f 2(⊥), f3(⊥), …

a ∈ Pre a, f(a), f 2(a), …
a

lfpa(f)

GALOIS CONNECTION

• Given posets and , a pair of functions ,
 and is called a Galois connection if

•

• Also written as:

(C, ≤1) (D, ≤2) (α, γ)
α : C → D γ : D → C

∀c ∈ C . ∀d ∈ D . α(c) ≤2 d ⇔ c ≤1 γ(d)

(C, ≤1)
α

⇄
γ

(D, ≤2)

GALOIS CONNECTION

• Given posets and , a pair of functions ,
 and is called a Galois connection if

•

• Also written as:

(C, ≤1) (D, ≤2) (α, γ)
α : C → D γ : D → C

∀c ∈ C . ∀d ∈ D . α(c) ≤2 d ⇔ c ≤1 γ(d)

(C, ≤1)
α

⇄
γ

(D, ≤2)

c α(c)

dγ(d)

α

γ

PROPERTIES OF GALOIS CONNECTION

•

• Proof: Consider . Then, . By definition of Galois
connection, . Hence, .

•

• Proof: Homework.

c ≤1 γ(α(c))

d = α(c) α(c) ≤ d
c ≤ γ(d) c ≤ γ(α(c))

α(γ(d)) ≤2 d

PROPERTIES OF GALOIS CONNECTION

• is monotonic.

• Proof: Consider such that .

• We know that . By transitivity, . Hence,
by definition of Galois connection, .

• is monotonic.

• Proof: Homework.

α

c1, c2 ∈ C c1 ≤1 c2

c2 ≤ γ(α(c2)) c1 ≤ γ(α(c2))
α(c1) ≤2 α(c2)

γ

GALOIS CONNECTION AND PROGRAM STATES

• Recall: . The concrete domain will be .

• The abstract domain will be a collection of artificially constrained
set of states. We can represent this as .

• The abstraction function will map to the smallest set
such that .

• The concretization function will simply be .

• Is this a Galois Connection? We have to show that
.

• Suppose . Now, and . Hence, .

• Suppose . Hence, . Now, is the smallest set in
containing . Hence, .

States ≜ V → ℝ C (ℙ(States), ⊆)

D
D ⊆ C

α c ∈ C d ∈ D
c ⊆ d

γ γ(d) = d

α(c) ⊆ d ⇔ c ⊆ γ(d)

α(c) ⊆ d c ⊆ α(c) γ(d) = d c ⊆ γ(d)

c ⊆ γ(d) c ⊆ d α(c) D
c α(c) ⊆ d

GALOIS CONNECTION AND PROGRAM STATES

• Assume that .

• Hence, , The concrete domain is

• Sign Abstract Domain: .

•

•

•

•

• Clearly .

V = {v}

State = ℝ C (ℙ(ℝ), ⊆)

D = { + − , + , − , ⊥ }

+ − ≜ ℝ

+ ≜ {n ∈ ℝ |n ≥ 0}

− ≜ {n ∈ ℝ | n < 0}

⊥ ≜ ∅

D ⊆ C

EXAMPLE

• Define the Galois Connection:

• if

• if

•

• Otherwise, .

• .

• Example: ,

(ℙ(ℝ), ⊆)
α

⇄
γ

(D, ⊆)

α(c) = + min(c) ≥ 0

α(c) = − max(c) < 0

α(∅) = ⊥

α(c) = + −

γ(d) = d

α({3,5}) = + α({3,6, − 1,0}) = + −

GALOIS CONNECTION AND PROGRAM STATES
EXAMPLE

ONTO GALOIS CONNECTION

• The abstraction function will map to the smallest set
 such that .

• The concretization function will simply be .

• Notice that .

• Also called Onto Galois Connection.

• From now onwards, we will assume that Galois Connections are
Onto.

α c ∈ C
d ∈ D c ⊆ d

γ γ(d) = d

α(γ(d)) = d

JOIN OVER PATHS

• Recall: Given a program as a LTS , the assertion
map associates a set of states with every
location.

• is the set of states reachable at during any execution.

• is also called the Concrete Join Over Paths (JOP) or the
collecting semantics.

• Instead of operating over concrete states, we can also consider
JOP over abstract states.

Γc ≡ (V, L, l0, le, T)
μ : L → ℙ(States)

μ(l) l

μ

ABSTRACT TRANSFER FUNCTION

• Given a Galois Connection , for every program
command , we can define the abstract transfer function (previously
called the abstract strongest post-condition operator,)

• .

• We can define the concrete transfer function as follows:
.

•

• Then, the abstract transfer function must be a consistent abstraction of
the concrete transfer function:

•

• Equivalently,

(ℙ(States), ⊆)
α

⇄
γ

(D, ≤)
p ̂fp

̂sp
̂fp : D → D

fp(σ) = {σ′ | (σ, p) ↪ (σ′ , skip)}

fp(c) = ⋃
σ∈c

fp(σ)

∀d ∈ D . fp(γ(d)) ⊆ γ(̂fp(d))

∀c ∈ ℙ(States) . α(fp(c)) ≤ ̂fp(α(c))

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

p : x := x+1
̂fp(+) = ???

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

p : x := x+1
̂fp(+) = +

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

•

p : x := x+1
̂fp(+) = +
̂fp(−) = ???

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

•

p : x := x+1
̂fp(+) = +
̂fp(−) = + −

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

•

•

•

p : x := x+1
̂fp(+) = +
̂fp(−) = + −
̂fp(+ −) = + −
̂fp(⊥) = ⊥

EXAMPLE

ABSTRACT TRANSFER FUNCTION

• Consider the sign abstract domain, and the program command
.

•

•

•

•

• A straightforward way to define consistent abstractions is to use
 and the concrete transfer function :

•

p : x := x+1
̂fp(+) = +
̂fp(−) = + −
̂fp(+ −) = + −
̂fp(⊥) = ⊥

γ, α fp
̂fp(d) = α(fp(γ(d))

ABSTRACT JOP

• Instead of executing the program with concrete states, we
execute the program with abstract state, and the abstract transfer
function for each program command.

• Collect all the abstract states at each location, for every possible
execution

• Their join is the abstract JOP map, .̂μ : L → D

EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

i := 0

assume(i < n)i := i + 1

assume(i ≥ n) le

+-

+

+

,+ +

EXAMPLE - COLLECTING SEMANTICS

l0

l1

l2

i := 1

i := − 1 j := i * i

⊤

i = 1

i = 1 ∧ j = 1

, i = − 1 ∧ j = 1

, i = − 1 ∧ j = 1

EXAMPLE - COLLECTING SEMANTICS

l0

l1

l2

i := 1

i := − 1 j := i * i

i = 1 ∨ (i = − 1 ∧ j = 1)

i = 1 ∧ j = 1
∨ i = − 1 ∧ j = 1

⊤

EXAMPLE - ABSTRACT JOP

l0

l1

l2

i := 1

i := − 1 j := i * i

(+-,+-)

(+,+-)

(+,+)

,(-,+)

,(-,+)

EXAMPLE - ABSTRACT JOP

l0

l1

l2

i := 1

i := − 1 j := i * i

(+-,+-)

(+,+-)

(+,+)

(-,+) = (+-,+-)

(-,+) = (+-,+)

⊔

⊔

SOUNDNESS OF ABSTRACT INTERPRETATION

A abstract interpretation consisting of
• the abstract domain ,
• abstraction, concretization functions ,
• and abstract transfer functions
is sound,
if for all , for all programs ,
assuming that , and where ,
the image of the abstract JOP at all locations in over
approximates the collecting semantics ,
that is, or all locations , .

(D, ≤)
(α, γ)

̂FD

d0 ∈ D Γ
̂μ(l0) = d0 μ(l0) = c0 c0 ⊆ γ(d0)

γ ̂μ Γ
μ

l γ(̂μ(l)) ⊇ μ(l)

DEFINITION

l0

l1

l2

i := 1

i := − 1 j := i * i

⊤

i = 1 ∨ (i = − 1 ∧ j = 1)

i = 1 ∧ j = 1
∨ i = − 1 ∧ j = 1

(+-,+-)

(+-,+-)

(+-,+)

SOUNDNESS OF ABSTRACT INTERPRETATION
EXAMPLE

FROM ABSTRACT INTERPRETATION TO VERIFICATION

• In order to show the validity of the Hoare Triple , we
instantiate a sound AI with such that

 and compute the resulting JOP at all locations.

• If , then the Hoare Triple is valid.

• Since , by definition of Galois connection, .

• Hence, by definition of soundness of AI, , where
is the collecting semantics assuming .

{P}c{Q}
(D, ≤ , α, γ, ̂FD) ̂μ(l0) = d0

d0 = α(P) ̂μ

γ(̂μ(le)) ⊆ Q

α(P) = d0 P ⊆ γ(d0)

μ(le) ⊆ γ(̂μ(le)) μ
μ(l0) = P

• An abstract interpretation is sound if:

• is complete lattice.

•

• Every abstract transfer function in is a consistent abstraction
of the corresponding concrete transfer function.

(D, ≤ , α, γ, ̂FD)

(D, ≤)

(ℙ(State), ⊆)
α

⇄
γ

(D, ≤)

̂FD

SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS

PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function
 which is a consistent abstraction of concrete transfer

function , the following holds:

•

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ(̂f(d))

PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function
 which is a consistent abstraction of concrete transfer

function , the following holds:

•

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ(̂f(d))

l

l′

c

γ(d)

f

l

l′

̂f
d

γ

̂f(d)f(c)

γ(̂f(d))
γ

PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function
 which is a consistent abstraction of concrete transfer

function , the following holds:

•

Proof:

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ(̂f(d))

PROOF OF SOUNDNESS OF AI

• Lemma-1: First, let us show that for any abstract transfer function
 which is a consistent abstraction of concrete transfer

function , the following holds:

•

Proof: Consider such that .

Note that is monotonic. (Why?)

Hence, .

Since is a consistent abstraction of , .

Hence, .

̂f ∈ ̂FD
f

∀c ∈ ℙ(States) . ∀d ∈ D . c ⊆ γ(d) ⇒ f(c) ⊆ γ(̂f(d))

c ∈ ℙ(State), d ∈ D c ⊆ γ(d)

f

f(c) ⊆ f(γ(d))
̂f f f(γ(d)) ⊆ γ(̂f(d))

f(c) ⊆ γ(̂f(d))

• Given a path in the program LTS, the
combined abstract transfer function is the composition of the
individual transfer functions:

• Similarly, the concrete transfer function is

• Let be the set of all possible paths from to .

• Assuming that , the abstract JOP at a location is given
by:

•

• Similarly, assuming the concrete JOP,

π : l0
p0 l1

p1 … pn−1 ln ̂fπ̂fpn−1
∘ … ∘ ̂fp1

∘ ̂fp0

fπ fpn−1
∘ … ∘ fp1

∘ fp0

Πl l0 l

̂μ(l0) = d0 l

̂μ(l) = ⨆
π∈Πl

̂fπ(d0)

μ(l0) = c0 μ(l) = ⋃
π∈Πl

fπ(c0)

PROOF OF SOUNDNESS OF AI
CONCRETE AND ABSTRACT JOP

PROOF OF SOUNDNESS OF AI

• Lemma-2: Assuming that , we will show that for any path
 to any location in any program, .

Proof: We will use induction on the length of the path .

c0 ⊆ γ(d0)
π fπ(c0) ⊆ γ(̂fπ(d0))

π

PROOF OF SOUNDNESS OF AI

• Lemma-2: Assuming that , we will show that for any path to
any location in any program, .

Proof: We will use induction on the length of the path .

Base Case: For paths of length 0, we are already given that .

Inductive Case: For paths of length , assume that the lemma holds.
Consider a path of length to location . Consider the prefix of of
length ending at location . By inductive hypothesis, .

Let the edge from to in the path be labelled by program command

Then, and .

Let and . We have and is a consistent
abstraction of . Hence, by Lemma-1, .

This proves that .

c0 ⊆ γ(d0) π
fπ(c0) ⊆ γ(̂fπ(d0))

π
c0 ⊆ γ(d0)

n − 1
π n l π′ π

n − 1 l′ fπ′ (c0) ⊆ γ(̂fπ′ (d0))
l′ l p .

fπ = fp ∘ fπ′
̂fπ = ̂fp ∘ ̂fπ′

fπ′ (c0) = c ̂fπ′ (d0) = d c ⊆ γ(d) ̂fp
fp fp(c) ⊆ γ(̂fp(d))

fπ(c0) ⊆ γ(̂fπ(d0))

LEMMA-2

PROOF OF SOUNDNESS OF AI

l′

l

c

γ(d)

fp

l′

l

̂fp

d

γ

̂fp(d)fp(c)

γ(̂f(d))
γ

l0 l0
γ(d0)

c0 d0

π′ π′

PROOF OF SOUNDNESS OF AI

• Finally, we will show that for any location ,
, assuming that .

Proof: By Lemma-2, we know that .

l
⋃
π∈Πl

fπ(c0) ⊆ γ(⨆
π∈Πl

̂fπ(d0)) c0 ⊆ γ(d0)

∀π ∈ Πl . fπ(c0) ⊆ γ(̂fπ(d0))

PROOF OF SOUNDNESS OF AI

• Finally, we will show that for any location ,
, assuming that .

Proof: By Lemma-2, we know that .

Hence, .

We know that is monotonic and is a complete lattice, so
that exists. Hence, by the join-preserving property,

. Hence,

l
⋃
π∈Πl

fπ(c0) ⊆ γ(⨆
π∈Πl

̂fπ(d0)) c0 ⊆ γ(d0)

∀π ∈ Πl . fπ(c0) ⊆ γ(̂fπ(d0))

⋃
π∈Πl

fπ(c0) ⊆ ⋃
π∈Πl

γ(̂fπ(d0))

γ (D, ≤)

⨆
π∈Πl

̂fπ(d0)

⋃
π∈Πl

γ(̂fπ(d0)) ⊆ γ(⨆
π∈Πl

̂fπ(d0)) ⋃
π∈Πl

fπ(c0) ⊆ γ(⨆
π∈Πl

̂fπ(d0))

• An abstract interpretation is sound if:

• is complete lattice. [For JOP to exist in]

• . [Monotonicity of ; Relating the
verification problem]

• Note that for soundness, we only need monotonicity of .

• Every abstract transfer function in is a consistent abstraction
of the corresponding concrete transfer function. [For showing
over-approximation over concrete path]

(D, ≤ , α, γ, ̂FD)

(D, ≤) D

(ℙ(State), ⊆)
α

⇄
γ

(D, ≤) γ

γ
̂FD

SOUNDNESS OF ABSTRACT INTERPRETATION
SUFFICIENT CONDITIONS

SIGN ABSTRACT DOMAIN

ABSTRACT TRANSFER FUNCTION

D =

V → { + − , + , − , ⊥ }

p : x := e
̂fp(d) ≜ d[x → g(d, e)]

g(d, e1 + e2) =
+ if g(d, e1) = + and g(d, e2) = +
− if g(d, e1) = − and g(d, e2) = −
+ − otherwise

g(d, e1 − e2) =
+ if g(d, e1) = + and g(d, e2) = −
− if g(d, e1) = − and g(d, e2) = +
+ − otherwise

g(d, y) = d(y) if y is a program variable
̂fp(⊥) = ⊥

