
AUTOMATED PROGRAM
VERIFICATION

CS5030

WHO, WHERE AND WHEN

• Instructor : Kartik Nagar (Email: nagark@cse.iitm.ac.in)
• TA: Sheera Shamsu (Email: cs20d001@smail.iitm.ac.in)
• Online on Google Meet
• Slot F

• Tuesday 5 PM, Wednesday 11 AM, Thursday 9 AM, Friday 8 AM.
• Course Webpage : https://kartiknagar.github.io/courses/apv-

jan2022/
• Moodle : https://courses.iitm.ac.in/course/view.php?id=1324

https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/
https://kartiknagar.github.io/courses/apv-jan2022/

LET US START WITH
INTRODUCTIONS

WHAT IS PROGRAM VERIFICATION?

Ensuring that a program does what it is supposed to do.

Testing is the most common strategy used to ‘verify’ programs,
almost universally used by novice or expert programmers.

DOES TESTING ACHIEVE PROGRAM VERIFICATION?

Ensuring that a program does what it is supposed to do.

Testing is the most common strategy used to ‘verify’ programs,
almost universally used by novice or expert programmers.

• Does testing achieve verification?

Testing ensures that the program does what it is supposed to do
on some inputs.

DOES TESTING ACHIEVE PROGRAM VERIFICATION?

Ensuring that a program does what it is supposed to do.

Testing is the most common strategy used to ‘verify’ programs,
almost universally used by novice or expert programmers.

• Does testing achieve verification?

Testing ensures that the program does what it is supposed to do
on some inputs.

Verification requires the program always does what it is supposed to
do, on all inputs.

WHY IS VERIFICATION NEEDED

• Bugs are rampant and can have catastrophic consequences

MOST (IN)FAMOUS BUGS IN HISTORY
THE ARIANE 5 DISASTER [1996]

• On June 4, 1996, the Ariane 5
Rocket began its flight and after
37 seconds, suddenly took a 90
degree flip and self-destructed in
a gigantic explosion.

• The disaster cost $370 Million.
• Happened because of an integer

overflow error!

MOST (IN)FAMOUS BUGS IN HISTORY
THERAC-25 KILLER BUG [1985-87]

• The Therac-25 was a radiation therapy machine used for
treatment of cancer through concentrated doses of radiation.

• Between 1985 and 1987, the machine was the cause of six
radiation-overdose accidents, resulting at least 2 deaths due to
direct consequences of the overdose.

• Happened due to buggy synchronization between the software
and the radiation hardware resulting in a race condition.

MORE CATASTROPHIC BUGS IN HISTORY…

• Boeing 737 Max Bug [2019]. Estimated Loss of $9.2
Billion.

• The DAO Smart Contract Hack [2017]. Loss of 3.6
Million Ether ($50 Million).

• Mars Climate Orbiter Crash [1999]. Loss of $235
Million.

• Many other examples…

WHY IS VERIFICATION NEEDED

• Compilers can catch syntactic bugs, but what about semantic
bugs?

• Bugs occur due to many reasons
• Failure to understand the nuances of the programming

language (e.g. integer overflow)
• Failure to take into account the behaviour of the underlying

system (especially relevant for concurrent, distributed, cyber-
physical systems)

• Changes in the requirements/updates in the system
• Higher volume of software with multiple developers
• The “Human” factor (carelessness, lack of attention, etc.)
• …

WHERE IS VERIFICATION NEEDED

• There is a growing need for verified software in many areas
• Aerospace, Avionics, Automobiles: Traditional areas
• Medical devices
• Financial software
• Operating Systems, Compilers, Software Libraries
• Network Protocol Implementations
• …

AUTOMATED VERIFICATION: IN A NUTSHELL

VERIFIER
Program

Correctness
Specification

Yes/Proof

No/Bug

• Correctness is generally specified in the form of a formal mathematical
specification

• The specification should hold for all executions of the program
• The verification is always with respect to the specification

“Push-button Verification”

AUTOMATED VERIFICATION: IN A NUTSHELL

VERIFIER

Implementation
of Sorting

Sorting
Specification

Yes/Proof

No/Bug

AUTOMATED VERIFICATION: IN A NUTSHELL

VERIFIERSorting
Specification:

• Output is permutation
of input.

• Output is sorted

Yes/Proof

No/Bug

Implementation
of Sorting

QUESTIONS

• Is it possible that a program is verified but it still has bugs?
• Is it possible that the verifier says the program is not correct but

the program actually has no bugs?

Verification is always relative to the specification.
There could be bugs in the specification though!

UNDECIDABILITY OF VERIFICATION

• Automated verification of programs written in a Turing-complete
language is undecidable.

• Rice’s Theorem: There is no Turing machine that can decide
whether the language accepted by a given Turing machine has a
non-trivial property.

• In practice, automated verifiers either restrict the space of
programs, or the space of specifications.

• Even then, verification is computationally expensive.

A BRIEF HISTORY OF VERIFICATION

• Three main threads of Program Verification
• Proofs of Programs [1970-]
• Model Checking [1980-]
• Constraint solving [1990-]

DEDUCTIVE VERIFICATION

THREAD 1: PROOFS OF PROGRAMS [1970-]

• Pioneered by the seminal
paper by Tony Hoare in 1969.

• Deductive Verification uses a
set of inference rules and
axioms and applies them to
construct the proof of
correctness.

• Several semi-automated tools
(also called Theorem provers)
such as Coq, Isabelle, ACL2,
etc. are widely used today
following this mode of
verification.

TONY HOARE WON THE TURING AWARD IN
1980 “FOR FUNDAMENTAL

CONTRIBUTIONS TO THE DEFINITION AND
DESIGN OF PROGRAMMING LANGUAGES”

THREAD 2: MODEL CHECKING[1980-]

• For finite-state systems, Model
Checking reduces the verification
problem to the reachability
problem in transition systems.

• Pioneered by Clarke, Emerson,
Quielle and Sifakis in the 1980s.

• Initially used for concurrent
program verification and protocol
analysis.

BAD
STATES

CLARKE, EMERSON AND SIFAKIS WON
THE TURING AWARD IN 2007 “FOR THEIR

SEMINAL WORK FOUNDING AND
DEVELOPING THE FIELD OF MODEL

CHECKING”

THREAD 2: MODEL CHECKING[1980-]

• Linear Temporal Logic (LTL) and Computational Tree Logic (CTL) were
developed for expressing complex properties over transition systems.

• Symbolic Model Checking was developed in the 1990s for verification
of hardware.
• Hardware viewed as a collection of gates, or a collection of boolean

variables.
• A State of the transition system is a valuation of boolean variables, a

transition is a formula in Propositional Logic relating new values with
old values.

• The symbolic reachability problem is reduced to that of satisfiability
of propositional logic formulae.

• Drove a lot of research in efficient procedures for the SAT problem
(e.g. Binary Decision Diagrams).

• Successfully used by IBM, Intel, Cadence, Synopsis…

HARDWARE MODEL CHECKING

SOFTWARE MODEL CHECKING

THREAD 2: MODEL CHECKING[1980-]

• Predicate Abstraction: Given a program P, build another program
A which only consists of boolean variables, such that A over-
approximates behaviours of P.

• If A is safe, then P is also safe.

• If A is unsafe, P may or may not be safe. Leads to Counter
Example Guided Abstraction Refinement (CEGAR).

• Successfully used in the SLAM Project by Microsoft for verification
of device drivers for Windows OS.

THREAD 3: CONSTRAINT SOLVERS [1990-]

• SAT is the original NP-Complete Problem, but decades of research
in SAT solving has led to efficient solvers which can easily handle
thousands of variables and millions of clauses.

• This was complemented by rise of Satisfiability Modulo Theories
(SMT), targeting first-order logic.

• Specialised Algorithms for SMT for various theories such as
Linear Arithmetic, Bit Vector Logic, etc.

• Z3, CVC4, …

• A number of verifiers (deductive, model-checking, combination…)
use constraint solvers in the backend.

• CBMC, Dafny, Seahorn, VCC, Sage…

IN THIS COURSE…

• In the first part of the course, we will focus on deductive
verification using constraint solvers.

• In the second part, we will look at model-checking and other
approaches.

• Note that we will just scratch the surface in the area of verification

• Topics not covered: Verification for concurrent and distributed
systems (a vast area, suitable for another course), Verification
for Heap-manipulating programs, Language-based Verification,
Program Synthesis, Verification of Hybrid/Cyber-physical
systems,…

• Many topics to choose from for Project.

COURSE LOGISTICS

• Grading Policy (tentative)
• Project - 30%
• Assignments (3 Theory + 2 Tool) - 40%
• End sem - 30%

• Assignment Dates (tentative, may change slightly)
• Theory: Feb 7, March 7, April 4.
• Tool: Feb 7, March 15.

• Textbook
• The Calculus of Computation: Decision Procedures with Applications

to Verification. Aaron R. Bradley and Zohar Manna.

• Chapters will be uploaded to Moodle.

COURSE PROJECT

• Research-oriented project
• Could be an in-depth survey of a sub-area of Verification, re-

implementing a verification technique, applying verification techniques
to new areas, etc.

• Browse through recent editions of conferences like CAV, POPL, PLDI,
ESOP, OOPSLA, etc.

• We will schedule individual meetings to discuss project proposals.
• Deliverables

• Project Proposal: Should be a self-contained document introducing the
project and providing the exact list of tasks to be performed and final
deliverables [2-4 Pages]. Due Date - Feb 28.

• Presentation/Demo: Last week of the semester.
• Project Report [10 Pages]: Due on May 7.

POSSIBLE COURSE PROJECTS

• Machine learning and Verification
• Using ML techniques to improve program verification
• Applying verification techniques for ML implementations

• Verification for quantum programs
• Verification for security properties
• Verification for concurrent, multi-threaded programs
• Verification for heap-manipulating programs
• Verification using type-checking for functional programs
• Automated program synthesis: correct-by-construction programs
• Verification applied in different domains: Operating Systems, Network

Protocol implementations, Timed systems

• …

COURSE STRUCTURE

• Propositional Logic, SAT solving, DPLL
• First-Order Logic, SMT
• First-Order Theories

CONSTRAINT
SOLVING

DEDUCTIVE
VERIFICATION

• Operational Semantics
• Strongest Post-condition, Weakest Pre-

condition
• Hoare Logic

MODEL CHECKING AND
OTHER VERIFICATION

TECHNIQUES

• Predicate Abstraction, CEGAR
• Abstract Interpretation
• Property-directed Reachability

