MODEL CHECKING AND PREDICATE ABSTRACTION

MODEL CHECKING

- Exhaustive exploration of the state-space of a program.
 - If an error state is not reached, then model checking outputs safe.
 - If an error state is reached, then the path to the error state can be reconstructed, resulting in a counterexample.
- Model Checking for sequential programs comes in many variants:
 - Concrete Model Checking
 - Symbolic Model Checking
 - Bounded Model Checking
 - Abstract Model Checking

CONCRETE MODEL CHECKING

```
ConcreteModelChecking(\Gamma_c, P)
  worklist := {(l_0, \sigma) | \sigma \in P};
   reach := Ø;
  while worklist \neq \emptyset do{
     Choose (l, \sigma) \in worklist;
     worklist := worklist \setminus \{(l,\sigma)\};
      if ((l, \sigma) \notin \text{reach}) then
      {
         reach := reach \cup {(l, \sigma)};
         foreach ((l, c, l') \in T)
             worklist := worklist \cup \{(l', \sigma') | \sigma' \in sp(\{\sigma\}, c)\};
      }
   }
   if ((l_{prr}, \_) \in \text{reach}) then
      return UNSAFE
   else
      return SAFE
```

CONCRETE MODEL CHECKING

```
WITH COUNTEREXAMPLE GENERATION
ConcreteModelChecking(\Gamma_c, P)
  worklist := {(l_0, \sigma) | \sigma \in P}; parents := \lambda x . NR;
  reach := Ø;
  while worklist \neq \emptyset do{
     Choose (l, \sigma) \in worklist;
     worklist := worklist \setminus \{(l, \sigma)\};
     if ((l, \sigma) \notin \text{reach}) then
     {
        reach := reach \cup {(l, \sigma)};
        foreach ((l, c, l') \in T \land (l', \sigma') \in sp(\{\sigma\}, c))
             worklist := worklist \cup \{(l', \sigma')\};
             parents((l', \sigma')) := (l, \sigma);
         }
     }
   }
   if ((l_{err}, \_) \in \text{reach}) then
      return UNSAFE
```

return SAFE

else

SYMBOLIC MODEL CHECKING

```
SymbolicModelChecking(\Gamma_c, P)
  worklist := \{(l_0, P)\};
  reach(l_0) := P;
  foreach (l \in L \setminus \{l_0\}) reach(l) := false;
  while worklist \neq \emptyset do{
     Choose (l, F) \in worklist;
     worklist := worklist \setminus \{(l, F)\};
     if (F \Rightarrow \operatorname{reach}(l)) then
     {
        reach(l) := reach(l) \lor F;
        foreach ((l, c, l') \in T)
            worklist := worklist \cup \{(l', sp(F, c))\};
     }
  }
  if (reach(l_{err}) \neq false) then
     return UNSAFE
  else
     return SAFE
```

BOUNDED MODEL CHECKING

- Concrete/Symbolic model checking for a finite number of steps
 - Unroll loops in the program for a fixed number of iterations, and then do concrete/symbolic model checking on the resultant program.
- Alternatively, we can apply Static Single Assignment (SSA) transformation on the unrolled program, and directly encode the BMC problem in FOL.

ABSTRACT MODEL CHECKING

- All the previous approaches to model checking have severe limitations:
 - Concrete and Symbolic Model Checking may not terminate and are in general computationally expensive.
 - Bounded Model Checking can only be used to find bugs, and not for verification.
- Let's bring back abstraction!
 - Consider a sound Abstract Interpretation framework $(D, \leq, \alpha, \gamma, \hat{F})$.

ABSTRACT MODEL CHECKING

```
AbstractModelChecking(\Gamma_c, P)
  worklist := {(l_0, \alpha(P))};
   reach := Ø;
  while worklist \neq \emptyset do{
     Choose (l, d) \in worklist;
     worklist := worklist \setminus \{(l,d)\};
     if ( \nexists (l, d') \in \text{reach} . d \leq d') then
      {
        reach := reach \cup {(l,d)};
         foreach ((l, c, l') \in T)
             worklist := worklist \cup \{(l', d') | d' = \hat{f}_c(d)\};
      }
   }
   if ((l_{err}, d) \in \operatorname{reach} \land d \neq \bot) then
      return UNSAFE
   else
      return SAFE
```

ABSTRACT MODEL CHECKING

```
WITH COUNTEREXAMPLE GENERATION
AbstractModelChecking(\Gamma_c, P)
  worklist := {(l_0, \alpha(P))}; parents := \lambda x . NR;
  reach := Ø;
  while worklist \neq \emptyset do{
     Choose (l, d) \in worklist;
     worklist := worklist \setminus \{(l,d)\};
     if ( \nexists (l, d') \in \text{reach} . d \leq d') then
     {
        reach := reach \cup {(l, d)};
        foreach ((l, c, l') \in T) {
            worklist := worklist \cup \{(l', \hat{f}_c(d))\};
            parents((l', \hat{f}_c(d))) := (l, d);
         }
     }
  }
  if ((l_{err}, d) \in reach \land d \neq \bot) then
     return UNSAFE
  else
     return SAFE
```

PREDICATE ABSTRACTION

- Abstract Model Checking algorithm is guaranteed to terminate if the abstract domain is finite.
 - A common choice is the predicate abstraction domain.
- The predicate abstraction domain is parameterized by a fixed, finite set of predicates *P*.
 - Each predicate is a formula over the program variables.
 - Example: $P = \{x \le 1, y = 0, x + y \le -1\}$
- There are two predicate abstraction domains:
 - Boolean Predicate Abstraction
 - Cartesian Predicate Abstraction

CARTESIAN PREDICATE ABSTRACTION

- The abstract domain is $\mathbb{P}(P) \cup \{ \perp \}$
- The partial order relation ⊑ is defined as follows:
 - $\forall s \in \mathbb{P}(P) . \bot \sqsubseteq s$
 - $\forall s_1, s_2 \in \mathbb{P}(P) . s_1 \sqsubseteq s_2 \Leftrightarrow s_1 \supseteq s_2$
- Top element is \emptyset , bottom element is \bot
- Example: P = {x ≤ 1,y = 0,x + y ≤ −1}. Which of the following are true?
 - $\{x \le 1\} \sqsubseteq \{x \le 1, x + y \le -1\}$
 - $\{x + y \le = 1, y = 0\} \sqsubseteq \{y = 0\}$
 - $\{x \le 1\} \sqsubseteq \emptyset$

CARTESIAN PREDICATE ABSTRACTION

- Abstraction function: $\forall c \in \mathbb{P}(States) . c \neq \emptyset \Rightarrow \alpha(c) = \{p \in P \mid \forall \sigma \in c . \sigma \vDash p\}$
 - $\alpha(\emptyset) = \bot$
- Concretization function: $\forall s \in \mathbb{P}(P) \cdot \gamma(s) = \{ \sigma \mid \sigma \vDash \bigwedge_{p \in s} p \}$
 - $\gamma(\perp) = \emptyset$
- Examples $P = \{x \le 1, y = 0, x + y \le -1\}$
 - $\alpha(\{(0,0)\}) = \{x \le 1, y = 0\}$
 - $\alpha(\{(0,0), (-1, -1)\}) = \{x \le 1\}$
 - $\alpha(x \le 0) = \{x \le 1\}$
- Homework: Prove that $(\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\rightleftharpoons} (\mathbb{P}(P) \cup \{\bot\}, \subseteq)$ is an Onto Galois *γ* Connection.

ABSTRACT MODEL CHECKING WITH CARTESIAN PREDICATE ABSTRACTION

$P = \{x \ge 0, y \le 0, x \ge 1\}$

x := 0; $l_1 \ \{x \ge 0, y \le 0\}$ x := x + 1 $\{x \ge 0, x \ge 1, y \le 0\}$ l_2 y := y + 1 $\{x \ge 0, x \ge 1\}$ l_3

VERIFICATION USING

VERIFICATION USING

VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

ABSTRACTION REFINEMENT

- Given two abstract domains $(D_1, \leq_1, \alpha_1, \gamma_1)$ and $(D_2, \leq_2, \alpha_2, \gamma_2)$, we say that D_2 refines D_1 if $\forall c \in \mathbb{P}(States) \cdot \gamma_2(\alpha_2(c)) \subseteq \gamma_1(\alpha_1(c))$.
- Intuitively, D_2 introduces lower over-approximation during abstraction, leading to more refined abstractions.

Homework: Given sets of predicates P_1 and P_2 such that $P_1 \subseteq P_2$, prove that the abstract domain $\mathbb{P}(P_2) \cup \{ \perp \}$ refines $\mathbb{P}(P_1) \cup \{ \perp \}$

FINDING REFINEMENTS

- If verification fails with set of predicates *P*, then we can consider the counterexample, which is a path from the initial location to the error location.
- We can check if the counterexample is valid or spurious.
 - Can be checked by executing the path concretely or symbolically.
- If the counter example is spurious, then we can deduce new predicates which make the counter example infeasible.

TRACE FORMULA

• Given a counterexample $l_{i_0}, l_{i_1}, \dots, l_{i_n}$ (where $i_0 = 0$ and $i_n = err$), assume that $\forall j . (l_{i_j}, c_{i_{j+1}}, l_{i_{j+1}}) \in T$. We can symbolically execute the path by constructing its trace formula:

$$\bigwedge_{j=0}^{n-1} \rho(c_{i_{j+1}}) [V_{i_j}/V, V_{i_{j+1}}/V']$$

- Here, $\rho(c_{i_j})$ is the encoding of the operational semantics of c_{i_j} in FOL.

skip

 p_0

 p_0

assume

(LOCK = 0)

assume(new = old)

 $LOCK_{1} = 0 \land LOCK_{2} = 1 \land old_{1} = new_{0} \land LOCK_{3} = 0$ $\land new_{1} = new_{0} + 1 \land new_{1} = old_{1} \land LOCK_{3} = 0$

INTERPOLATION

- Let A and B be formulae such that $A \wedge B$ is unsatisfiable. An interpolant I between A and B is a formula such that
 - $A \Rightarrow I$
 - $I \wedge B$ is unsatisfiable
 - $vars(I) \subseteq vars(A) \cap vars(B)$
- Example
 - $A: x > 0 \land x = y \land y' = y + 1$
 - B: y' < 0
 - I: y' > 0
- Craig Interpolation Lemma: An interpolant always exists.
 - Interpolant can be automatically constructed from the proof of unsatisfiability of $A \wedge B$.

INTERPOLANT CHAIN

 $\rho(c_{i_1}) \wedge \ldots \wedge \rho(c_{i_j}) \wedge \rho(c_{i_{j+1}}) \wedge \ldots \wedge \rho(c_{i_n})$

Interpolant I_{i_i} :

- Contains states which are reachable after j steps
- Cannot complete the remaining steps
- Variables are in V_{i_i}

We compute chain of interpolants $I_{i_1}, \ldots, I_{i_{n-1}}$

The interpolants would also satisfy the inductiveness condition: $I_{i_j} \wedge \rho(c_{i_{j+1}}) \Rightarrow I_{i_{j+1}}$

From the interpolant chain, we can now obtain new predicates by removing the subscripts from variable names.

Adding all interpolants from the chain is guaranteed to remove the spurious counterexample.

INTERPOLANT CHAIN: EXAMPLE

$$x = 0$$

$$y = 0$$

$$[True]$$

$$x = x+1$$

$$y = y+1$$

$$y = y+1$$

$$y = y+1$$

$$x : [Inve]$$

$$y := 0$$

$$[x>0]$$

$$x = x-1$$

$$y = y-1$$

$$[x] = 0$$

$$[y!=0]$$

$$(1)$$

$$x_{1} = 0$$

$$y_{1} = 0$$

$$x_{2} = x_{1}+1$$

$$y_{2} = y_{1}+1$$

$$x_{2} = y_{1}+1$$

$$x_{2} = 0$$

$$x_{2} > 0$$

$$x_{3} = x_{2}-1$$

$$y_{3} = y_{2}-1$$

$$x_{3} <= 0$$

$$y_{3} != 0$$

CEGAR: EXAMPLE

resulting in infinite predicates

CEGAR: TERMINATION

- To ensure termination, the space of predicates is typically restricted.
 - Syntax guided CEGAR uses the predicates occurring in the program to restrict the space.
 - The space of predicates can also be specified using a grammar, with a systematic search which ensures termination.
- CEGAR with restricted space of predicates is relatively complete.
 - If the program can be verified using predicates from the restricted space, then CEGAR will verify it.

CEGAR: EXAMPLE

CEGAR: EXAMPLE

BOOLEAN PREDICATE ABSTRACTION

- The domain D is the set of all boolean formulae over the predicates P.
 - The partial order relation is implication \Rightarrow .
- The abstraction function maps a set of states c to the smallest boolean formula ϕ (smallest in terms of implication) over P such that each state in c is a model of ϕ .
 - Computing the abstraction of a set of states is exponential in the size of the predicate domain.

SUMMARY OF VERIFICATION TECHNIQUES SEEN IN THE COURSE

	SOUND	COMPLETE	FULLY AUTOMATED
SP, WP, Hoare Logic			
Abstract Interpretation			
Concrete, Symbolic Model Checking			
Bounded Model Checking			
CEGAR			

SUMMARY OF VERIFICATION TECHNIQUES SEEN IN THE COURSE

	SOUND	COMPLETE	FULLY AUTOMATED
SP, WP, Hoare Logic		(Relatively)	X
Abstract Interpretation		X	
Concrete, Symbolic Model Checking		×	
Bounded Model Checking	X		
CEGAR		(Relatively)	

END OF THE COURSE BUT NOT END OF LEARNING...

- Advanced automated verification techniques
 - Property Directed Reachability: IC3 (Incremental Construction of Inductive Clauses for Indubitable Correctness)
 - Constrained Horn Clauses (CHC)
 - Black-box techniques: Learning loop invariants (ICE-Learning), Data-driven CHC solvers
- Verification under different semantics
 - Concurrent, Distributed programs
 - Functional programs
- Verification for different specifications
 - Security and Privacy
 - Robustness of machine learning frameworks

COURSE CONCLUSION

CONSTRAINT SOLVERS

- Propositional Logic, SAT solving, DPLL
- First-Order Logic, SMT
- First-Order Theories

DEDUCTIVE VERIFICATION

- Operational Semantics
- Strongest Post-condition, Weakest Precondition
- Hoare Logic

AUTOMATED TECHNIQUES

- Abstract Interpretation
- Model Checking
- Predicate Abstraction, CEGAR

THANK YOU

PLEASE GIVE COURSE FEEDBACK