MODEL CHECKING AND
PREDICATE ABSTRACTION




MODEL CHECKING

» Exhaustive exploration of the state-space of a program.

* If an error state is not reached, then model checking outputs
safe.

* If an error state is reached, then the path to the error state can
be reconstructed, resulting in a counterexample.

* Model Checking for sequential programs comes in many variants:
« Concrete Model Checking
* Symbolic Model Checking
* Bounded Model Checking
» Abstract Model Checking




CONCRETE MODEL CHECKING

ConcreteModelChecking(I',.,P)
worklist := {(ly,0) |oc € P};
reach = @;
while worklist # @ do{
Choose (/,0) € worklist;
worklist := worklist \ {(/,0)};
if ((l,0) &€ reach) then
{
reach := reachU {({,o0)};
foreach ((l,c,!) e T)
worklist := worklistu {(l',0")]|o’ € sp({c},c)};
¥
}
if (({,,_) € reach) then
return UNSAFE
else
return SAFE




CONCRETE MODEL CHECKING
WITH COUNTEREXAMPLE GENERATION

ConcreteModelChecking(I',.,P)
worklist::=- (o) |e € P} parents i<l NR;
reach := g;
while worklist # @ do{

Choose (/,0) € worklist;
worklist = worklist N\ {(lo)}:;
if ((l,0) &€ reach) then

{
reach := reachu{(,0)};
foreach ((,c,I) e TA({,0) € sp({c},c)) {
worklist =-wotklistul@.c)):;
parents((l,o)) := (,0);
}

¥

}

if (({,,_) € reach) then
return UNSAFE

else
return SAFE




SYMBOLIC MODEL CHECKING

SymbolicModelChecking(I',,P)
worklist := {(,,P)};
teachils) = P;
foreach (Il e L\{l,}) reach(l) := false;
while worklist # @ do{
Choose (I,F) € worklist;
worklist := worklist \ {(/,F)};
if (F # reach(l)) then
{
reach(l) := reach(l) v F;
foreach ((l,c,lI) € T)
worklist := worklist u{({’,sp(F,c))};
}
}
if (reach(l,,) # false) then
return UNSAFE
else
return SAFE




BOUNDED MODEL CHECKING

» Concrete/Symbolic model checking for a finite number of steps

* Unroll loops in the program for a fixed number of iterations,
and then do concrete/symbolic model checking on the resultant
program.

 Alternatively, we can apply Static Single Assignment (SSA)
transformation on the unrolled program, and directly encode the
BMC problem in FOL.




ABSTRACT MODEL CHECKING

All the previous approaches to model checking have severe
limitations:

e Concrete and Symbolic Model Checking may not terminate and
are in general computationally expensive.

« Bounded Model Checking can only be used to find bugs, and

not for verification.
Let’s bring back abstraction!

» Consider a sound Abstract Interpretation framework
(D, <,a,7, F).




ABSTRACT MODEL CHECKING

AbstractModelChecking(I".,P)
worklist := {(,a(P))};
reach = @;
while worklist # @ do{
Choose (I,d) € worklist;
worklist = worklist \ {(ld)}:
if (A(,d) € reach.d <d’) then
¢
reach := reachu{(,d)};
foreach ((l,c,l)€T)
worklist := worklistu {(l,d)|d =f(d)};
}
¥
if ((,.d) € reachAad# 1) then
return UNSAFE

else
return SAFE




ABSTRACT MODEL CHECKING

WITH COUNTEREXAMPLE GENERATION

AbstractModelChecking(I".,P)
worklist := {(/;,a(P))}; parents := Ax.NR;
reach = @;
while worklist # @ do{
Choose (I,d) € worklist;
worklist := worklist \ {(/,d)};
if (A(,d) € reach.d <d’) then
¢
reach := reachu {({,d)};
foreach ((I,¢,1) e T){
worklist := worklist u {(,f.(d))};
parents ((Z, f.(d)) := (I, d);
b
¥

}
e (0

d) € reachAd# 1) then
return UNSAFE

else
return SAFE

rr2




PREDICATE ABSTRACTION

e Abstract Model Checking algorithm is guaranteed to terminate if
the abstract domain is finite.

* A common choice is the predicate abstraction domain.

* The predicate abstraction domain is parameterized by a fixed,
finite set of predicates P.

 Each predicate is a formula over the program variables.

o Example: B — e <l y—Op v =< I}
* There are two predicate abstraction domains:
* Boolean Predicate Abstraction

e Cartesian Predicate Abstraction




CARTESIAN PREDICATE ABSTRACTION

The abstract domainis P(P)u { L }

The partial order relation C is defined as follows:
o NI (P Eg

s V.5 e P os L © 5 D,

Top element is &, bottom element is L

Example: P = {x < 1,y =0,x+y < — 1}. Which of the following are
true?

s le=1E v e Ly yv=" 11
* {x+y<=1y=0}C{y=0}
wlr =1} ED




CARTESIAN PREDICATE ABSTRACTION

e Abstraction function:Vc € P(States).c # 3 > a(c)={pe P | Vo€ c.0c F p}
s al@) =1
. Concretization function: Vs € P(P).y(s) ={c | o F /\p}

DES

- N(1l)=0

e ExamplesP={x<1y=0x+y<-1}
- a({(0,0)}) ={x<1,y=0}
at{00)1, D =dx= 1]

sfly < A= lxe=

. Homework: Prove that (P(State), C ) é (P(P)u{ L },E)is an Onto Galois
Y

Connection.




ABSTRACT MODEL CHECKING
WITH CARTESIAN PREDICATE ABSTRACTION

P:{x>0,y<0,x>1}

y:=y+1

a0 2]




VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

LOCK = O;
do {
LOCK = 1;
old = new;
if (*) {
LOCK = 0;
new++;
}

} while (new != o0ld);
if (LOCK==0)
error();

LOCK = 0;

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)




VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

LOCK = O;
do {
LOCK = 1;
old = new;
if (*) {
LOCK = 9;
new++;
}
} while (new != o0ld);
if (LOCK==0)
er‘ror( ) 5 assume
LOCK = O; (LOCK = 0)

assume(new # old)

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)




VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

P=—{lOCK=0L0CK—"1)}
P1

assume
(LOCK = 0)

Spurious Counterexample found

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)




VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

P =ALOCK =0 L0CK = | new =old, new #*-old}
Po P1 P> P3

EOCK =1
old := new

{P1, P2}

assume(new # old)

P> P3}
skip

{Po>P3} assume

L

assume
Abstraction Refinement leads to (LOCK = 0)

elimination of spurious counterexample

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)




ABSTRACTION REFINEMENT

» Given two abstract domains (D, <, ,ay,7;) and (D,, <, , a4y, 7,), we
say that D, refines D, it Vc € P(States) . y,(a,(c)) C y,(a(c)).

* Intuitively, D, introduces lower over-approximation during
abstraction, leading to more refined abstractions.




ABSTRACTION REFINEMENT: EXAMPLE

Po P1

o= LOCK 0T OCK —1|

P =d EOCK — O EQCK — "1 new =-0ld new s£0ld}
Po P1 %) 2%

EOCK =1
old = new

LOCk—1} assume(new # old)
e |

{Po}
{Po> 3}

skip

assume

assume

Concrete state ¢ : LOCK = 0 A new # old COCES)

V2(ay(c)) C yi(ay(c)) @

Homework: Given sets of predicates P, and P, such that P, C P,, prove that the abstract domain
PP,)u{ L }refines P(PHU{ L}




FINDING REFINEMENTS

* If verification fails with set of predicates P, then we can consider
the counterexample, which is a path from the initial location to the

error location.

* We can check if the counterexample is valid or spurious.

* Can be checked by executing the path concretely or
symbolically.

* If the counter example is spurious, then we can deduce new
predicates which make the counter example infeasible.




TRACE FORMULA

» Given a counterexample /; ./, ...,[; (where iy =0 and i, = err),
assume that V. (ll, o l ) E T. We can symbolically execute the

path by constructlng its trace formula:

N\ple, VIV, V, IV

=

« Here, p(cl-j) is the encoding of the operational semantics of ¢; i
EGL




TRACE FORMULA : EXAMPLE

P— L IOCK =D I0CK="T
Po P1

assume
(LOCK = 0)

LOCK, = OANLOCK, = | Aold, =uew, NLOCK; =0
A new; = newy+ 1 Anew, = old; A LOCK; =0




INTERPOLATION

* Let A and B be formulae such that A A B is unsatisfiable. An interpolant /
between A and B is a formula such that

e A1
* I A B is unsatisfiable
o vars(l) C vars(A) N vars(B)
« Example
s Ax>OAt=yvry =y F1
e=h .y < ()
e Iy >0
* Craig Interpolation Lemma: An interpolant always exists.

* Interpolant can be automatically constructed from the proof of
unsatisfiability of A A B.




INTERPOLANT OF TRACE FORMULA

EOCK —:
old = new

I OZdl # newl LOEK =6 assume(new # old)

new + +
assume

(new = old)

A assume
(LOCK = 0)

LOCK, = OANLOCK, = | Aold, =uew, NLOCK; =0

A new; = newy+ 1 Anew, = old; A LOCK; =0 @

B




INTERPOLANT OF TRACE FORMULA

EOCK —:
old = new

I OZdl == neWO LOEK =6 assume(new # old)

new + +
assume

(new = old)

A assume
(LOCK = 0)

LOCK, = OANLOCK, = | Aold, =uew, NLOCK; =0

A new; = newy+ 1 Anew, = old; A LOCK; =0 Q

B




INTERPOLANT CHAIN

ple ) As. p(cl-j) A P(Ci,-+1) A LA p(cl-n)

Interpolant I;:
 Contains states which are reachable after j steps
« Cannot complete the remaining steps

» Variables are in V;
J
We compute chain of interpolants [, , ..., [,
1 n—1
The interpolants would also satisfy the inductiveness condition:
Iij A P(Cin) = Iin

From the interpolant chain, we can now obtain new predicates by
removing the subscripts from variable names.

Adding all interpolants from the chain is guaranteed to remove the
spurious counterexample.




INTERPOLANT CHAIN:EXAMPLE

LOCK, =0ALOCK, =1Ao0ld; = newy A LOCK; =0
Anew; =newy+ 1 Anew; = old; A LOCK; =0

Irue

frue assume(new # old)

old, = new, @

. old, = new,

assume

. old, # new, (new =old) | 45cume

(LOCK = 0)

false

P = told = new, old=new}




COUNTEREXAMPLE GUIDED ABSTRACTION REFINEMENT
CEGAR

Program \
ABSTRACT MODEL irs

< CHECKING B veliicn J
Initial Set of

Predicates
Counterexample

New FEASIBILITY = I
Predicates CHECK Qunierexample

TRACE FORMULA BN e 4 Concrete x

Unsatisfiable

INTERPOLANT
COMPUTATION




CEGAR: EXAMPLE

X 9;

y = 0;

while (*){
X++;
y++;

}

while (x>0){
X--3
y--5

}

if (y != @) error()

assume(x < 0)

-®
assume(y # 0)




CEGAR: EXAMPLE

P={X=O,y:()}

Counterexample:

LhiliLl sl

err

Trace Formula:
=0Ay1=0Ax,=x+1A
V2=0+1A5<0Ay,#0

<0
Interpolant: x, =1 Ay, =1 assume(x < 0)

-®
assume(y # 0)




CEGAR: EXAMPLE

P lx=0y=0x0—Ay—1;

Counterexample:

B LT

Gl

Interpolant: x =2 Ay =2

Interpolant: x =3 Ay =3 assume(x < 0)

-®
assume(y # 0)

In general, refinement step may diverge,
resulting in infinite predicates




CEGAR: TERMINATION

To ensure termination, the space of predicates is typically
restricted.

* Syntax guided CEGAR uses the predicates occurring in the
program to restrict the space.

* The space of predicates can also be specified using a grammar,
with a systematic search which ensures termination.

CEGAR with restricted space of predicates is relatively complete.

* If the program can be verified using predicates from the
restricted space, then CEGAR will verify it.




: EXAMPLE

P:{x:(),yz()}

Counterexample:

lO ll 12 ll l3 lSI

err

Trace Formula:
L=0An=UAx =5 1A
Vo=nmtlAe <0Ay #0

nterpolant=tAy =1

Suppose the predicate space

contains predicatesx =y, x >0, x>0 :
Interpolant: x, > 0 assume(y # 0) @

assume(x < 0)




CEGAR: EXAMPLE

P:{x:O,yZO,X>O}

Counterexample:

Bl LT Ll

err

Trace Formula:
X =0Ay =0Ax,=x+1A

y2:y1+1/\X3:-x2_1/\
y3=y2—1/\X3SO/\y37£O

assume(x < 0)

Interpolant:

: -®
X322 O0A X3 =5 assume(y # 0)




CEGAR: EXAMPLE

P:{x:O,yZO,XZO,)C>O,)C=y}

assume(x < 0)

-®
assume(y # 0)




BOOLEAN PREDICATE ABSTRACTION

e The domain D is the set of all boolean formulae over the
predicates P.

» The partial order relation is implication =.

* The abstraction function maps a set of states c to the smallest

boolean formula ¢ (smallest in terms of implication) over P such
that each state in c is a model of ¢.

« Computing the abstraction of a set of states is exponential in
the size of the predicate domain.




SUMMARY OF VERIFICATION TECHNIQUES

SEEN IN THE COURSE

SOUND COMPLETE

FULLY AUTOMATED

SP, WP, Hoare Logic

Abstract
Interpretation

Concrete, Symbolic
Model Checking

Bounded Model
Checking

CEGAR




SUMMARY OF VERIFICATION TECHNIQUES

SEEN IN THE COURSE

SOUND COMPLETE

FULLY AUTOMATED

SP, WP, Hoare Logic

(Relatively)

Abstract
Interpretation

Concrete, Symbolic
Model Checking

Bounded Model
Checking

CEGAR




ENB-OF FHE.COURSE
BUT NOT END OF LEARNING...

¢ Advanced automated verification techniques

Property Directed Reachability: IC3 (Incremental Construction of Inductive
Clauses for Indubitable Correctness)

Constrained Horn Clauses (CHC)

Black-box techniques: Learning loop invariants (ICE-Learning), Data-driven

CHC solvers
» Verification under different semantics
« Concurrent, Distributed programs
 Functional programs
* Verification for different specifications
* Security and Privacy

* Robustness of machine learning frameworks




COURSE CONCLUSION

CONSTRAINT
SOLVERS

DEDUCTIVE
VERIFICATION

AUTOMATED
TECHNIQUES

Propositional Logic, SAT solving, DPLL

First-Order Logic, SMT
First-Order Theories

Operational Semantics
Strongest Post-condition, Weakest Pre-
condition

Hoare Logic

Abstract Interpretation
Model Checking
Predicate Abstraction, CEGAR




THANK YOU

PLEASE GIVE COURSE FEEDBACK




