
MODEL CHECKING AND
PREDICATE ABSTRACTION

MODEL CHECKING

• Exhaustive exploration of the state-space of a program.

• If an error state is not reached, then model checking outputs
safe.

• If an error state is reached, then the path to the error state can
be reconstructed, resulting in a counterexample.

• Model Checking for sequential programs comes in many variants:

• Concrete Model Checking

• Symbolic Model Checking

• Bounded Model Checking

• Abstract Model Checking

CONCRETE MODEL CHECKING

ConcreteModelChecking(,P)

worklist := {(,)| };

reach := ;

while worklist do{

 Choose worklist;

 worklist := worklist \ ;

 if (reach) then

 {

 reach := reach ;

 foreach ()

 worklist := worklist ;

 }

 }

 if (reach) then

 return UNSAFE

 else

 return SAFE

Γc
l0 σ σ ∈ P

∅
≠ ∅

(l, σ) ∈
{(l, σ)}

(l, σ) ∉

∪ {(l, σ)}
(l, c, l′￼) ∈ T

∪ {(l′￼, σ′￼) |σ′￼∈ sp({σ}, c)}

(lerr, _) ∈

CONCRETE MODEL CHECKING

ConcreteModelChecking(,P)

worklist := {(,)| }; parents := ;

reach := ;

while worklist do{

 Choose worklist;

 worklist := worklist \ ;

 if (reach) then

 {

 reach := reach ;

 foreach (){

 worklist := worklist ;

 parents() := ;

 }

 }

 }

 if (reach) then

 return UNSAFE

 else

 return SAFE

Γc
l0 σ σ ∈ P λx . NR

∅
≠ ∅

(l, σ) ∈
{(l, σ)}

(l, σ) ∉

∪ {(l, σ)}
(l, c, l′￼) ∈ T ∧ (l′￼, σ′￼) ∈ sp({σ}, c)

∪ {(l′￼, σ′￼)}
(l′￼, σ′￼) (l, σ)

(lerr, _) ∈

WITH COUNTEREXAMPLE GENERATION

SYMBOLIC MODEL CHECKING

SymbolicModelChecking(,P)

worklist := {(,)};

reach() := ;

foreach () reach() := ;

while worklist do{

 Choose worklist;

 worklist := worklist \ ;

 if (reach()) then

 {

 reach() := reach() ;

 foreach ()

 worklist := worklist ;

 }

 }

 if (reach()) then

 return UNSAFE

 else

 return SAFE

Γc
l0 P

l0 P
l ∈ L∖{l0} l false

≠ ∅
(l, F) ∈

{(l, F)}
F ⇏ l

l l ∨ F
(l, c, l′￼) ∈ T

∪ {(l′￼, sp(F, c))}

lerr ≠ false

BOUNDED MODEL CHECKING

• Concrete/Symbolic model checking for a finite number of steps

• Unroll loops in the program for a fixed number of iterations,
and then do concrete/symbolic model checking on the resultant
program.

• Alternatively, we can apply Static Single Assignment (SSA)
transformation on the unrolled program, and directly encode the
BMC problem in FOL.

ABSTRACT MODEL CHECKING

• All the previous approaches to model checking have severe
limitations:

• Concrete and Symbolic Model Checking may not terminate and
are in general computationally expensive.

• Bounded Model Checking can only be used to find bugs, and
not for verification.

• Let’s bring back abstraction!

• Consider a sound Abstract Interpretation framework
.(D, ≤ , α, γ, ̂F)

ABSTRACT MODEL CHECKING

AbstractModelChecking(,P)

worklist := {(,)};

reach := ;

while worklist do{

 Choose worklist;

 worklist := worklist \ ;

 if (reach) then

 {

 reach := reach ;

 foreach ()

 worklist := worklist ;

 }

 }

 if (reach) then

 return UNSAFE

 else

 return SAFE

Γc
l0 α(P)

∅
≠ ∅

(l, d) ∈
{(l, d)}

/∃(l, d′￼) ∈ . d ≤ d′￼

∪ {(l, d)}
(l, c, l′￼) ∈ T

∪ {(l′￼, d′￼) |d′￼= ̂fc(d)}

(lerr, d) ∈ ∧ d ≠ ⊥

ABSTRACT MODEL CHECKING

AbstractModelChecking(,P)

worklist := {(,)}; parents := ;

reach := ;

while worklist do{

 Choose worklist;

 worklist := worklist \ ;

 if (reach) then

 {

 reach := reach ;

 foreach (){

 worklist := worklist ;

 parents() := ;

 }

 }

 }

 if (reach) then

 return UNSAFE

 else

 return SAFE

Γc
l0 α(P) λx . NR

∅
≠ ∅

(l, d) ∈
{(l, d)}

/∃(l, d′￼) ∈ . d ≤ d′￼

∪ {(l, d)}
(l, c, l′￼) ∈ T

∪ {(l′￼, ̂fc(d))}
(l′￼, ̂fc(d)) (l, d)

(lerr, d) ∈ ∧ d ≠ ⊥

WITH COUNTEREXAMPLE GENERATION

PREDICATE ABSTRACTION

• Abstract Model Checking algorithm is guaranteed to terminate if
the abstract domain is finite.

• A common choice is the predicate abstraction domain.

• The predicate abstraction domain is parameterized by a fixed,
finite set of predicates .

• Each predicate is a formula over the program variables.

• Example:

• There are two predicate abstraction domains:

• Boolean Predicate Abstraction

• Cartesian Predicate Abstraction

P

P = {x ≤ 1,y = 0,x + y ≤ − 1}

CARTESIAN PREDICATE ABSTRACTION

• The abstract domain is

• The partial order relation is defined as follows:

•

•

• Top element is , bottom element is

• Example: . Which of the following are
true?

•

•

•

ℙ(P) ∪ { ⊥ }

⊑

∀s ∈ ℙ(P) . ⊥ ⊑ s

∀s1, s2 ∈ ℙ(P) . s1 ⊑ s2 ⇔ s1 ⊇ s2

∅ ⊥

P = {x ≤ 1,y = 0,x + y ≤ − 1}

{x ≤ 1} ⊑ {x ≤ 1,x + y ≤ − 1}

{x + y ≤ = 1,y = 0} ⊑ {y = 0}

{x ≤ 1} ⊑ ∅

CARTESIAN PREDICATE ABSTRACTION

• Abstraction function:

•

• Concretization function:

•

• Examples

•

•

•

• Homework: Prove that is an Onto Galois
Connection.

∀c ∈ ℙ(States) . c ≠ ∅ ⇒ α(c) = {p ∈ P | ∀σ ∈ c . σ ⊨ p}

α(∅) = ⊥

∀s ∈ ℙ(P) . γ(s) = {σ | σ ⊨ ⋀
p∈s

p}

γ(⊥) = ∅

P = {x ≤ 1,y = 0,x + y ≤ − 1}

α({(0,0)}) = {x ≤ 1,y = 0}

α({(0,0), (−1, − 1)}) = {x ≤ 1}

α(x ≤ 0) = {x ≤ 1}

(ℙ(State), ⊆)
α

⇄
γ

(ℙ(P) ∪ { ⊥ }, ⊑)

WITH CARTESIAN PREDICATE ABSTRACTION

ABSTRACT MODEL CHECKING

l0

l1

l2

l3

x := 0;
y := 0

x := x + 1

y := y + 1

P = {x ≥ 0,y ≤ 0,x ≥ 1}

∅

{x ≥ 0,y ≤ 0}

{x ≥ 0,x ≥ 1,y ≤ 0}

{x ≥ 0,x ≥ 1}

VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION
24 · R. Jhala and R. Majumdar

0: LOCK = 0;

1: do {

 LOCK = 1;

 old = new;

2: if (*) {

3: LOCK = 0;

 new++;

 }

4: } while (new != old);

5: if (LOCK==0)

6: error();

 LOCK = 0;

Fig. 7. Program

1

0

2

3

4

5

6

LOCK
1
 = 0

LOCK
2
 = 1

old
2
 = new

0

LOCK = 0

LOCK = 1

old = new

LOCK = 0

new = new + 1

[True]

[new = old]

[LOCK == 0]

True

LOCK
4
 = 0

new
4
 = new

0
+1

new
4
 = old

2

LOCK
4
 = 0

Transitions Constraints

Fig. 8. Abstract Counterexample

The intent of the refined domain is to provide a more precise analysis which rules
out the current counterexample and possibly others. This iterative strategy was
proposed as localization reduction in [Kurshan 1994; Alur et al. 1995] and general-
ized to counterexample-guided refinement (CEGAR) in [Ball and Rajamani 2000b;
Clarke et al. 2000; Saidi 2000]. Figure 6 formalizes this iterative refinement strat-
egy in procedure CEGAR, which takes as input a program P , and error location
E and an initial, possibly trivial, abstract domain A. The procedure iteratively
constructs refinements of the abstract domain A until either it su�ces to prove the
program safe, or the procedure finds a genuine counterexample.

5.1 Counterexamples and Refinement

The most common form of counterexample-guided refinement in software model
checking has the following ingredients. The input to the counterexample analysis
algorithm is a path in the control flow graph ending in the error location. The path
represents a possible counterexample produced by abstract reachability analysis.
The first step of the algorithm constructs a logical formula, called the trace formula,
from the path, such that the formula is satisfiable i↵ the path is executable by the
concrete program. Second, a decision procedure is used to check if the trace formula
is satisfiable. If satisfiable, the path is reported as a concrete counterexample to
the property. If not, the proof of unsatisfiability is mined for new predicates that
can rule out the current counterexample when the abstract domain is augmented
with these predicates. The CEGAR loop makes progress by eliminating at least one
counterexample in each step. Since each iteration refines the abstract domain from
the previous iteration, this guarantees that all previously excluded counterexamples
remain excluded in the next iteration.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)

VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION
24 · R. Jhala and R. Majumdar

0: LOCK = 0;

1: do {

 LOCK = 1;

 old = new;

2: if (*) {

3: LOCK = 0;

 new++;

 }

4: } while (new != old);

5: if (LOCK==0)

6: error();

 LOCK = 0;

Fig. 7. Program

1

0

2

3

4

5

6

LOCK
1
 = 0

LOCK
2
 = 1

old
2
 = new

0

LOCK = 0

LOCK = 1

old = new

LOCK = 0

new = new + 1

[True]

[new = old]

[LOCK == 0]

True

LOCK
4
 = 0

new
4
 = new

0
+1

new
4
 = old

2

LOCK
4
 = 0

Transitions Constraints

Fig. 8. Abstract Counterexample

The intent of the refined domain is to provide a more precise analysis which rules
out the current counterexample and possibly others. This iterative strategy was
proposed as localization reduction in [Kurshan 1994; Alur et al. 1995] and general-
ized to counterexample-guided refinement (CEGAR) in [Ball and Rajamani 2000b;
Clarke et al. 2000; Saidi 2000]. Figure 6 formalizes this iterative refinement strat-
egy in procedure CEGAR, which takes as input a program P , and error location
E and an initial, possibly trivial, abstract domain A. The procedure iteratively
constructs refinements of the abstract domain A until either it su�ces to prove the
program safe, or the procedure finds a genuine counterexample.

5.1 Counterexamples and Refinement

The most common form of counterexample-guided refinement in software model
checking has the following ingredients. The input to the counterexample analysis
algorithm is a path in the control flow graph ending in the error location. The path
represents a possible counterexample produced by abstract reachability analysis.
The first step of the algorithm constructs a logical formula, called the trace formula,
from the path, such that the formula is satisfiable i↵ the path is executable by the
concrete program. Second, a decision procedure is used to check if the trace formula
is satisfiable. If satisfiable, the path is reported as a concrete counterexample to
the property. If not, the proof of unsatisfiability is mined for new predicates that
can rule out the current counterexample when the abstract domain is augmented
with these predicates. The CEGAR loop makes progress by eliminating at least one
counterexample in each step. Since each iteration refines the abstract domain from
the previous iteration, this guarantees that all previously excluded counterexamples
remain excluded in the next iteration.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old := new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old := new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

P = {LOCK = 0,LOCK = 1}
p0 p1

p0

∅

p1

p0

p0
p0

p0

Spurious Counterexample found

VERIFICATION USING CARTESIAN PREDICATE ABSTRACTION

Software Model Checking. Ranjit Jhala and Rupak Majumdar. ACM Computing Surveys(2009)

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old := new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

P = {LOCK = 0,LOCK = 1,new = old, new ≠ old}
p0 p1

p0

∅

{p1, p2}

{p0, p3}

{p0, p3} ⊥

p2 p3

Abstraction Refinement leads to

elimination of spurious counterexample

ABSTRACTION REFINEMENT

• Given two abstract domains and , we
say that refines if .

• Intuitively, introduces lower over-approximation during
abstraction, leading to more refined abstractions.

(D1, ≤1 , α1, γ1) (D2, ≤2 , α2, γ2)
D2 D1 ∀c ∈ ℙ(States) . γ2(α2(c)) ⊆ γ1(α1(c))

D2

ABSTRACTION REFINEMENT: EXAMPLE

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old = new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

P2 = {LOCK = 0,LOCK = 1,new = old, new ≠ old}
p0 p1

{p0, p3}

p2 p3

P1 = {LOCK = 0,LOCK = 1}
p0 p1

{p0}

Concrete state :
c LOCK = 0 ∧ new ≠ old
γ2(α2(c)) ⊆ γ1(α1(c))

Homework: Given sets of predicates and such that , prove that the abstract domain
 refines

P1 P2 P1 ⊆ P2
ℙ(P2) ∪ { ⊥ } ℙ(P1) ∪ { ⊥ }

FINDING REFINEMENTS

• If verification fails with set of predicates , then we can consider
the counterexample, which is a path from the initial location to the
error location.

• We can check if the counterexample is valid or spurious.

• Can be checked by executing the path concretely or
symbolically.

• If the counter example is spurious, then we can deduce new
predicates which make the counter example infeasible.

P

TRACE FORMULA

• Given a counterexample (where and),
assume that . We can symbolically execute the
path by constructing its trace formula:

• Here, is the encoding of the operational semantics of in
FOL.

li0, li1, …, lin i0 = 0 in = err
∀j . (lij, cij+1

, lij+1
) ∈ T

n−1

⋀
j=0

ρ(cij+1
)[Vij /V, Vij+1

/V′￼]

ρ(cij) cij

TRACE FORMULA : EXAMPLE

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old = new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

P = {LOCK = 0,LOCK = 1}
p0 p1

p0

∅

p1

p0

p0
p0

p0
LOCK1 = 0 ∧ LOCK2 = 1 ∧ old1 = new0 ∧ LOCK3 = 0
∧ new1 = new0 + 1 ∧ new1 = old1 ∧ LOCK3 = 0

INTERPOLATION

• Let and be formulae such that is unsatisfiable. An interpolant
between and is a formula such that

•

• is unsatisfiable

•

• Example

•

•

•

• Craig Interpolation Lemma: An interpolant always exists.

• Interpolant can be automatically constructed from the proof of
unsatisfiability of .

A B A ∧ B I
A B

A ⇒ I

I ∧ B

vars(I) ⊆ vars(A) ∩ vars(B)

A : x > 0 ∧ x = y ∧ y′￼= y + 1

B : y′￼< 0

I : y′￼> 0

A ∧ B

INTERPOLANT OF TRACE FORMULA

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old = new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)
LOCK1 = 0 ∧ LOCK2 = 1 ∧ old1 = new0 ∧ LOCK3 = 0
∧ new1 = new0 + 1 ∧ new1 = old1 ∧ LOCK3 = 0

I : old1 ≠ new1

A

B

INTERPOLANT OF TRACE FORMULA

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old = new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)
LOCK1 = 0 ∧ LOCK2 = 1 ∧ old1 = new0 ∧ LOCK3 = 0
∧ new1 = new0 + 1 ∧ new1 = old1 ∧ LOCK3 = 0

I : old1 = new0

A

B

INTERPOLANT CHAIN

ρ(ci1) ∧ … ∧ ρ(cij) ∧ ρ(cij+1
) ∧ … ∧ ρ(cin)

Interpolant :

• Contains states which are reachable after j steps

• Cannot complete the remaining steps

• Variables are in

Iij

Vij

We compute chain of interpolants

The interpolants would also satisfy the inductiveness condition:

From the interpolant chain, we can now obtain new predicates by
removing the subscripts from variable names.

Adding all interpolants from the chain is guaranteed to remove the
spurious counterexample.

Ii1, …, Iin−1

Iij ∧ ρ(cij+1
) ⇒ Iij+1

INTERPOLANT CHAIN:EXAMPLE

l0

l1

l2

l3

l4 l5

lerr

LOCK := 0

LOCK := 1;
old = new

LOCK := 0;
new + +

skip

skip

assume(new ≠ old)

assume
(new = old) assume

(LOCK = 0)

LOCK1 = 0 ∧ LOCK2 = 1 ∧ old1 = new0 ∧ LOCK3 = 0
∧ new1 = new0 + 1 ∧ new1 = old1 ∧ LOCK3 = 0

1

2

3

4

5

6

true

true

old1 = new0

old1 = new0

old1 ≠ new1

false

P = {old = new, old ≠ new}

COUNTEREXAMPLE GUIDED ABSTRACTION REFINEMENT

ABSTRACT MODEL
CHECKING

Program

Initial Set of

Predicates

Verified

Counterexample

TRACE FORMULA
FEASIBILITY

CHECK

Safe

Satisfiable Concrete

Counterexample

INTERPOLANT
COMPUTATION

Unsatisfiable

New

Predicates

CEGAR

CEGAR: EXAMPLE

l0

l1 l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

28 · R. Jhala and R. Majumdar

Note that this interpolant is over the common variables, is implied by �� and is
inconsistent with �+. Indeed this interpolant captures exactly the key relationship
that holds at label 4 that is needed to prove safety. The interpolant yields the
predicate new 6= old at label 4. Similarly, the i-cuts for 0  i  5, we get the
interpolants i where

 0
·= true 1

·= true

 2
·= old2 = new0 3

·= old2 = new0

 4
·= old2 6= new0 5

·= false

and hence, by using the predicate old = new at locations 2 :, 3 : and 4 : only, we
can prove the program safe.
Relative Completeness. The term relative completeness refers to the property
that iterative counterexample refinement converges, given that there exist program
invariants in a restricted language which are su�cient to prove the property of
interest.

1: x = 0;

 y = 0;

2: while (*){

3: x++;

 y++;

 }

4: while (x>0){

5: x--;

 y--;

 }

6: if (y != 0) error()

Fig. 9. Program

2

1
x1 =�0
y1 =�0

x�=�0
y�=�0

Transitions Constraints

3

2

[True] True

x�=�x+1
y�=�y+1

x2 =�x1+1
y2 =�y1+1

4

5

[True]

[x>0]

x�=�xŞ1

True

x2 >�0

x3 =�x2Ş1

4

6

x� �x 1
y�=�yŞ1

[x<=0]

[y!=0]

x3 �x2 1
y3 =�y2Ş1

x3 <=�0

y !=�0[y!=0] y3 !=�0

Fig. 10. Abstract Counterexample

Ensuring relative completeness is not trivial. Consider the example shown in
Figure 9. To verify that the error is not reachable, we must infer the invariant that
x = y and x � 0. Unlike the program in Figure 7, neither of these facts appears
syntactically in the program. Figure 10 shows the (spurious) counterexample for
the abstract model generated from the predicates x = 0 and y = 0. This counterex-
ample corresponds to the unrolling of the loops once, and syntax based refinement
ACM Journal Name, Vol. V, No. N, Month 20YY.

x := 0
y := 0

skip

CEGAR: EXAMPLE

l0

l1

x := 0
y := 0

l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

P = {x = 0,y = 0}

Counterexample:

l0 l1 l2 l1 l3 l5 lerr

skip
x1 = 0 ∧ y1 = 0 ∧ x2 = x1 + 1 ∧
y2 = y1 + 1 ∧ x2 ≤ 0 ∧ y2 ≠ 0

Trace Formula:

Interpolant: x2 = 1 ∧ y2 = 1

CEGAR: EXAMPLE

l0

l1

x := 0
y := 0

l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

P = {x = 0,y = 0,x = 1,y = 1}

Counterexample:

l0 l1 l2 l1 l2 l1 l3 l5 lerr

skip

Interpolant: x = 2 ∧ y = 2

In general, refinement step may diverge,

resulting in infinite predicates

Interpolant: x = 3 ∧ y = 3
⋮

CEGAR: TERMINATION

• To ensure termination, the space of predicates is typically
restricted.

• Syntax guided CEGAR uses the predicates occurring in the
program to restrict the space.

• The space of predicates can also be specified using a grammar,
with a systematic search which ensures termination.

• CEGAR with restricted space of predicates is relatively complete.

• If the program can be verified using predicates from the
restricted space, then CEGAR will verify it.

CEGAR: EXAMPLE

l0

l1

x := 0
y := 0

l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

P = {x = 0,y = 0}

Counterexample:

l0 l1 l2 l1 l3 l5 lerr

skip
x1 = 0 ∧ y1 = 0 ∧ x2 = x1 + 1 ∧
y2 = y1 + 1 ∧ x2 ≤ 0 ∧ y2 ≠ 0

Trace Formula:

Interpolant: x2 > 0

Suppose the predicate space

contains predicates , , x = y x > 0 x ≥ 0

Interpolant: x2 = 1 ∧ y2 = 1

CEGAR: EXAMPLE

l0

l1

x := 0
y := 0

l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

P = {x = 0,y = 0,x > 0}

Counterexample:

l0 l1 l2 l1 l3 l4 l3 l5 lerr

skip
x1 = 0 ∧ y1 = 0 ∧ x2 = x1 + 1 ∧
y2 = y1 + 1 ∧ x3 = x2 − 1 ∧
y3 = y2 − 1 ∧ x3 ≤ 0 ∧ y3 ≠ 0

Trace Formula:

Interpolant:

 x3 ≥ 0 ∧ x3 = y3

CEGAR: EXAMPLE

l0

l1

x := 0
y := 0

l2
x := x + 1
y := y + 1

skip

l3 l4
x := x − 1
y := y − 1

assume(x > 0)

l5

assume(x ≤ 0)

lerrassume(y ≠ 0)

P = {x = 0,y = 0,x ≥ 0,x > 0,x = y}

skip

Verified

BOOLEAN PREDICATE ABSTRACTION

• The domain is the set of all boolean formulae over the
predicates .

• The partial order relation is implication .

• The abstraction function maps a set of states to the smallest
boolean formula (smallest in terms of implication) over such
that each state in is a model of .

• Computing the abstraction of a set of states is exponential in
the size of the predicate domain.

D
P

⇒

c
ϕ P
c ϕ

SUMMARY OF VERIFICATION TECHNIQUES

SOUND COMPLETE FULLY AUTOMATED

SP, WP, Hoare Logic

Abstract
Interpretation

Concrete, Symbolic
Model Checking

Bounded Model
Checking

CEGAR

SEEN IN THE COURSE

SUMMARY OF VERIFICATION TECHNIQUES

SOUND COMPLETE FULLY AUTOMATED

SP, WP, Hoare Logic (Relatively)

Abstract
Interpretation

Concrete, Symbolic
Model Checking

Bounded Model
Checking

CEGAR (Relatively)

SEEN IN THE COURSE

BUT NOT END OF LEARNING…

END OF THE COURSE

• Advanced automated verification techniques

• Property Directed Reachability: IC3 (Incremental Construction of Inductive
Clauses for Indubitable Correctness)

• Constrained Horn Clauses (CHC)

• Black-box techniques: Learning loop invariants (ICE-Learning), Data-driven
CHC solvers

• Verification under different semantics

• Concurrent, Distributed programs

• Functional programs

• Verification for different specifications

• Security and Privacy

• Robustness of machine learning frameworks

COURSE CONCLUSION

• Propositional Logic, SAT solving, DPLL

• First-Order Logic, SMT

• First-Order Theories

CONSTRAINT
SOLVERS

DEDUCTIVE
VERIFICATION

• Operational Semantics

• Strongest Post-condition, Weakest Pre-

condition

• Hoare Logic

AUTOMATED
TECHNIQUES

• Abstract Interpretation

• Model Checking

• Predicate Abstraction, CEGAR

THANK YOU

PLEASE GIVE COURSE FEEDBACK

