
PROPOSITIONAL 
LOGIC



MATHEMATICAL LOGIC

• Logic is the foundation of computation.

• We will use logic for multiple purposes:


• Describing specifications


• Describing program executions


• Mathematical guarantees of logic will translate to guarantees of 
program correctness


• Decision procedures for logic will be used for verification.



PROPOSITIONAL LOGIC

Is  valid?

Is satisfiable?
p → q → r ↔ (p ∧ q) → r

p ∧ ⊥ → ¬q ∨ ⊤



SYNTAX

Atom Truth Values -    : False,    : True

Propositional Variables - p,q,r…

Logical 

Connectives

Literal Atom or its negation

Formula A literal or the application of logical connectives to formulae

⊥ ⊤

∧ : and, ∨ : or, ¬ : not, →: implies, ↔: if and only if(iff)



SEMANTICS

Interpretation I

I : Set of Propositional Variables  → { ⊥ , ⊤ }

Given an interpretation I and Formula F,

F evaluates to    under I 

F evaluates to    under I 

I ⊨ F

I ⊭ F

MODEL 
OF

⊤

⊥



SEMANTICS: INDUCTIVE DEFINITION

iff I(p)= 
iff I(p)= 

I ⊨ ⊤

I ⊭ ⊥

I ⊨ p
I ⊭ p

Base Case:

  

Other cases …

Inductive Case:
I ⊨ ¬F

I ⊨ F1 ∧ F2

I ⊨ F1 ∨ F2

I ⊨ F1 → F2

I ⊨ F1 ↔ F2

iff I ⊭ F

iff I ⊨ F1 and I ⊨ F2

iff I ⊨ F1 or I ⊨ F2

iff I ⊭ F1 or I ⊨ F2

iff I ⊨ F1 and I ⊨ F2, or I ⊭ F1 and I ⊭ F2

⊤
⊥



EXAMPLE

I = {p : True, q : False} F = p ∧ q → p ∨ ¬q

Is I ⊨ F?

1. 

2. 

3.

I ⊭ q
I ⊭ p ∧ q
I ⊨ p ∧ q → p ∨ ¬q



PRECEDENCE OF LOGICAL CONNECTIVES

• We assume the following precedence from highest to lowest:


• 


• Example:  is the same as 
.


• We assume that all logical connectives associate to the right.


• Example:  is the same as 


• Parenthesis can be used to change precedence or associativity.

¬, ∧ , ∨ , → , ↔

¬p ∧ q → p ∨ q ∧ r
((¬p) ∧ q) → (p ∨ (q ∧ r))

p → q → r p → (q → r)



SATISFIABILITY AND VALIDITY

• A formula  is satisfiable iff there exists an interpretation  such 
that .


• A formula  is valid iff for all interpretations , .


• A formula  is valid iff  is unsatisfiable.


• A Decision Procedure for satisfiability is therefore also a 
decision procedure for validity. How?

F I
I ⊨ F

F I I ⊨ F

F ¬F



QUESTIONS

• A formula can either be SAT, UNSAT or VALID.


• Does Validity  Satisfiability?


• Does Satisfiability  Validity?


• Can a decision procedure for Validity be used as a decision 
procedure for Satisfiability?


• F is satisfiable iff F is not valid.


• Are the following formulae are sat, unsat or valid?


• 


• 


•

⇒

⇒

¬

p ∧ q → p ∨ q

p ∨ q → ¬p ∨ ¬q

(p → q → r) ∧ (p ∧ q ∧ ¬r)



MORE TERMINOLOGY

• Formulae  and  are equivalent (denoted by ) when the 
formula  is valid.


• Example: 


• Another definition:  and  are equivalent if for all 
interpretations ,  if and only if .


• Formula  implies  (denoted by ) when the formula 
 is valid.


• Example: 


• Formulae  and  are equisatisfiable when  is satisfiable if and 
only if  is satisfiable.


• Example:  and  are equisatisfiable

F1 F2 F1 ⇔ F2
F1 ↔ F2

p → q ⇔ ¬p ∨ q

F1 F2
I I ⊨ F1 I ⊨ F2

F1 F2 F1 ⇒ F2
F1 → F2

(p → q) ∧ p ⇒ q

F1 F2 F1
F2

p ∧ (q ∨ r) q ∨ r



MORE EXAMPLES

• Which of the following are true?


• 


• 


• 


•  and  are equisatisfiable.


• What is the simplest example of two formulae which are not 
equisatisfiable?

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

(F1 ↔ F2) ∧ (F2 ↔ F3) ⇒ (F1 ↔ F3)

p ⇔ p ∧ q

p q



DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

• Two methods

• Truth Tables: Search for satisfying interpretation 

• Semantic Argument: Rule-based deductive approach


• Modern SAT solvers use combination of both approaches



TRUTH TABLES - EXAMPLE
p ∧ q → p ∨ ¬q

0 0 1 0 1 1

0 1 0 0 0 1

1 0 1 0 1 1

1 1 0 1 1 1

p q p ∧ q p ∨ ¬q¬q p ∧ q →
p ∨ ¬q



TRUTH TABLES - EXAMPLE
p ∧ q → p ∨ ¬q

0 0 1 0 1 1

0 1 0 0 0 1

1 0 1 0 1 1

1 1 0 1 1 1

p q p ∧ q p ∨ ¬q¬q p ∧ q →
p ∨ ¬q

is valid



SEMANTIC ARGUMENT METHOD

• Deductive approach for showing validity based on proof rules

• Main Idea: Proof by Contradiction. 


• Assume that a falsifying interpretation exists.

• Use proof rules to deduce more facts.

• Find contradictory facts.



PROOF RULES (NEGATION)



PROOF RULES (NEGATION)

PREMISE



PROOF RULES (NEGATION)

PREMISE

DEDUCTION



PROOF RULES (NEGATION)

PREMISE

DEDUCTION



PROOF RULES (CONJUNCTION)



PROOF RULES (CONJUNCTION)



PROOF RULES (CONJUNCTION)

BRANCHING:

Need to show a contradiction in every branch



PROOF RULES (DISJUNCTION)



PROOF RULES (IMPLICATION)



PROOF RULES (IFF)



PROOF RULES (CONTRADICTION)



EXAMPLE

Prove that  is valid p ∧ q → p ∨ ¬q



EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that  is valid p ∧ q → p ∨ ¬q



EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that  is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q



EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that  is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q

I ⊨ p
I ⊨ q

I ⊭ p
I ⊭ ¬q



EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that  is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q

I ⊨ p
I ⊨ q

I ⊭ p
I ⊭ ¬q

CONTRADICTION



EXAMPLE WITH BRANCHING

Prove that  is valid (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

CONTRADICTION

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

CONTRADICTION

Each branch should lead to a contradiction

Prove that  is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q



ANNOUNCEMENTS

• Lectures slides and recorded video lectures are available on the 
course webpage.


• Chapter 1 of the BM book is uploaded on the course moodle 
page.

• Please try Exercises 1.1-1.5.



QUESTIONS

• Is the semantic argument method complete?

• Can we use the semantic argument method for satisfiability?

• What is the time complexity of the semantic argument method?



DECISION PROCEDURES FOR SAT

• We will go through the DPLL algorithm.

• Davis-Putnam-Logemann-Loveland Algorithm

• Combines truth table and deductive approaches

• Requires formulae in Conjunctive Normal Form (CNF)

• Forms the basis of modern SAT solvers



NORMAL FORMS

• A Normal Form of a formula F is another equivalent formula F’ 
which obeys some syntactic restrictions.


• Three important normal forms:


• Negation Normal Form (NNF): Should use only as the 
logical connectives, and  should only be applied to literals


• Disjunctive Normal Form (DNF): Should be a disjunction of 
conjunction of literals


• Conjunctive Normal Form (CNF): Should be a conjunction of 
disjunction of literals 

¬, ∧ , ∨
¬



CONJUNCTIVE NORMAL FORM

• A conjunction of disjunction of literals

• Each inner disjunct is also called a clause

• Is every formula in CNF also in NNF?



CNF CONVERSION

• We can use distribution of  over  to obtain formula in CNF


• 


• Causes exponential blowup.

• Tseitin’s transformation algorithm can be used to obtain an 

equisatisfiable CNF formula linear in size

• BM Chapter 1

∨ ∧

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)



TRUTH TABLE BASED METHOD

SAT(F){


  if (F = ) return true;


  if (F = ) return false;


  Choose a variable p in F;


  return SAT(F[ /p])  SAT(F[ /p]);


}


⊤

⊥

⊤ ∨ ⊥

Decision Procedure for Satisfiability:

Returns true if F is SAT, false if F is UNSAT

F[G/P] : G REPLACES EVERY OCCURRENCE OF P IN F, THEN SIMPLIFY



SIMPLIFICATION

• Following equivalences can be used to simplify:


• 


• 


• 


• 


• Note that these equivalences would be applied syntactically.


• That is, if the formula contains a  or , it would be re-written 
according to the above equivalences.

F ∧ ⊥ ⇔ ⊥

F ∧ ⊤ ⇔ F

F ∨ ⊥ ⇔ F

F ∨ ⊤ ⇔ ⊤

⊤ ⊥



EXAMPLE

• SAT( )


• 


•

(P → Q) ∧ P ∧ ¬Q

F = (¬P ∨ Q) ∧ P ∧ ¬Q

F[ ⊤ /P] ≜ ( ⊥ ∨ Q) ∧ ⊤ ∧ ¬Q ≡ Q ∧ ¬Q

SIMPLIFICATION MAY SAVE BRANCHING ON SOME OCCASIONS



DEDUCTION: CLAUSAL RESOLUTION

I ⊨ p ∨ F I ⊨ ¬p ∨ G

I ⊨ F ∨ G
[CLAUSAL RESOLUTION]

• Given a CNF Formula , if  is a resolvent deduced 
from , then  is equivalent to .


•  Example: 


• Rewritten as 


• Resolvent: 


• The next resolvent will be .

• Idea: Repeatedly apply clausal resolution until no more new clauses 

can be deduced. If  is never deduced, then the formula is satisfiable.

F = C1, C2, …Cn C′￼

F F′￼= C1, C2, …, Cn, C′￼ F

F = (¬P ∨ Q) ∧ P ∧ ¬Q

F = (¬P ∨ Q) ∧ (P ∨ ⊥ ) ∧ ¬Q

(Q ∨ ⊥ ) = Q

F′￼= (¬P ∨ Q) ∧ P ∧ ¬Q ∧ Q → ⊥

⊥

FOR CNF



DEDUCTION: UNIT RESOLUTION

I ⊨ p I ⊨ ¬p ∨ F

I ⊨ F
[UNIT RESOLUTION]

In Unit Resolution, the resolvent replaces the original clause

FOR CNF



BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

FOR CNF



BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)
[UNIT RESOLUTION]

FOR CNF



BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)

I ⊨ r ∨ s
[UNIT RESOLUTION]

FOR CNF



BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)

I ⊨ r ∨ s
[UNIT RESOLUTION]

FIND A SATISFYING INTERPRETATION

FOR CNF



PURE LITERAL PROPAGATION (PLP)

• If a variable appears only positively or negatively in a formula, 
then all clauses containing the variable can be removed.


•  appears positively if every literal is just 


•  appears negatively if every literal is 


• Removing such clauses from  results in a equisatisfiable formula 



• Why?


• Are  equivalent?

p p− p

p p− ¬p

F
F′￼

F and F′￼

FOR CNF



DPLL

SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in F’’;


  return SAT(F’’[ /p])  SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨ ⊥

Decision Procedure for Satisfiability of CNF Formula:

Returns true if F is SAT, false if F is UNSAT

FOR CNF



EXAMPLE

• SAT(F)

• No PLP or BCP.


• q  CHOOSE.


• F[True/q] = 


• SAT(F[True/q])


• After PLP: 


• After BCP: False

• Return False and backtrack to 

previous call 

←

r ∧ ¬r ∧ (p ∨ ¬r)

r ∧ ¬r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in 
F’’;


return SAT(F’’[ /p])         
SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨
⊥



EXAMPLE

• SAT(F)


• No PLP or BCP.


• q  CHOOSE.


•

←

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in 
F’’;


return SAT(F’’[ /p])         
SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨
⊥



EXAMPLE

• SAT(F)


• No PLP or BCP.


• q  CHOOSE.


• F[False/q] = 

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in 
F’’;


return SAT(F’’[ /p])         
SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨
⊥



EXAMPLE

• SAT(F)


• No PLP or BCP.


• q  CHOOSE.


• F[False/q] = 


• SAT(F[False/q])


•

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in 
F’’;


return SAT(F’’[ /p])         
SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨
⊥



EXAMPLE

• SAT(F)


• No PLP or BCP.


• q  CHOOSE.


• F[False/q] = 


• SAT(F[False/q])


• After PLP: True


• Satisfiable!

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){


  F’ = PLP(F);


  F’’ = BCP(F’);


  if (F’’ = ) return true;


  if (F’’ = ) return false;


  Choose a variable p in 
F’’;


return SAT(F’’[ /p])         
SAT(F’’[ /p]);


}


⊤

⊥

⊤ ∨
⊥



DPLL IS JUST THE STARTING POINT!

• Modern SAT solvers use a variety of approaches to further 
improve performance

• Non-chronological back tracking

• Conflict-driven clause learning (CDCL)

• Heuristics to CHOOSE appropriate variables and assignments


• Current SAT solvers can solve problems with millions of clauses in 
reasonable amount of time on average.



ENCODING PROBLEMS IN PL

• Even though PL is relatively straightforward, many problems in 
diverse areas can be encoded in PL.

• Problems in graph theory and combinatorics, games such as 

Sudoku, problems in biotechnology and bioinformatics, etc.

• There exists a reduction from every NP-Complete problem to 

SAT.

• As an example, let us try to encode the graph-colouring problem 

in PL.



GRAPH COLOURING IN PL

• In the graph colouring problem, the goal is to assign colours to 
vertices such that no two adjacent vertices have the same colour. 


• Formally, consider graph  


• Vertices, 


• Edges, 


• Colours, 


• Assign each vertex  a color  such that 


• for edge , .

G = ⟨V, E⟩

V = {v1, …, vn}

E = {e1, …, el} ⊆ V × V

C = {c1, …, cm}

v ∈ V 𝖼𝗈𝗅𝗈𝗋(v) ∈ C

e = (v, w) ∈ E 𝖼𝗈𝗅𝗈𝗋(v) ≠ 𝖼𝗈𝗅𝗈𝗋(w)



GRAPH COLOURING IN PL

• We use binary variable  to denote that vertex  has been 
assigned color .


• Properties that the colouring should satisfy:


• Each vertex must be coloured from the set .


• Each vertex must be assigned at most one colour.

• Two adjacent vertices must be assigned different colours.

pc
v v

c

C



GRAPH COLOURING IN PL

• Each vertex must be coloured from the set .





• Each vertex must be assigned at most one colour.





• Two adjacent vertices must be assigned different colours.


C

(pc1
v1

∨ pc2
v1

∨ … ∨ pcm
v1

) ∧ … ∧ (pc1
vn

∨ pc2
vn

∨ … ∨ pcm
vn

)

n

⋀
i=1

⋁
1≤ j<k≤m

pcj
vi

→ ¬pck
vi

⋀
(v,v′￼)∈E

m

⋀
k=1

¬(pck
v ∧ pck

v′￼
)



GRAPH COLOURING IN PL

• An optimisation: We can omit the at-most one colour constraint.

• This is because if there is a valid colouring which assigns more 

than one colour, then there is also a valid colouring assigning 
exactly one colour.


• The original formula and the optimised formula are 
equisatisfiable.


