PROPOSITIONAL

 LOGIC
MATHEMATICAL LOGIC

- Logic is the foundation of computation.
- We will use logic for multiple purposes:
- Describing specifications
- Describing program executions
- Mathematical guarantees of logic will translate to guarantees of program correctness
- Decision procedures for logic will be used for verification.

PROPOSITIONAL LOGIC

$$
\begin{aligned}
& \text { Is } p \rightarrow q \rightarrow r \leftrightarrow(p \wedge q) \rightarrow r \text { valid? } \\
& \text { Is } p \wedge \perp \rightarrow \neg q \vee \top \text { satisfiable? }
\end{aligned}
$$

SYNTAX

Atom
Truth Values $-\perp$: False, T: True Propositional Variables - p,q,r...

Logical
Connectives
$\wedge:$ and, $\vee:$ or, $\neg:$ not, \rightarrow : implies, \leftrightarrow : if and only if(iff)

Literal Atom or its negation

Formula A literal or the application of logical connectives to formulae

SEMANTICS

Interpretation I
 I : Set of Propositional Variables $\rightarrow\{\perp, \top\}$

MODEL
OF
Given an interpretation I and Formula F,
$I \not \models F$
F evaluates to \top under I

F evaluates to \perp under I

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

$I \neq \mathrm{T}$	
$I \not \vDash \perp$	
$I \vDash p$	iff $\mathrm{I}(\mathrm{p})=\top$
$I \not \models p$	iff $\mathrm{I}(\mathrm{p})=\perp$

Inductive Case:

$I \vDash \neg F$	iff $I \not \models F$
$I \vDash F_{1} \wedge F_{2}$	iff $I \vDash F_{1}$ and $I \vDash F_{2}$
$I \vDash F_{1} \vee F_{2}$	iff $I \vDash F_{1}$ or $I \vDash F_{2}$
$I \vDash F_{1} \rightarrow F_{2}$	iff $I \not \models F_{1}$ or $I \vDash F_{2}$
$I \vDash F_{1} \leftrightarrow F_{2}$	iff $I \vDash F_{1}$ and $I \vDash F_{2}$, or $I \not \models F_{1}$ and $I \not \models F_{2}$
Other cases...	

EXAMPLE

$$
I=\{p: \text { True }, q: \text { False }\} \quad F=p \wedge q \rightarrow p \vee \neg q
$$

Is $I \vDash F$?

1. $I \not \vDash q$
2. $I \not \vDash p \wedge q$
3. $I \vDash p \wedge q \rightarrow p \vee \neg q$

PRECEDENCE OF LOGICAL CONNECTIVES

- We assume the following precedence from highest to lowest:
- ᄀ, $\wedge, \vee, \rightarrow, \leftrightarrow$
- Example: $\neg p \wedge q \rightarrow p \vee q \wedge r$ is the same as $((\neg p) \wedge q) \rightarrow(p \vee(q \wedge r))$.
- We assume that all logical connectives associate to the right.
- Example: $p \rightarrow q \rightarrow r$ is the same as $p \rightarrow(q \rightarrow r)$
- Parenthesis can be used to change precedence or associativity.

SATISFIABILITY AND VALIDITY

- A formula F is satisfiable iff there exists an interpretation I such that $I \vDash F$.
- A formula F is valid iff for all interpretations $I, I \vDash F$.
- A formula F is valid iff $\neg F$ is unsatisfiable.
- A Decision Procedure for satisfiability is therefore also a decision procedure for validity. How?

QUESTIONS

- A formula can either be SAT, UNSAT or VALID.
- Does Validity \Rightarrow Satisfiability?
- Does Satisfiability \Rightarrow Validity?
- Can a decision procedure for Validity be used as a decision procedure for Satisfiability?
- F is satisfiable iff $\neg F$ is not valid.
- Are the following formulae are sat, unsat or valid?
- $p \wedge q \rightarrow p \vee q$
- $p \vee q \rightarrow \neg p \vee \neg q$
- $(p \rightarrow q \rightarrow r) \wedge(p \wedge q \wedge \neg r)$

MORE TERMINOLOGY

- Formulae F_{1} and F_{2} are equivalent (denoted by $F_{1} \Leftrightarrow F_{2}$) when the formula $F_{1} \leftrightarrow F_{2}$ is valid.
- Example: $p \rightarrow q \Leftrightarrow \neg p \vee q$
- Another definition: F_{1} and F_{2} are equivalent if for all interpretations $I, I \vDash F_{1}$ if and only if $I \vDash F_{2}$.
- Formula F_{1} implies F_{2} (denoted by $F_{1} \Rightarrow F_{2}$) when the formula $F_{1} \rightarrow F_{2}$ is valid.
- Example: $(p \rightarrow q) \wedge p \Rightarrow q$
- Formulae F_{1} and F_{2} are equisatisfiable when F_{1} is satisfiable if and only if F_{2} is satisfiable.
- Example: $p \wedge(q \vee r)$ and $q \vee r$ are equisatisfiable

MORE EXAMPLES

- Which of the following are true?
- $\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2}$
- $\left(F_{1} \leftrightarrow F_{2}\right) \wedge\left(F_{2} \leftrightarrow F_{3}\right) \Rightarrow\left(F_{1} \leftrightarrow F_{3}\right)$
- $p \Leftrightarrow p \wedge q$
- p and q are equisatisfiable.
- What is the simplest example of two formulae which are not equisatisfiable?

DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

- Two methods
- Truth Tables: Search for satisfying interpretation
- Semantic Argument: Rule-based deductive approach
- Modern SAT solvers use combination of both approaches

TRUTH TABLES - EXAMPLE

$$
p \wedge q \rightarrow p \vee \neg q
$$

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$p \wedge q \rightarrow$ $p \vee \neg q$
0	0	1	0	1	1
0	1	0	0	0	1
1	0	1	0	1	1

TRUTH TABLES - EXAMPLE
$p \wedge q \rightarrow p \vee \neg q$ is valid
$\left.\begin{array}{l|l|l|l|l|l|l}p & q & \neg q & p \wedge q & p \vee \neg q & p \wedge q \rightarrow \\ p \vee \neg q\end{array}\right]$

SEMANTIC ARGUMENT METHOD

- Deductive approach for showing validity based on proof rules
- Main Idea: Proof by Contradiction.
- Assume that a falsifying interpretation exists.
- Use proof rules to deduce more facts.
- Find contradictory facts.

PROOF RULES (NEGATION)

$$
\frac{I \models \neg F}{I \not \models F}
$$

PROOF RULES (NEGATION)

PREMISE

PROOF RULES (NEGATION)

PROOF RULES (NEGATION)

$$
\frac{I \not \models \neg F}{I \neq F}
$$

PROOF RULES (CONJUNCTION)

$$
\begin{aligned}
& I \models F \wedge G \\
& \frac{I \models F}{I \models G} \\
& I \models G
\end{aligned}
$$

PROOF RULES (CONJUNCTION)

$$
\begin{aligned}
& I \models F \wedge G \\
& \frac{I \models F}{I \models G} \\
& I \models G
\end{aligned}
$$

\[

\]

PROOF RULES (CONJUNCTION)

$$
\begin{aligned}
& I \models F \wedge G \\
& \frac{I \models F}{I \models G} \\
& I \models G
\end{aligned}
$$

BRANCHING:
Need to show a contradiction in every branch

PROOF RULES (DISJUNCTION)

\[

\]

$$
\begin{aligned}
& \frac{I \not \models F \vee G}{I \not \models F} \\
& I \not \vDash G
\end{aligned}
$$

PROOF RULES (IMPLICATION)

$$
\begin{gathered}
I \models F \rightarrow G \\
\hline I \not \models F \\
\hline \models G
\end{gathered}
$$

$$
\begin{aligned}
& I \not \models F \rightarrow G \\
& \hline I \not \models F \\
& I \not \models G
\end{aligned}
$$

PROOF RULES (IFF)

$$
\left.\frac{I \models F \leftrightarrow G}{I \models F \wedge G} \right\rvert\, \quad I \not \vDash F \vee G
$$

$$
\frac{I \not \models F \leftrightarrow G}{I \models F \wedge \neg G \quad \mid \quad I \models \neg F \wedge G}
$$

PROOF RULES (CONTRADICTION)

$$
\begin{aligned}
& I \models F \\
& I \not \models F \\
& \hline I \models \perp
\end{aligned}
$$

EXAMPLE

Prove that $p \wedge q \rightarrow p \vee \neg q$ is valid

EXAMPLE

Prove that $p \wedge q \rightarrow p \vee \neg q$ is valid

$$
I \not \models p \wedge q \rightarrow p \vee \neg q
$$

EXAMPLE

Prove that $p \wedge q \rightarrow p \vee \neg q$ is valid

$$
\frac{I \not \models p \wedge q \rightarrow p \vee \neg q}{I \vDash p \wedge q \quad I \not \models p \vee \neg q}
$$

EXAMPLE

Prove that $p \wedge q \rightarrow p \vee \neg q$ is valid
$\frac{I \not \models p \wedge q \rightarrow p \vee \neg q}{I \vDash p \wedge q}$
$I \vDash p$
$I \nvdash q \quad I \not \models p \vee \neg q$
$I \not \models p$
$I \not \models \neg q$

EXAMPLE

Prove that $p \wedge q \rightarrow p \vee \neg q$ is valid

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

$$
I \not \models(p \rightarrow q) \wedge p \rightarrow q
$$

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

$$
I \vDash(\not \models(p \rightarrow q) \wedge p \rightarrow q)
$$

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

$$
I \xlongequal[I \neq(p \rightarrow q \wedge p)]{I \not \models(p \rightarrow q) \wedge p \rightarrow q} \quad I \not \models q
$$

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

$$
\begin{aligned}
& \quad I \not \models(p \rightarrow q) \wedge p \rightarrow q \\
& I \neq(p \rightarrow q \wedge p) \\
& I \not \models(p \rightarrow q) \quad I \vDash p \\
& I \not \vDash p \| I \vDash q
\end{aligned}
$$

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid
$I \not \models(p \rightarrow q) \wedge p \rightarrow q$
$I \vDash(p \rightarrow q \wedge p) \quad I \not \models q$
$I \not \models p \| q) I \vDash q$
CONTRADICTION

EXAMPLE WITH BRANCHING

Prove that $(p \rightarrow q) \wedge p \rightarrow q$ is valid

$$
I \not \models(p \rightarrow q) \wedge p \rightarrow q
$$

$$
\begin{aligned}
& I \vDash(p \rightarrow q \wedge p) \\
& I \neq(p \rightarrow q) \quad I \vDash p \\
& I \not \models p \| \vDash \neq q \\
& \text { CONTRADICTION }
\end{aligned}
$$

Each branch should lead to a contradiction

ANNOUNCEMENTS

- Lectures slides and recorded video lectures are available on the course webpage.
- Chapter 1 of the BM book is uploaded on the course moodle page.
- Please try Exercises 1.1-1.5.

QUESTIONS

- Is the semantic argument method complete?
- Can we use the semantic argument method for satisfiability?
- What is the time complexity of the semantic argument method?

DECISION PROCEDURES FOR SAT

- We will go through the DPLL algorithm.
- Davis-Putnam-Logemann-Loveland Algorithm
- Combines truth table and deductive approaches
- Requires formulae in Conjunctive Normal Form (CNF)
- Forms the basis of modern SAT solvers

NORMAL FORMS

- A Normal Form of a formula F is another equivalent formula F^{\prime} which obeys some syntactic restrictions.
- Three important normal forms:
- Negation Normal Form (NNF): Should use only ᄀ, ^, , as the logical connectives, and \neg should only be applied to literals
- Disjunctive Normal Form (DNF): Should be a disjunction of conjunction of literals
- Conjunctive Normal Form (CNF): Should be a conjunction of disjunction of literals

CONJUNCTIVE NORMAL FORM

- A conjunction of disjunction of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

- Each inner disjunct is also called a clause
- Is every formula in CNF also in NNF?

CNF CONVERSION

- We can use distribution of \vee over \wedge to obtain formula in CNF
- $F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)$
- Causes exponential blowup.
- Tseitin's transformation algorithm can be used to obtain an equisatisfiable CNF formula linear in size
- BM Chapter 1

TRUTH TABLE BASED METHOD

Decision Procedure for Satisfiability: Returns true if F is SAT, false if F is UNSAT

```
SAT(F){
    if (F = T) return true;
    if (F = \perp) return false;
    Choose a variable p in F;
    return SAT(F[T/p]) V SAT(F[\perp/p]);
}
F[G/P] : G REPLACES EVERY OCCURRENCE OF P IN F, THEN SIMPLIFY
```


SIMPLIFICATION

- Following equivalences can be used to simplify:
- $F \wedge \perp \Leftrightarrow \perp$
- $F \wedge \top \Leftrightarrow F$
- $F \vee \perp \Leftrightarrow F$
- $F \vee \top \Leftrightarrow \top$
- Note that these equivalences would be applied syntactically.
- That is, if the formula contains a T or \perp, it would be re-written according to the above equivalences.

EXAMPLE

- $\operatorname{SAT}((P \rightarrow Q) \wedge P \wedge \neg Q)$
- $F=(\neg P \vee Q) \wedge P \wedge \neg Q$
- $F[\top / P] \triangleq(\perp \vee Q) \wedge \top \wedge \neg Q \equiv Q \wedge \neg Q$

SIMPLIFICATION MAY SAVE BRANCHING ON SOME OCCASIONS

DEDUCTION: CLAUSAL RESOLUTION FOR CNF

$$
\frac{I \vDash p \vee F \quad I \vDash \neg p \vee G}{I \vDash F \vee G}
$$

[CLAUSAL RESOLUTION]

- Given a CNF Formula $F=C_{1}, C_{2}, \ldots C_{n}$, if C^{\prime} is a resolvent deduced from F, then $F^{\prime}=C_{1}, C_{2}, \ldots, C_{n}, C^{\prime}$ is equivalent to F.
- Example: $F=(\neg P \vee Q) \wedge P \wedge \neg Q$
- Rewritten as $F=(\neg P \vee Q) \wedge(P \vee \perp) \wedge \neg Q$
- Resolvent: $(Q \vee \perp)=Q$
- $F^{\prime}=(\neg P \vee Q) \wedge P \wedge \neg Q \wedge Q \rightarrow$ The next resolvent will be \perp.
- Idea: Repeatedly apply clausal resolution until no more new clauses can be deduced. If \perp is never deduced, then the formula is satisfiable.

DEDUCTION: UNIT RESOLUTION FOR CNF

$I \vDash p \quad I \vDash \neg p \vee F$
[UNIT RESOLUTION]

$$
I \vDash F
$$

In Unit Resolution, the resolvent replaces the original clause

BOOLEAN CONSTRAINT PROPAGATION (BCP)

 FOR CNF$$
I \vDash p \wedge(\neg p \vee q) \wedge(r \vee \neg q \vee s)
$$

BOOLEAN CONSTRAINT PROPAGATION (BCP)

 FOR CNF

BOOLEAN CONSTRAINT PROPAGATION (BCP)

 FOR CNF
[UNIT RESOLUTION]
$I \vDash r \vee s$

BOOLEAN CONSTRAINT PROPAGATION (BCP)

FOR CNF

FIND A SATISFYING INTERPRETATION

PURE LITERAL PROPAGATION (PLP) FOR CNF

- If a variable appears only positively or negatively in a formula, then all clauses containing the variable can be removed.
- p appears positively if every p-literal is just p
- p appears negatively if every p-literal is $\neg p$
- Removing such clauses from F results in a equisatisfiable formula F^{\prime}
- Why?
- Are F and F^{\prime} equivalent?

DPLL
 FOR CNF

Decision Procedure for Satisfiability of CNF Formula: Returns true if F is SAT, false if F is UNSAT

```
SAT(F) {
    F' = PLP(F);
    F'' = BCP(F');
    if (F''= T) return true;
    if (F'' = &) return false;
    Choose a variable p in F'';
    return SAT(F''[T/p]) v SAT(F''[\perp/p]);
}
```


EXAMPLE

$$
F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)
$$

- SAT(F)
- No PLP or BCP.
- $q \leftarrow$ CHOOSE.
- $\mathrm{F}[$ True/q] $=r \wedge \neg r \wedge(p \vee \neg r)$
- SAT(F[True/q])
- After PLP: $r \wedge \neg r$
- After BCP: False
- Return False and backtrack to previous call

EXAMPLE

$F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)$

- SAT(F)
- No PLP or BCP.
- $\mathrm{q} \leftarrow$ CHOOSE.

```
SAT(F) {
    F' = PLP(F);
    F''}=\textrm{BCP}(\mp@subsup{F}{}{\prime})
    if (F'' = T) return true;
    if (F'' = L) return false;
    Choose a variable p in
F'';
    return SAT(F''[T/p]) v
    SAT(F''[\perp/p]);
```

\}

EXAMPLE

$$
F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)
$$

- SAT(F)
- No PLP or BCP.
- $\mathrm{q} \leftarrow$ CHOOSE.
- $\mathrm{F}[$ False/ q$]=\neg p \vee r$

```
SAT(F) {
    F' = PLP(F);
    F''}=\textrm{BCP}(\mp@subsup{F}{}{\prime})
    if (F'' = T) return true;
    if (F'' = L) return false;
    Choose a variable p in
F'';
    return SAT(F''[T/p]) v
    SAT(F''[\perp/p]);
```

\}

EXAMPLE

$$
F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)
$$

- SAT(F)
- No PLP or BCP.
- $q \leftarrow$ CHOOSE.
- $\mathrm{F}[$ False/q] $=\neg p \vee r$
- SAT(F[False/q])

```
SAT(F) {
    F' = PLP(F);
    F''}=\textrm{BCP}(\mp@subsup{F}{}{\prime})
    if (F'' = T) return true;
    if (F'' = L) return false;
    Choose a variable p in
F'';
    return SAT(F''[T/p]) v
    SAT(F''[\perp/p]);
```

\}

EXAMPLE

$$
F:(\neg p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg q \vee \neg r) \wedge(p \vee \neg q \vee \neg r)
$$

- SAT(F)
- No PLP or BCP.
- $\mathrm{q} \leftarrow$ CHOOSE.
- $\mathrm{F}[$ False/q] $=\neg p \vee r$
- SAT(F[False/q])
- After PLP: True
- Satisfiable!

```
SAT(F){
    F' = PLP(F);
    F'' = BCP(F');
    if (F'' = T) return true;
    if (F'' = \perp) return false;
    Choose a variable p in
F'';
    return SAT(F''[T/p]) v
    SAT(F''[\perp/p]);
```

\}

DPLL IS JUST THE STARTING POINT!

- Modern SAT solvers use a variety of approaches to further improve performance
- Non-chronological back tracking
- Conflict-driven clause learning (CDCL)
- Heuristics to CHOOSE appropriate variables and assignments
- Current SAT solvers can solve problems with millions of clauses in reasonable amount of time on average.

ENCODING PROBLEMS IN PL

- Even though PL is relatively straightforward, many problems in diverse areas can be encoded in PL.
- Problems in graph theory and combinatorics, games such as Sudoku, problems in biotechnology and bioinformatics, etc.
- There exists a reduction from every NP-Complete problem to SAT.
- As an example, let us try to encode the graph-colouring problem in PL.

GRAPH COLOURING IN PL

- In the graph colouring problem, the goal is to assign colours to vertices such that no two adjacent vertices have the same colour.
- Formally, consider graph $G=\langle V, E\rangle$
- Vertices, $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- Edges, $E=\left\{e_{1}, \ldots, e_{l}\right\} \subseteq V \times V$
- Colours, $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- Assign each vertex $v \in V$ a color $\operatorname{color}(v) \in C$ such that
- for edge $e=(v, w) \in E, \operatorname{color}(v) \neq \operatorname{color}(w)$.

GRAPH COLOURING IN PL

- We use binary variable p_{v}^{c} to denote that vertex v has been assigned color c.
- Properties that the colouring should satisfy:
- Each vertex must be coloured from the set C.
- Each vertex must be assigned at most one colour.
- Two adjacent vertices must be assigned different colours.

GRAPH COLOURING IN PL

- Each vertex must be coloured from the set C.

$$
\left(p_{v_{1}}^{c_{1}} \vee p_{v_{1}}^{c_{2}} \vee \ldots \vee p_{v_{1}}^{c_{m}}\right) \wedge \ldots \wedge\left(p_{v_{n}}^{c_{1}} \vee p_{v_{n}}^{c_{2}} \vee \ldots \vee p_{v_{n}}^{c_{m}}\right)
$$

- Each vertex must be assigned at most one colour.

$$
\bigcap_{i=1}^{n} \bigvee_{1 \leq j<k \leq m} p_{v_{i}}^{c_{j}} \rightarrow \neg p_{v_{i}}^{c_{k}}
$$

- Two adjacent vertices must be assigned different colours.

$$
\bigwedge_{(v, v) \in E} \bigwedge_{k=1}^{m} \neg\left(p_{v}^{c_{k}} \wedge p_{v^{\prime}}^{c_{k}}\right)
$$

GRAPH COLOURING IN PL

- An optimisation: We can omit the at-most one colour constraint.
- This is because if there is a valid colouring which assigns more than one colour, then there is also a valid colouring assigning exactly one colour.
- The original formula and the optimised formula are equisatisfiable.

