PROPOSITIONAL
LOGIC




MATHEMATICAL LOGIC

* Logic is the foundation of computation.
» We will use logic for multiple purposes:
 Describing specifications
* Describing program executions

« Mathematical guarantees of logic will translate to guarantees of
program correctness

 Decision procedures for logic will be used for verification.




PROPOSITIONAL LOGIC

Isp—> g —>re (pAg) — rvalid?

Isp A L — gV T satistiable?




SYNTAX

Truth Values - 1 : False, T: True
Propositional Variables - p,q,r...

Logical

: A :and,V:or,—: not, »: implies, «-: if and only if(iff)
Connectives

Literal Atom or its negation

Formula A literal or the application of logical connectives to formulae




SEMANTICS

Interpretation |

| : Set of Propositional Variables —» { L, T }
@ Given an interpretation | and Formula F,

= F evaluates to T under |

= F F evaluates to | under |




SEMANTICS: INDUCTIVE DEFINITION

Base Case:
ITET

[E 1 :
IEp iff I(p)=
I1Ep iff I(p)=

Inductive Case:
[ E-F EiffIJﬁF
I'EFinF, iff 1 = Fy and I £ F,
IEF,VFE, iff [EF,orl EF,
EEE o i L5 F, off = F,

T iff [ = F,and [ = F,, or [ ¥ F, and I ¥ F,

Other cases ...




EXAMPLE

I =1p Erite. q. Ealse| F=pAgq—pV g

L E

1.1 F g
2.1 FEpAg
3.IFpAg—>pV g




PRECEDENCE OF LOGICAL CONNECTIVES

* We assume the following precedence from highest to lowest:

2 ﬂa/\ava_)a(_:‘

« Example: "p A g — pV gAristhe same as
((=p)Agq) = (pV(qAT)).

* We assume that all logical connectives associate to the right.
« Example:p - g - risthesameasp — (g = r)

* Parenthesis can be used to change precedence or associativity.




SATISFIABILITY AND VALIDITY

« A formula Fis satisfiable iff there exists an interpretation I such
that I E F.

« A formula Fis valid iff for all interpretations I, I F F.

« A formula F is valid iff = F is unsatisfiable.

« A Decision Procedure for satisfiability is therefore also a
decision procedure for validity. How?




QUESTIONS

« A formula can either be SAT, UNSAT or VALID.
« Does Validity = Satisfiability?
« Does Satisfiability = Validity?

Can a decision procedure for Validity be used as a decision
procedure for Satisfiability?

« F is satisfiable iff =F is not valid.

Are the following formulae are sat, unsat or valid?
=P Ag PV G

Py g o1b N 5ig

s lp g = HAD AgNT)




MORE TERMINOLOGY

e Formulae F| and F, are equivalent (denoted by F; & F,) when the
formula F|, & F, is valid.

« Example:p - g —pVvyg

« Another definition: F|, and F), are equivalent if for all
interpretations I, I F F| if and only if [ F F,.

e Formula F; implies F, (denoted by F|; = F,) when the formula
F, = F, is valid.

« Example: (p = g)Ap=>gq

« Formulae F| and F, are equisatisfiable when F is satisfiable if and
only if F, is satisfiable.

- Example: p A(g V r)and g V r are equisatisfiable




MORE EXAMPLES

* Which of the following are true?
o (A Sl alk,
s (Fiol)ANEF o F)=> o)
£t P DAg
« p and g are equisatisfiable.

* What is the simplest example of two formulae which are not
equisatisfiable?




DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

e Two methods

 Truth Tables: Search for satisfying interpretation

* Semantic Argument: Rule-based deductive approach

* Modern SAT solvers use combination of both approaches




TRUTH TABLES - EXAMPLE
WINTE

2 NG Dy g




TRUTH TABLES - EXAMPLE
PANg — pV 1q isvalid

=

PAg

Dev. g




SEMANTIC ARGUMENT METHOD

* Deductive approach for showing validity based on proof rules
« Main Idea: Proof by Contradiction.

» Assume that a falsifying interpretation exists.

* Use proof rules to deduce more facts.

« Find contradictory facts.




PROOF RULES (NEGATION)




PROOF RULES (NEGATION)

-
7

F




PROOF RULES (NEGATION)

DEDUCTION




PROOF RULES (NEGATION)

DEDUCTION




PROOF RULES (CONJUNCTION]




PROOF RULES (CONJUNCTION]

[ £ FAG
TEF | I EG




PROOF RULES (CONJUNCTION]

BRANCHING:

Need to show a contradiction in every branch




PROOF RULES (DISJUNCTION]




PROOF RULES (IMPLICATION)




PROOF RULES (IFF)

I E F-G
I = FNG | I £ FVG

I £ F— (G
I E FAN-G | I E -FAG




PROOF RULES (CONTRADICTION)




EXAMPLE

Prove that p A g — p VvV —q is valid




EXAMPLE

Prove that p A g — p VvV —q is valid

LEDANqg—> Paqg




EXAMPLE

Prove that p A g — p VvV —q is valid

LEDANqg—> Paqg
lEpAkg  FEDY1g




EXAMPLE

Prove that p A g — p VvV —q is valid

LEDANqg—> Paqg
lEpAkg  FEDY1g

[Ep [ ¥ p
I Eqg [~ —qg




EXAMPLE

Prove that p A g — p VvV —q is valid

ITEpAg—pV g

lEpAkg  FEDY1g

& Tl AR

CONTRADICTION




EXAMPLE WITH BRANCHING

Prove that (p —» g) Ap — ¢ is valid




EXAMPLE WITH BRANCHING

Prove that (p —» g) Ap — ¢ is valid

LG >qg)hp— g




EXAMPLE WITH BRANCHING

Prove that (p —» g) Ap — ¢ is valid
LiE(p—>q)Ap—g

EE (g iipr - I




EXAMPLE WITH BRANCHING

Prove that (p — g) A p — g is valid
L e —>q)hpi—>g
= (D =ogip) 8y
= =4 E=p




EXAMPLE WITH BRANCHING

Prove that (p —» g) Ap — ¢ is valid
LiE(p—>q)Ap—g

EE (p—gt p)r ol
= =g =

I¥Ep | lEqg




EXAMPLE WITH BRANCHING

Prove that (p —» g) Ap — ¢ is valid

LE(p-—>q) p— g

EE (g iipr - I

e =g

CONTRADICTION




EXAMPLE WITH BRANCHING

Prove that (p — g) A p — g is valid

LE(p-—>q) p— g

EE (p=>gip) '}
= =g =

CONTRADICTION

Each branch should lead to a contradiction




ANNOUNCEMENTS

e Lectures slides and recorded video lectures are available on the
course webpage.

* Chapter 1 of the BM book is uploaded on the course moodle
page.

e Please try Exercises 1.1-1.5.




QUESTIONS

* Is the semantic argument method complete?
« Can we use the semantic argument method for satisfiability?

* What is the time complexity of the semantic argument method?




DECISION PROCEDURES FOR SAT

* We will go through the DPLL algorithm.
e Davis-Putnam-Logemann-Loveland Algorithm
* Combines truth table and deductive approaches
* Requires formulae in Conjunctive Normal Form (CNF)

e Forms the basis of modern SAT solvers




NORMAL FORMS

A Normal Form of a formula F is another equivalent formula F’
which obeys some syntactic restrictions.

* Three important normal forms:

* Negation Normal Form (NNF): Should use only =, A, V as the
logical connectives, and = should only be applied to literals

 Disjunctive Normal Form (DNF): Should be a disjunction of
conjunction of literals

e Conjunctive Normal Form (CNF): Should be a conjunction of
disjunction of literals




CONJUNCTIVE NORMAL FORM

* A conjunction of disjunction of literals

/\ \/ l; ; for literals ¢; ;
i

* Each inner disjunct is also called a clause

* Is every formula in CNF also in NNF?




CNF CONVERSION

« We can use distribution of V over A to obtain formula in CNF
« Causes exponential blowup.

 Tseitin's transformation algorithm can be used to obtain an
equisatisfiable CNF formula linear in size

* BM Chapter 1




TRUTH TABLE BASED METHOD

Decision Procedure for Satisfiability:
Returns true if F is SAT, false if F is UNSAT

T) retuen true:
= 1) -Feturn false:

Choose a variable p in F;

return SAT(F[T/pl) v SAT(FI[L/pl);

F[G/P] : G REPLACES EVERY OCCURRENCE OF P IN F, THEN SIMPLIFY




SIMPLIFICATION

 Following equivalences can be used to simplify:
sl A S L
s LAt o
Ve o
S AL —

* Note that these equivalences would be applied syntactically.

 That is, if the formula contains a T or L, it would be re-written
according to the above equivalences.




EXAMPLE

« SAT(P - Q)APA-Q)
e RN O LB ()
e F[T/PI2(LVOATA-QO=0A-0

SIMPLIFICATION MAY SAVE BRANCHING ON SOME OCCASIONS




DEDUCTION: CLAUSAL RESOLUTION

FOR CNF

IEpVF IE-pVG
IFFVG

[CLAUSAL RESOLUTION]

* Given a CNF Formula FF = C,C,, ...C,, if C'is a resolvent deduced
from F, then F' = C,,C,, ...,C,,C’is equivalent to F.

s eExample: F = ( "ENV-OFAPA 0O
e Rewrittenas F=("PVO)APV L)AQ
 Resolvent: (QOV L )=0
e FF'=(~PVQO)APA-QAQ — The next resolvent will be L.

* ldea: Repeatedly apply clausal resolution until no more new clauses
can be deduced. If L is never deduced, then the formula is satisfiable.




DEDUCTION: UNIT RESOLUTION
FOR CNF

e IE-pVF

[UNIT RESOLUTION]

IEF

In Unit Resolution, the resolvent replaces the original clause




BOOLEAN CONSTRAINT PROPAGATION (BCP)

FOR CNF

IEpALTDN gl Voig N s)




BOOLEAN CONSTRAINT PROPAGATION (BCP)

FOR CNF

IEpALTDN gl Voig N s)

[UNIT RESOLUTION]

LEgAry g s




BOOLEAN CONSTRAINT PROPAGATION (BCP)

FOR CNF

ITEpA(gV g A(rV gV s)

i

LEgAry 'gvs)

[UNIT RESOLUTION]
J =




BOOLEAN CONSTRAINT PROPAGATION (BCP)

FOR CNF

ITEpA(gV g A(rV gV s)

i

LEgAry 'gvs)

[UNIT RESOLUTION]

QP rVD

FIND A SATISFYING INTERPRETATION




PURE LITERAL PROPAGATION (PLP)
FOR CNF

* If a variable appears only positively or negatively in a formula,
then all clauses containing the variable can be removed.

 p appears positively if every p—literal is just p

» p appears negatively if every p—literal is —p

« Removing such clauses from F'results in a equisatisfiable formula
F/

* Why?

e Are F and F’ equivalent?




DPLL
FOR CNF

Decision Procedure for Satisfiability of CNF Formula:
Returns true if F is SAT, false if F is UNSAT

SAT(F){
Bt o= PlER(E )
2 i BCR(F5).:
TESF = Tl retlirn Erle;
i CEE = — k) retufrn false:

Choose a variable p in F'’;

petiirn-SARCE "1 /pl) e SATCE" " [i/p] )=




EXAMPLE

FEr(CpNvaVvmAGigV A GCigNaTaA(p -G V)

SAT(F)A{

o SAT(F)
 No PLP or BCP.
« q« CHOOSE.

F' = PLP(F);

F’’ = BCP(F');

iF (B = Flpelurn Lrue;
3 F[TFUG/Q] = ”/\_"’/\(p\/ﬂl”) BFCELE =17 ‘Fellirn false’

« SAT(F[True/q]) Choose a variable p in

F’ ’;
o After PLP: r A 07
cekirn -SAT(E' [T/pl) w
« After BCP: False : SAT(F’'[L/pl);

« Return False and backtrack to
previous call




EXAMPLE

FEr(CpNvaVvmAGigV A GCigNaTaA(p -G V)

SAT(F)A{

« SAT(F)
e No PLP or BCP.

F' = PLP(F);

F'" = BCP(F');
» g« CHOOSE.

if (B = T} return true:

¥ (EL: ="1) ‘retlrn false;
Choose a variable p in
Fl I;

cekirn -SAT(E' [T/pl) w
; SeF(ES"LL/pl )5




EXAMPLE

FEr(CpNvaVvmAGigV A GCigNaTaA(p -G V)

SAT(F)A{

« SAT(F)
e No PLP or BCP.

F' = PLP(F);

F'" = BCP(F');
» g« CHOOSE.

if (B = T} return true:

- F[False/qg] = pVr T LEZL — 1) relirn Ealse:

Choose a variable p in
FII;

cekirn -SAT(E' [T/pl) w
; SeF(ES"LL/pl )5




EXAMPLE

FEr(CpNvaVvmAGigV A GCigNaTaA(p -G V)

SAT(F)A{

« SAT(F)
e No PLP or BCP.

F' = PLP(F);

F'" = BCP(F');
» g« CHOOSE.

if (B = T} return true:
« F[False/q]l = —pVr

 SAT(F[False/
(F[False/q]) Choose a variable p in
: F’ ’ ;

¥ CEL: = 1] ‘Eelilra fatse:

cekirn -SAT(E' [T/pl) w
; SeF(ES"LL/pl )5




EXAMPLE

FEr(CpNvaVvmAGigV A GCigNaTaA(p -G V)

SAT(F)A{

« SAT(F)
e No PLP or BCP.

F' = PLP(F);

F'* = BCP(F’);
» g« CHOOSE.

if (B = T} return true:
« F[False/q]l = —pVr

« SAT(F[False/q]) : .
Choose a variable p in
o After PLP: True Fo

¥ CEL: = 1] ‘Eelilra fatse:

« Satisfiable! et SATLEL LIT/pE) v
; SAF(E - [L/pl);




DPLL IS JUST THE STARTING POINT!

* Modern SAT solvers use a variety of approaches to further
improve performance

* Non-chronological back tracking
e Conflict-driven clause learning (CDCL)
* Heuristics to CHOOSE appropriate variables and assignments

* Current SAT solvers can solve problems with millions of clauses in
reasonable amount of time on average.




ENCODING PROBLEMS IN PL

» Even though PL is relatively straightforward, many problems in
diverse areas can be encoded in PL.

* Problems in graph theory and combinatorics, games such as
Sudoku, problems in biotechnology and bioinformatics, etc.

* There exists a reduction from every NP-Complete problem to
SAT.

* As an example, let us try to encode the graph-colouring problem
in PL:




GRAPH COLOURING IN PL

* In the graph colouring problem, the goal is to assign colours to
vertices such that no two adjacent vertices have the same colour.

« Formally, consider graph G = (V, E)
* Vertices, V= {v,...,v,}
» Edges, Eo—le 16l EV-xV
e Colours, € = ¢ ... C |
« Assign each vertex v € V a color color(v) € C such that

« for edge e = (v,w) € E, color(v) # color(w).




GRAPH COLOURING IN PL

We use binary variable p; to denote that vertex v has been
assigned color c.

Properties that the colouring should satisfy:
« Each vertex must be coloured from the set C.
» Each vertex must be assigned at most one colour.

« Two adjacent vertices must be assigned different colours.




GRAPH COLOURING IN PL

e Each vertex must be coloured from the set C.

(B ep o S p ) hve A p  Nip N - p)

» Each vertex must be assigned at most one colour.

n
AR B B
=11 o<
« Two adjacent vertices must be assigned different colours.

N /m\ (pEAp )

(vyvHeE k=1




GRAPH COLOURING IN PL

* An optimisation: We can omit the at-most one colour constraint.

« This is because if there is a valid colouring which assigns more
than one colour, then there is also a valid colouring assigning
exactly one colour.

* The original formula and the optimised formula are
equisatisfiable.




