
PROPOSITIONAL
LOGIC

MATHEMATICAL LOGIC

• Logic is the foundation of computation.
• We will use logic for multiple purposes:

• Describing specifications

• Describing program executions

• Mathematical guarantees of logic will translate to guarantees of
program correctness

• Decision procedures for logic will be used for verification.

PROPOSITIONAL LOGIC

Is valid?
Is satisfiable?
p → q → r ↔ (p ∧ q) → r

p ∧ ⊥ → ¬q ∨ ⊤

SYNTAX

Atom Truth Values - : False, : True
Propositional Variables - p,q,r…

Logical
Connectives

Literal Atom or its negation

Formula A literal or the application of logical connectives to formulae

⊥ ⊤

∧ : and, ∨ : or, ¬ : not, →: implies, ↔: if and only if(iff)

SEMANTICS

Interpretation I
I : Set of Propositional Variables → { ⊥ , ⊤ }

Given an interpretation I and Formula F,

F evaluates to under I

F evaluates to under I

I ⊨ F

I ⊭ F

MODEL
OF

⊤

⊥

SEMANTICS: INDUCTIVE DEFINITION

iff I(p)=
iff I(p)=

I ⊨ ⊤

I ⊭ ⊥

I ⊨ p
I ⊭ p

Base Case:

Other cases …

Inductive Case:
I ⊨ ¬F

I ⊨ F1 ∧ F2

I ⊨ F1 ∨ F2

I ⊨ F1 → F2

I ⊨ F1 ↔ F2

iff I ⊭ F

iff I ⊨ F1 and I ⊨ F2

iff I ⊨ F1 or I ⊨ F2

iff I ⊭ F1 or I ⊨ F2

iff I ⊨ F1 and I ⊨ F2, or I ⊭ F1 and I ⊭ F2

⊤
⊥

EXAMPLE

I = {p : True, q : False} F = p ∧ q → p ∨ ¬q

Is I ⊨ F?

1.
2.
3.

I ⊭ q
I ⊭ p ∧ q
I ⊨ p ∧ q → p ∨ ¬q

PRECEDENCE OF LOGICAL CONNECTIVES

• We assume the following precedence from highest to lowest:

•

• Example: is the same as
.

• We assume that all logical connectives associate to the right.

• Example: is the same as

• Parenthesis can be used to change precedence or associativity.

¬, ∧ , ∨ , → , ↔

¬p ∧ q → p ∨ q ∧ r
((¬p) ∧ q) → (p ∨ (q ∧ r))

p → q → r p → (q → r)

SATISFIABILITY AND VALIDITY

• A formula is satisfiable iff there exists an interpretation such
that .

• A formula is valid iff for all interpretations , .

• A formula is valid iff is unsatisfiable.

• A Decision Procedure for satisfiability is therefore also a
decision procedure for validity. How?

F I
I ⊨ F

F I I ⊨ F

F ¬F

QUESTIONS

• A formula can either be SAT, UNSAT or VALID.

• Does Validity Satisfiability?

• Does Satisfiability Validity?

• Can a decision procedure for Validity be used as a decision
procedure for Satisfiability?

• F is satisfiable iff F is not valid.

• Are the following formulae are sat, unsat or valid?

•

•

•

⇒

⇒

¬

p ∧ q → p ∨ q

p ∨ q → ¬p ∨ ¬q

(p → q → r) ∧ (p ∧ q ∧ ¬r)

MORE TERMINOLOGY

• Formulae and are equivalent (denoted by) when the
formula is valid.

• Example:

• Another definition: and are equivalent if for all
interpretations , if and only if .

• Formula implies (denoted by) when the formula
 is valid.

• Example:

• Formulae and are equisatisfiable when is satisfiable if and
only if is satisfiable.

• Example: and are equisatisfiable

F1 F2 F1 ⇔ F2
F1 ↔ F2

p → q ⇔ ¬p ∨ q

F1 F2
I I ⊨ F1 I ⊨ F2

F1 F2 F1 ⇒ F2
F1 → F2

(p → q) ∧ p ⇒ q

F1 F2 F1
F2

p ∧ (q ∨ r) q ∨ r

MORE EXAMPLES

• Which of the following are true?

•

•

•

• and are equisatisfiable.

• What is the simplest example of two formulae which are not
equisatisfiable?

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

(F1 ↔ F2) ∧ (F2 ↔ F3) ⇒ (F1 ↔ F3)

p ⇔ p ∧ q

p q

DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

• Two methods
• Truth Tables: Search for satisfying interpretation
• Semantic Argument: Rule-based deductive approach

• Modern SAT solvers use combination of both approaches

TRUTH TABLES - EXAMPLE
p ∧ q → p ∨ ¬q

0 0 1 0 1 1

0 1 0 0 0 1

1 0 1 0 1 1

1 1 0 1 1 1

p q p ∧ q p ∨ ¬q¬q p ∧ q →
p ∨ ¬q

TRUTH TABLES - EXAMPLE
p ∧ q → p ∨ ¬q

0 0 1 0 1 1

0 1 0 0 0 1

1 0 1 0 1 1

1 1 0 1 1 1

p q p ∧ q p ∨ ¬q¬q p ∧ q →
p ∨ ¬q

is valid

SEMANTIC ARGUMENT METHOD

• Deductive approach for showing validity based on proof rules
• Main Idea: Proof by Contradiction.

• Assume that a falsifying interpretation exists.
• Use proof rules to deduce more facts.
• Find contradictory facts.

PROOF RULES (NEGATION)

PROOF RULES (NEGATION)

PREMISE

PROOF RULES (NEGATION)

PREMISE

DEDUCTION

PROOF RULES (NEGATION)

PREMISE

DEDUCTION

PROOF RULES (CONJUNCTION)

PROOF RULES (CONJUNCTION)

PROOF RULES (CONJUNCTION)

BRANCHING:

Need to show a contradiction in every branch

PROOF RULES (DISJUNCTION)

PROOF RULES (IMPLICATION)

PROOF RULES (IFF)

PROOF RULES (CONTRADICTION)

EXAMPLE

Prove that is valid p ∧ q → p ∨ ¬q

EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that is valid p ∧ q → p ∨ ¬q

EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q

EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q

I ⊨ p
I ⊨ q

I ⊭ p
I ⊭ ¬q

EXAMPLE

I ⊭ p ∧ q → p ∨ ¬q

Prove that is valid p ∧ q → p ∨ ¬q

I ⊨ p ∧ q I ⊭ p ∨ ¬q

I ⊨ p
I ⊨ q

I ⊭ p
I ⊭ ¬q

CONTRADICTION

EXAMPLE WITH BRANCHING

Prove that is valid (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

CONTRADICTION

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

EXAMPLE WITH BRANCHING

I ⊨ (p → q ∧ p) I ⊭ q

I ⊨ (p → q) I ⊨ p

I ⊭ p I ⊨ q

CONTRADICTION

Each branch should lead to a contradiction

Prove that is valid (p → q) ∧ p → q

I ⊭ (p → q) ∧ p → q

ANNOUNCEMENTS

• Lectures slides and recorded video lectures are available on the
course webpage.

• Chapter 1 of the BM book is uploaded on the course moodle
page.
• Please try Exercises 1.1-1.5.

QUESTIONS

• Is the semantic argument method complete?
• Can we use the semantic argument method for satisfiability?
• What is the time complexity of the semantic argument method?

DECISION PROCEDURES FOR SAT

• We will go through the DPLL algorithm.
• Davis-Putnam-Logemann-Loveland Algorithm
• Combines truth table and deductive approaches
• Requires formulae in Conjunctive Normal Form (CNF)
• Forms the basis of modern SAT solvers

NORMAL FORMS

• A Normal Form of a formula F is another equivalent formula F’
which obeys some syntactic restrictions.

• Three important normal forms:

• Negation Normal Form (NNF): Should use only as the
logical connectives, and should only be applied to literals

• Disjunctive Normal Form (DNF): Should be a disjunction of
conjunction of literals

• Conjunctive Normal Form (CNF): Should be a conjunction of
disjunction of literals

¬, ∧ , ∨
¬

CONJUNCTIVE NORMAL FORM

• A conjunction of disjunction of literals

• Each inner disjunct is also called a clause
• Is every formula in CNF also in NNF?

CNF CONVERSION

• We can use distribution of over to obtain formula in CNF

•

• Causes exponential blowup.
• Tseitin’s transformation algorithm can be used to obtain an

equisatisfiable CNF formula linear in size
• BM Chapter 1

∨ ∧

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

TRUTH TABLE BASED METHOD

SAT(F){

 if (F =) return true;

 if (F =) return false;

 Choose a variable p in F;

 return SAT(F[/p]) SAT(F[/p]);

}

⊤

⊥

⊤ ∨ ⊥

Decision Procedure for Satisfiability:
Returns true if F is SAT, false if F is UNSAT

F[G/P] : G REPLACES EVERY OCCURRENCE OF P IN F, THEN SIMPLIFY

SIMPLIFICATION

• Following equivalences can be used to simplify:

•

•

•

•

• Note that these equivalences would be applied syntactically.

• That is, if the formula contains a or , it would be re-written
according to the above equivalences.

F ∧ ⊥ ⇔ ⊥

F ∧ ⊤ ⇔ F

F ∨ ⊥ ⇔ F

F ∨ ⊤ ⇔ ⊤

⊤ ⊥

EXAMPLE

• SAT()

•

•

(P → Q) ∧ P ∧ ¬Q

F = (¬P ∨ Q) ∧ P ∧ ¬Q

F[⊤ /P] ≜ (⊥ ∨ Q) ∧ ⊤ ∧ ¬Q ≡ Q ∧ ¬Q

SIMPLIFICATION MAY SAVE BRANCHING ON SOME OCCASIONS

DEDUCTION: CLAUSAL RESOLUTION

I ⊨ p ∨ F I ⊨ ¬p ∨ G

I ⊨ F ∨ G
[CLAUSAL RESOLUTION]

• Given a CNF Formula , if is a resolvent deduced
from , then is equivalent to .

• Example:

• Rewritten as

• Resolvent:

• The next resolvent will be .
• Idea: Repeatedly apply clausal resolution until no more new clauses

can be deduced. If is never deduced, then the formula is satisfiable.

F = C1, C2, …Cn C′

F F′ = C1, C2, …, Cn, C′ F

F = (¬P ∨ Q) ∧ P ∧ ¬Q

F = (¬P ∨ Q) ∧ (P ∨ ⊥) ∧ ¬Q

(Q ∨ ⊥) = Q

F′ = (¬P ∨ Q) ∧ P ∧ ¬Q ∧ Q → ⊥

⊥

FOR CNF

DEDUCTION: UNIT RESOLUTION

I ⊨ p I ⊨ ¬p ∨ F

I ⊨ F
[UNIT RESOLUTION]

In Unit Resolution, the resolvent replaces the original clause

FOR CNF

BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

FOR CNF

BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)
[UNIT RESOLUTION]

FOR CNF

BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)

I ⊨ r ∨ s
[UNIT RESOLUTION]

FOR CNF

BOOLEAN CONSTRAINT PROPAGATION (BCP)

I ⊨ p ∧ (¬p ∨ q) ∧ (r ∨ ¬q ∨ s)

I ⊨ q ∧ (r ∨ ¬q ∨ s)

I ⊨ r ∨ s
[UNIT RESOLUTION]

FIND A SATISFYING INTERPRETATION

FOR CNF

PURE LITERAL PROPAGATION (PLP)

• If a variable appears only positively or negatively in a formula,
then all clauses containing the variable can be removed.

• appears positively if every literal is just

• appears negatively if every literal is

• Removing such clauses from results in a equisatisfiable formula

• Why?

• Are equivalent?

p p− p

p p− ¬p

F
F′

F and F′

FOR CNF

DPLL

SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in F’’;

 return SAT(F’’[/p]) SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨ ⊥

Decision Procedure for Satisfiability of CNF Formula:
Returns true if F is SAT, false if F is UNSAT

FOR CNF

EXAMPLE

• SAT(F)
• No PLP or BCP.

• q CHOOSE.

• F[True/q] =

• SAT(F[True/q])

• After PLP:

• After BCP: False
• Return False and backtrack to

previous call

←

r ∧ ¬r ∧ (p ∨ ¬r)

r ∧ ¬r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in
F’’;

return SAT(F’’[/p])
SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨
⊥

EXAMPLE

• SAT(F)

• No PLP or BCP.

• q CHOOSE.

•

←

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in
F’’;

return SAT(F’’[/p])
SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨
⊥

EXAMPLE

• SAT(F)

• No PLP or BCP.

• q CHOOSE.

• F[False/q] =

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in
F’’;

return SAT(F’’[/p])
SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨
⊥

EXAMPLE

• SAT(F)

• No PLP or BCP.

• q CHOOSE.

• F[False/q] =

• SAT(F[False/q])

•

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in
F’’;

return SAT(F’’[/p])
SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨
⊥

EXAMPLE

• SAT(F)

• No PLP or BCP.

• q CHOOSE.

• F[False/q] =

• SAT(F[False/q])

• After PLP: True

• Satisfiable!

←

¬p ∨ r

F : (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)
SAT(F){

 F’ = PLP(F);

 F’’ = BCP(F’);

 if (F’’ =) return true;

 if (F’’ =) return false;

 Choose a variable p in
F’’;

return SAT(F’’[/p])
SAT(F’’[/p]);

}

⊤

⊥

⊤ ∨
⊥

DPLL IS JUST THE STARTING POINT!

• Modern SAT solvers use a variety of approaches to further
improve performance
• Non-chronological back tracking
• Conflict-driven clause learning (CDCL)
• Heuristics to CHOOSE appropriate variables and assignments

• Current SAT solvers can solve problems with millions of clauses in
reasonable amount of time on average.

ENCODING PROBLEMS IN PL

• Even though PL is relatively straightforward, many problems in
diverse areas can be encoded in PL.
• Problems in graph theory and combinatorics, games such as

Sudoku, problems in biotechnology and bioinformatics, etc.
• There exists a reduction from every NP-Complete problem to

SAT.
• As an example, let us try to encode the graph-colouring problem

in PL.

GRAPH COLOURING IN PL

• In the graph colouring problem, the goal is to assign colours to
vertices such that no two adjacent vertices have the same colour.

• Formally, consider graph

• Vertices,

• Edges,

• Colours,

• Assign each vertex a color such that

• for edge , .

G = ⟨V, E⟩

V = {v1, …, vn}

E = {e1, …, el} ⊆ V × V

C = {c1, …, cm}

v ∈ V 𝖼𝗈𝗅𝗈𝗋(v) ∈ C

e = (v, w) ∈ E 𝖼𝗈𝗅𝗈𝗋(v) ≠ 𝖼𝗈𝗅𝗈𝗋(w)

GRAPH COLOURING IN PL

• We use binary variable to denote that vertex has been
assigned color .

• Properties that the colouring should satisfy:

• Each vertex must be coloured from the set .

• Each vertex must be assigned at most one colour.
• Two adjacent vertices must be assigned different colours.

pc
v v

c

C

GRAPH COLOURING IN PL

• Each vertex must be coloured from the set .

• Each vertex must be assigned at most one colour.

• Two adjacent vertices must be assigned different colours.

C

(pc1
v1

∨ pc2
v1

∨ … ∨ pcm
v1

) ∧ … ∧ (pc1
vn

∨ pc2
vn

∨ … ∨ pcm
vn

)

n

⋀
i=1

⋁
1≤ j<k≤m

pcj
vi

→ ¬pck
vi

⋀
(v,v′)∈E

m

⋀
k=1

¬(pck
v ∧ pck

v′
)

GRAPH COLOURING IN PL

• An optimisation: We can omit the at-most one colour constraint.
• This is because if there is a valid colouring which assigns more

than one colour, then there is also a valid colouring assigning
exactly one colour.

• The original formula and the optimised formula are
equisatisfiable.

