APPLICATION OF SMT:
BOUNDED MODEL
CHECKING

ANNOUNCEMENTS

« Assignment-1 (Theory) is released today.
e Deadline: Feb 19.

« Reminder: Use Latex for writing the solutions.
* Course Project
* We will have one-on-one discussions next week.

» Assignment-1 (Tool) will be based on the Z3 Theorem Prover.

» Likely to be released next week.

BOUNDED MODEL CHECKING
IN GENERAL...

 Given a transition system, a property and a bound &, Bounded
Model Checking determines whether a state satisfying the

property is reachable within k steps.

* We will demonstrate BMC using SMT for bug-finding in programs.

* In this context, also called Symbolic Execution.

« Basis of a number of highly successful automated bug-finding
mechanisms—Concolic Testing, Whitebox fuzzing...

MICROSOFT ZUNE

A portable media player
introduced by Microsoft in
2008, discontinued in 2011.

On December 31, 2008, all

Zune devices went silent. music
videos | music

pictues vi.dte.'s
On January 1, 2009, they e e

miraculously started working racieed 4 fade |

i
Il Nndcacten |
I !

again! "Ne a¥al - slsi s

We will automatically find
the Zune bug using SMT.

Example adapted from Emina Torlak’s Lecture

MICROSOFT ZUNE BUG

int daysToYear(int days)
{
year = 2008;
while (days > 365)
.
if (IsLeapYear(year))
{
it Gdays = 366)
{
days —= 366;
year += 1;
¢
F
else
1
days —=
year +=
}
¥

return year;

}

Why would this code get
stuck on December 31,
20087

At days=366, the while
loop iterates infinitely!
How to solve this issue?
Let us see how we can use
SMT to automatically
detect this bug.

HOW TO SPECIFY CORRECT EXECUTIONZ®

int daysToYear(int days)

{
year = 2008,
while (days > 365)
{
if (IsLeapYear(year))

&
if (days > 366)
{
days —= 366;
year += 3
'
+
else

{
days —= 365;
year += 1;
b
3

FetUEn year:

}

HOW TO SPECIFY CORRECT EXECUTIONZ®

int daysToYear(int days)
{
year = 2008,
while (days > 365)
{
oldDays = days;
if (IsLeapYear(year))
{
if (days > 366)
{
days —= 366;
year += 1;
}
+
else
{
days-——=365;
year += 1;
5
assert(days < oldDays);
¥
E€ CUERsVear;

I

CONVERT TO SMT FORMULA - |

UNROLL LOOPS

year = 2008; ' WE HAVE UNROLLED THE FIRST ITERATION
ifdfdays— 300) OF THE LOOP
{

oldDays = days;
if (IsLeapYear(year))
{

if (days > 366) | IF THIS ASSERTION IS VIOLATED, WE HAVE A VALID
{ COUNTEREXAMPLE

days —= 366;
year += 1;

If this assertion is violated then:

1. No counterexample involving one
iteration exists

2. There may be counterexamples
with more than one iteration

assert déys == 365)"

IF NONE OF THE ASSERTIONS ARE
VIOLATED, NO COUNTEREXAMPLE
EXISTS

}

Leturn.year:;

CONVERT TO SMT FORMULA - I
CONVERT TO SSA FORM

yearp = 2008,
if (dayse > 365)

{
oldDayse = daysSoe; REPLACE EVERY ASSIGNMENT TO A VARIABLE

if (IsLeapYear(yearg)) BY A NEW VARIABLE INSTANCE, AND
{ REPLACE USES TO APPROPRIATE VARIABLE

if (dayse > 366) INSTANCES

daysi dayse - 366;

yedrys = Veare + 1;

it

;

else

{
dayss = daysp - 365;
years = yeare + 1;

b

assert(dayss < oldDayse);

assert(dayss <= 365);

¥

[EetUED: Vears:

CONVERT TO SMT FORMULA -
CONVERT TO SSA FORM

yearp = 2008, yeare = 2008;

1f tdayss > 365) bool ge = (dayse= 365);

{ oldDayse = dayse;
oldDayse = dayse; bool g1 = (IsLeapYear(yearo));
if (IsLeapYear(yearg)) bool g2 = (dayse > 366));
{ daysi = dayse — 366;

if (dayse > 366) year: = yeare + 1;

{ days: = ¢(g1 && g2, daysi, dayse);
dayse - 366; | = | yearz = ¢(g1 && g2, yeari, yeare);
DT dayse - 365;

Vedla. + I;
¢(g1, daysz2, dayss);
¢(g1, yearz, years);

days:

year: = yeary + 1: | —== f 0ayss

¥ years

Iy daysa

else years

{ assert(dayss < oldDayse);
dayss = daysoe - 365; assert(dayss <= 365);

years = yearps + 1; years = ¢(go, years, yearo);
1 FE U N Vears:
assert(dayss < oldDayse);
assert(dayss <= 365);
It

e tlrn: yedrs;

CONVERT TO SMT FORMULA -

CONVERT TO EQUATIONS

yeare = 2008; yeare = 2008 A
bolf(’j})a%s: (d:gsgf 365) ; ge = (dayse > 365) A
l;)ool gli (IsLyé:aep'Year(year@)); ¢ aDayse = iayce
bool g2 = (dayse > 366)); g1 = (IsLeapYear(yeare)) A
days: = dayse — 3166 g2 = (dayse > 366)) A
ear €areg + e
élaysi 3;(910&& g2, daysi, dayse); Lo day 2008
year: = ¢(91 && g2, yeari, yearo); e Year@ oA

ite(g1 & g2, daysi, dayse)A
ite(g1 & g2, yeari, yearg)A
dayse - 365 A
Veare -1 7
ite(gi1, daysz, dayss3) A
ite(g1, yearz, years) A
(-=(dayss < oldDayse)V
—~(dayss <= 365))

years = yeare + 1; year;
dayss = ¢(g1, daysz, dayss); dayss
years = @(g1, yearz, years);

assert(dayss < oldDayse); y€ars
assert(dayss <= 365); daysas
years = ¢(ge, Yyearo, year4); years
return years;

dayss = dayse - 365; days:>

FINAL SMT FORMULA

yearp = 2008 A

9*{d=D (daysaz 365) A - Satisfiability or Validity?
oldDayse = dayse A : :
g1 = (IsLeapYear(years)) A * Which theories are used?
g2 = (dayse > 366)) A * Linear Integer

daysi = dayse — 366 A e

years Vear, £ 1

days, = ite(gi && g2, daysi, dayse)a ° Equality

year; = ite(g:1 & g2, yeari, yeare)A

dayss = dayse - 365 A

years years £ < A

dayss = ite(gi, daysz, dayss) A

years = ite(gi1, yearz, years) A

(~(dayss < oldDayse)V

—~(dayss <= 365))

FINAL SMT FORMULA

yeare = 2008 A

g%dzD (daySeZ 365) A » Satisfiability or Validity?
oldDayse = dayse A : :
g1 = (IsLeapYear(years)) A * Which theories are used?
g2 = (dayse > 366)) A * Linear Integer

daysi = dayse — 366 A Kt e

yeari yedra I .

days, = ite(g: && g2, daysi, dayse)n ° Equality

yeary = ite(gi & g2, yeari, yeare)A

dayss = dayse - 365 A

years years £ < A

dayss = ite(gi1, daysz, dayss) A

years = ite(gi1, yearz, years) A

(=(dayss < oldDayse)V

—~(dayss <= 365))

SATISFIABLE FOR DAYSo=366
AND ISLEAPYEAR(2008)=T

L3

INTRODUCTION

Z3 is a constraint-solver/theorem-prover developed at Microsoft
Research.

Basic Operation:
* It takes as input a formula [PL/FOL/SMT].
* Outputs SAT/UNSAT.

Supports a whole range of theories (including all theories we have
seen).

Open-source (written in C++)

 Latest version available at Z3 Github page (https://github.com/
Z3Prover/z3).

INPUT/OUTPUT FORMAT

1. APIs for Python, C++, Java, etc.

 API functions for declaring variables, constants, predicates,
functions, and for constructing formula.

* API functions for accessing a satisfying interpretation (in case of
SAT).

2. SMT-LIB 2.0
 Standard input format for all SMT solvers

* Formula written in SMT-LIB 2.0 can be directly provided to the
Z3 executable.

INPUT FORMAT

» Z3 expects input formula in Many Sorted First Order Logic
(MSFOL).

 ‘sort’ is similar to type. Variables, constants, functions,
predicates must be given appropriate types.

 Built-in sorts: Bool, Integer, Real, Array,...

 Users can also define new sorts.

SMT-LIB EXAMPLE

yeare = 2008 A (declare-const yearp Int)

ge = (dayse > 365) A (declare-const ge Bool)
oldDayse = dayse A (declare-fun IslLeapYear (Int)
g1 = (IsLeapYear(years)) A Bool)

g2 = (dayse > 366)) A "
daysi = dayse — 366 A

years Vear, £ 1

days> ite(g1 & g2, daysi,
dayse)
year;
yearg)
dayss
years
daysas
A

Zassert (= yeare 2008))
(assert (= go (> dayse 365)))

ite(g1 & g2, year:, (assert (not (<= dayss 365)))

dayse - 365 A (check-sat)
yeare + 1 A (get-model)
ite(g1, daysz2, dayss)

R [G | e SO | S L | R) [

years = ite(gi1, yearz2, years)

A
(-=(dayss < oldDayse)V
—~(dayss <= 365))

TUTORIALS

e For SMT-LIB

* https://ftmc.github.io/z3-play/

* For Python API

* http://theory.stanford.edu/~nikolaj/programmingz3.html

« Download, Installation instructions

* https://github.com/Z3Prover/z3

TOOL ASSIGNMENT-1 WILL BE BASED ON Z3

