
APPLICATION OF SMT:
BOUNDED MODEL

CHECKING

ANNOUNCEMENTS

• Assignment-1 (Theory) is released today.
• Deadline: Feb 19.
• Reminder: Use Latex for writing the solutions.

• Course Project
• We will have one-on-one discussions next week.

• Assignment-1 (Tool) will be based on the Z3 Theorem Prover.
• Likely to be released next week.

IN GENERAL…

BOUNDED MODEL CHECKING

• Given a transition system, a property and a bound , Bounded
Model Checking determines whether a state satisfying the
property is reachable within steps.

• We will demonstrate BMC using SMT for bug-finding in programs.
• In this context, also called Symbolic Execution.
• Basis of a number of highly successful automated bug-finding

mechanisms—Concolic Testing, Whitebox fuzzing…

k

k

MICROSOFT ZUNE

• A portable media player
introduced by Microsoft in
2008, discontinued in 2011.

• On December 31, 2008, all
Zune devices went silent.

• On January 1, 2009, they
miraculously started working
again!

• We will automatically find
the Zune bug using SMT.

Example adapted from Emina Torlak’s Lecture

MICROSOFT ZUNE BUG

int daysToYear(int days)
{
 year = 2008;
while (days > 365)
{
 if (IsLeapYear(year))
 {
 if (days > 366)
 {
 days -= 366;
 year += 1;
 }
 }
 else
 {
 days -= 365;
 year += 1;
 }
}
return year;

}

• Why would this code get
stuck on December 31,
2008?

• At days=366, the while
loop iterates infinitely!

• How to solve this issue?
• Let us see how we can use

SMT to automatically
detect this bug.

HOW TO SPECIFY CORRECT EXECUTION?

int daysToYear(int days)
{
 year = 2008;
while (days > 365)
{
 if (IsLeapYear(year))
 {
 if (days > 366)
 {
 days -= 366;
 year += 1;
 }
 }
 else
 {
 days -= 365;
 year += 1;
 }
}
return year;

}

HOW TO SPECIFY CORRECT EXECUTION?

int daysToYear(int days)
{
 year = 2008;
while (days > 365)
{
 oldDays = days;
 if (IsLeapYear(year))
 {
 if (days > 366)
 {
 days -= 366;
 year += 1;
 }
 }
 else
 {
 days -= 365;
 year += 1;
 }
 assert(days < oldDays);
}
return year;

}

UNROLL LOOPS

CONVERT TO SMT FORMULA - I

 year = 2008;
if (days > 365)
{
 oldDays = days;
 if (IsLeapYear(year))
 {
 if (days > 366)
 {
 days -= 366;
 year += 1;
 }
 }
 else
 {
 days -= 365;
 year += 1;
 }
 assert(days < oldDays);
 assert(days <= 365);
}
return year;

WE HAVE UNROLLED THE FIRST ITERATION
OF THE LOOP

IF THIS ASSERTION IS VIOLATED, WE HAVE A VALID
COUNTEREXAMPLE

If this assertion is violated then:
1. No counterexample involving one

iteration exists
2. There may be counterexamples

with more than one iteration

IF NONE OF THE ASSERTIONS ARE
VIOLATED, NO COUNTEREXAMPLE

EXISTS

CONVERT TO SSA FORM

CONVERT TO SMT FORMULA - II

 year0 = 2008;
if (days0 > 365)
{
 oldDays0 = days0;
 if (IsLeapYear(year0))
 {
 if (days0 > 366)
 {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 }
 else
 {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert(days4 < oldDays0);
 assert(days4 <= 365);
}
return year5;

REPLACE EVERY ASSIGNMENT TO A VARIABLE
BY A NEW VARIABLE INSTANCE, AND

REPLACE USES TO APPROPRIATE VARIABLE
INSTANCES

CONVERT TO SSA FORM

CONVERT TO SMT FORMULA - II

 year0 = 2008;
 bool g0 = (days0 > 365);
oldDays0 = days0;

 bool g1 = (IsLeapYear(year0));
 bool g2 = (days0 > 366));
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert(days4 < oldDays0);
assert(days4 <= 365);
year5 = φ(g0, year4, year0);
return year5;

 year0 = 2008;
if (days0 > 365)
{
 oldDays0 = days0;
 if (IsLeapYear(year0))
 {
 if (days0 > 366)
 {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 }
 else
 {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert(days4 < oldDays0);
 assert(days4 <= 365);
}
return year5;

≡

CONVERT TO EQUATIONS

CONVERT TO SMT FORMULA - III

 year0 = 2008;
 bool g0 = (days0 > 365);

oldDays0 = days0;
 bool g1 = (IsLeapYear(year0));
 bool g2 = (days0 > 366));

days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert(days4 < oldDays0);
assert(days4 <= 365);
year5 = φ(g0, year0, year4);
return year5;

 year0 = 2008 ⋀
 g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀

 g1 = (IsLeapYear(year0)) ⋀
 g2 = (days0 > 366)) ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 && g2, days1, days0)⋀
year2 = ite(g1 && g2, year1, year0)⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
(¬(days4 < oldDays0)⋁
¬(days4 <= 365))

FINAL SMT FORMULA

 year0 = 2008 ⋀
 g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀

 g1 = (IsLeapYear(year0)) ⋀
 g2 = (days0 > 366)) ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 && g2, days1, days0)⋀
year2 = ite(g1 && g2, year1, year0)⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
(¬(days4 < oldDays0)⋁
¬(days4 <= 365))

• Satisfiability or Validity?
• Which theories are used?

• Linear Integer
Arithmetic

• Equality

FINAL SMT FORMULA

 year0 = 2008 ⋀
 g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀

 g1 = (IsLeapYear(year0)) ⋀
 g2 = (days0 > 366)) ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 && g2, days1, days0)⋀
year2 = ite(g1 && g2, year1, year0)⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
(¬(days4 < oldDays0)⋁
¬(days4 <= 365))

SATISFIABLE FOR DAYS0=366
AND ISLEAPYEAR(2008)=⊤

• Satisfiability or Validity?
• Which theories are used?

• Linear Integer
Arithmetic

• Equality

Z3

INTRODUCTION

• Z3 is a constraint-solver/theorem-prover developed at Microsoft
Research.

• Basic Operation:
• It takes as input a formula [PL/FOL/SMT].
• Outputs SAT/UNSAT.

• Supports a whole range of theories (including all theories we have
seen).

• Open-source (written in C++)
• Latest version available at Z3 Github page (https://github.com/

Z3Prover/z3).

INPUT/OUTPUT FORMAT

1. APIs for Python, C++, Java, etc.
• API functions for declaring variables, constants, predicates,

functions, and for constructing formula.
• API functions for accessing a satisfying interpretation (in case of

SAT).

2. SMT-LIB 2.0
• Standard input format for all SMT solvers
• Formula written in SMT-LIB 2.0 can be directly provided to the

Z3 executable.

INPUT FORMAT

• Z3 expects input formula in Many Sorted First Order Logic
(MSFOL).
• ‘sort’ is similar to type. Variables, constants, functions,

predicates must be given appropriate types.
• Built-in sorts: Bool, Integer, Real, Array,…
• Users can also define new sorts.

SMT-LIB EXAMPLE

 year0 = 2008 ⋀
 g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀

 g1 = (IsLeapYear(year0)) ⋀
 g2 = (days0 > 366)) ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 && g2, days1,
days0)⋀
year2 = ite(g1 && g2, year1,
year0)⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3)
⋀
year4 = ite(g1, year2, year3)
⋀
(¬(days4 < oldDays0)⋁
¬(days4 <= 365))

(declare-const year0 Int)
(declare-const g0 Bool)
(declare-fun IsLeapYear (Int)
Bool)
.
.
(assert (= year0 2008))
(assert (= g0 (> days0 365)))
.
.
(assert (not (<= days4 365)))

(check-sat)
(get-model)

TUTORIALS

• For SMT-LIB
• https://jfmc.github.io/z3-play/

• For Python API
• http://theory.stanford.edu/~nikolaj/programmingz3.html

• Download, Installation instructions
• https://github.com/Z3Prover/z3

TOOL ASSIGNMENT-1 WILL BE BASED ON Z3

