SATISFIABILITY MODULO

 THEORIES (SMT)
SMT - INTRODUCTION

- In FOL, predicates and functions are in general uninterpreted
- In practice, we may have a specific meaning in mind for certain predicates and functions (e.g. $=, \leq,+$, etc.)
- First-order Theories allow us to formalise the meaning of certain structures.

FIRST-ORDER THEORY

- A First-order Theory (T) is defined by two components:
- Signature $\left(\Sigma_{T}\right)$: Contains constant, predicate and function symbols
- Axioms $\left(A_{T}\right)$: Set of closed FOL formulae containing only the symbols in Σ_{T}
- A Σ_{T}-formula is a FOL formula which only contains symbols from Σ_{T}

SATISFIABILITY AND VALIDITY MODULO THEORIES

- An interpretation I is called a T-interpretation if it satisfies all the axioms of the theory T
- For all $A \in A_{T} I \vDash A$
- A Σ_{T}-formula F is satisfiable modulo T if there is a T interpretation that satisfies F
- A Σ_{T}-formula F is valid modulo T if every T-interpretation satisfies F
- Also denoted as $T \vDash F$

QUESTIONS

- Which is of the following holds?
- F is satisfiable $\Rightarrow F$ is satisfiable modulo T
- F is satisfiable modulo $T \Rightarrow F$ is satisfiable
- Which is of the following holds?
- F is valid $\Rightarrow F$ is valid modulo T
- F is valid modulo $T \Rightarrow F$ is valid

COMPLETENESS AND DECIDABILITY

- A theory T is complete if for every closed formula F, either F or $\neg F$ is valid modulo T
- $T \vDash F$ or $T \vDash \neg F$
- Is FOL (i.e.'empty' theory) complete?
- No. Consider $F: \exists x . p(x)$. Neither F nor $\neg F$ is valid.
- A theory T is decidable if $T \vDash F$ is decidable for every formula F .
- Even though FOL (or empty theory) is undecidable, various useful theories are actually decidable.

THEORY OF EQUALITY ($T_{=}$)

- One of the simplest first-order theories
- $\Sigma_{=}$: All symbols used in FOL and the special symbol =
- Allows uninterpreted functions and predicates, but $=$ is interpreted.
- Axioms of Equality:

1. $\forall x \cdot x=x$
(reflexivity)
2. $\forall x, y . x=y \rightarrow y=x$
(symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$

AXIOMS OF EQUALITY

- Function Congruence: For a n-ary function f, two terms $f(\vec{x})$ and $f(\vec{y})$ are equal if \vec{x} and \vec{y} are equal:

$$
\forall \bar{x}, \bar{y} \cdot\left(\bigwedge_{i=1}^{n} x_{i}=y_{i}\right) \rightarrow f(\bar{x})=f(\bar{y})
$$

- Predicate Congruence: For a n-ary predicate p, two formulas $p(\vec{x})$ and $p(\vec{y})$ are equivalent if \vec{x} and \vec{y} are equal:

$$
\forall \bar{x}, \bar{y} \cdot\left(\begin{array}{l}
n \\
i=1
\end{array} x_{i}=y_{i}\right) \quad \longrightarrow \quad(\nu(\bar{x}) \longleftrightarrow p(\bar{y}))
$$

AXIOMS OF EQUALITY

- Function Congruence and Predicate Congruence are actually Axiom Schemes, which can be instantiated with any function or predicate to get axioms.
- For example, for a unary function g, the function congruence axiom is:
- $\forall x, y \cdot x=y \rightarrow g(x)=g(y)$

ANNOUNCEMENT

- Change in Grading Policy
- Project: 30\%
- Assignments (3 Theory + 2 Tool): $40 \% 35 \%$
- Class Participation: 5\%
- End sem-30\%
- Please participate in the class discussions
- "Raise hand" if you want to answer a question or ask some doubt.
- As far as possible, please unmute yourself and communicate verbally rather than using chat.
- I am going to start asking questions to specific students now.
- Please revise the previous lectures before attending a new lecture.

EXAMPLE OF A $T_{=}$-INTERPRETATION

Consider the domain $D_{I}=\{a, b\}$.
What would be an appropriate
interpretation $\alpha_{I}(=)$?

FRAGMENTS OF THEORY

- A fragment of a theory is a syntactically-restricted subset of formulae of the theory.
- For example, the quantifier-free fragment of a theory T is the set of Σ_{T} formulae that do not contain any quantifiers.
- Technically, while considering validity of quantifier-free formula, we assume that all variables are universally quantified.
- Hence, for validity, the quantifier-free fragment is the same as the fragment which allows only universal quantification.
- Quantifier-free fragments are of great practical and theoretical importance.

SEMANTIC ARGUMENT METHOD FOR VALIDITY MODULO THEORY

- We can use the semantic argument method to prove validity modulo theory.
- Along with the usual proof rules, axioms of the theory can be used to derive facts.
- As usual, we look for a contradiction in all branches.

EXAMPLE

Prove that $F: a=b \wedge b=c \rightarrow g(f(a), b)=g(f(c), a)$ is valid

1. $I \not \vDash F$
2. $\quad I \models a=b \wedge b=c$
3. $I \not \models g(f(a), b)=g(f(c), a)$
4. $\quad I \models a=b$
5. $\quad I \models b=c$
6. $\quad I \models a=c$
7. $I \models f(a)=f(c)$
8. $\quad I \models b=a$
9. $\quad I \models g(f(a), b)=g(f(c), a)$
10. $I \models \perp$
assumption
$1, \rightarrow$
$1, \rightarrow$
$2, \wedge$
$2, \wedge$
4, 5 , (transitivity)
6 , (function congruence)
4, (symmetry)
7, 8 (function congruence) 3, 9

DECIDABILITY OF VALIDITY IN $T_{=}$

- $T_{=}$being an extension of FOL, the validity problem is clearly undecidable.
- However, validity in the quantifier-free fragment of $T_{=}$is decidable, but NP-complete.
- Conjunctions of quantifier-free equality constraints can be solved efficiently.
- Congruence closure algorithm can be used to decide satisfiability of conjunctions of equality constraints in polynomial time

PRESBURGER ARITHMETIC ($T_{\mathbb{N}}$)

the theory of natural numbers

- Signature, $\Sigma_{\mathbb{N}}: 0,1,+,=$
- 0,1 are constants
- + is a binary function
- = is a binary predicate.
- Axioms:

1. $\forall x . \neg(x+1=0)$
2. $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
3. $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$
4. $\forall x \cdot x+0=x$
5. $\forall x, y \cdot x+(y+1)=(x+y)+1$

PRESBURGER ARITHMETIC
 INTERPRETATION

1. $\forall x . \neg(x+1=0)$
2. $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
3. $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$ (induction)
4. $\forall x \cdot x+0=x$ (plus zero)
5. $\forall x, y \cdot x+(y+1)=(x+y)+1$ (plus successor)

- The intended $T_{\mathbb{N}}$-interpretation is \mathbb{N}, the set of natural numbers
- Does there exist a finite subset of \mathbb{N} which is also a $T_{\mathbb{N}^{-}}$ interpretation?
- Which axiom(s) will be violated by any finite subset?
- Are negative numbers allowed by the axioms?

PRESBURGER ARITHMETIC

EXAMPLES

- Examples of $\Sigma_{\mathbb{N}}$-formulae
- $\forall x \cdot \exists y \cdot x=y+1$
- $3 x+5=2 y$
- Can be expressed as $(x+x+x)+(1+1+1+1+1)=(y+y)$
- $\forall x . \exists y . x+f(y)=5$ is not a $\Sigma_{\mathbb{N}}$-formula
- How to express $x<y$ and $x \leq y$?
- $\exists z . z \neq 0 \wedge y=x+z$
- $\exists z \cdot y=x+z$

PRESBURGER ARITHMETIC EXPANDING TO THEORY OF INTEGERS

- How to expand the domain to negative numbers?
- $x+y<0$
- Converted to $\left(x_{p}-x_{n}\right)+\left(y_{p}-y_{n}\right)<0$
- Converted to $x_{p}+y_{p}<x_{n}+y_{n}$
- Converted to $\exists z \cdot z \neq 0 \wedge x_{p}+y_{p}+z=x_{n}+y_{n}$

THEORY OF INTEGERS ($T_{\mathbb{Z}}$)
 LINEAR INTEGER ARITHMETIC

SIGNATURE:
$\{\ldots,-2,-1,0,1,2, \ldots\} \cup\{\ldots,-3 \cdot,-2 \cdot 2 \cdot 2 \cdot 3 \cdot \ldots\} \cup\{+,-,=,<, \leq\}$

- Signature:
- ..., $-2,-1,0,1,2, \ldots$ are constants
- ..., $-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions to represent coefficients of variables
-,+- are binary functions
- $=,<, \leq$ are binary predicates.
- Any $T_{\mathbb{Z}}$-formula can be converted to a $T_{\mathbb{N}}$-formula.

PRESBURGER ARITHMETIC DECIDABILITY

- Validity in quantifier-free fragment of Presgurber Arithmetic is decidable
- NP-Complete
- Validity in full Presburger Arithmetic is also decidable
- Super Exponential Complexity : $O\left(2^{2^{n}}\right)$
- Conjunctions of quantifier-free linear constraints can be solved efficiently
- Using Simplex Method or Omega test.
- Presburger Arithmetic is also complete
- For any closed $T_{\mathbb{N}}$-formula F, either $T_{\mathbb{N}} \vDash F$ or $T_{\mathbb{N}} \vDash \neg F$

ANNOUNCEMENTS

- Assignment-1 (Theory) will be released next week.
- Questions on PL,FOL,SMT.
- Deadline will be 10 days after release.
- Use Latex for writing the solutions, submit the final pdf. Compulsory.
- Please work on the assignment on your own. Any plagiarism attempts will result in 0 marks in the assignment and 1-grade drop penalty.
- Course Project
- Start working on the project proposal (Due Date: Feb 28).
- Explore sub-areas, case studies, study advanced verification tools,...
- We will have one-on-one meetings next Tuesday during the lecture to discuss plans.
- I will share a poll to pick a 10-minute slot.

THEORY OF RATIONALS

- Theory of Rationals ($T_{\mathbb{Q}}$)
- Also called Linear Real Arithmetic.
- Same symbols as Presburger arithmetic, but many more axioms.
- Interpretation is \mathbb{R}.
- Example: $\exists x .2 x=3$. Satisfiable in $T_{\mathbb{Q}}$.
- Is it satisfiable in $T_{\mathbb{Z}}$?
- Conjunctive quantifier-free fragment is efficiently decidable in polynomial time.

THEORIES ABOUT DATA STRUCTURES

- So far, we have looked at theories of numbers and arithmetic.
- But, we can also formalize behaviour of data structures using theories.
- Very useful for automated verification

THEORY OF ARRAYS $\left(T_{A}\right)$

- Signature, $\Sigma_{A}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\}$
- $a[i]$ is a binary function
- Read array a at index i
- Returns the value read.
- $a\langle i \triangleleft v\rangle$ is a ternary function
- Write value v at index i in array a
- Returns the modified array.
- = is a binary predicate

EXAMPLES

- $(a\langle 2 \triangleleft 5\rangle)[2]=5$
- Write the value 5 at index 2 in array a, then from the resulting array, the value at index 2 is 5 .
- $(a\langle 2 \triangleleft 5\rangle)[2]=3$
- Write the value 5 at index 2 in array a, then from the resulting array, the value at index 2 is 3 .
- According to the usual semantics of arrays, which of the formulae is valid/sat/unsat?

AXIOMS OF T_{A}

- The axioms of T_{A} include reflexivity, symmetry and transitivity axioms of $T_{=}$.
- Array Congruence:
- $\forall a, i, j . i=j \rightarrow a[i]=a[j]$
- Read over Write 1:
- $\forall a, i, j, v . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$
- Read over Write 2:
- $\forall a, i, j, v . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$

EXAMPLE

Prove that $F: \forall a, i, e . a[i]=e \rightarrow \forall j . a\langle i \triangleleft e\rangle[j]=a[j]$ is valid

1. $I \vDash a[i]=e$
2. $I \not \vDash \forall \forall . a\langle i \triangleleft e\rangle[j]=a[j]$
3. $I_{1} \vDash a\langle i \triangleleft e\rangle[j] \neq a[j]$
4. $I_{1} \vDash i=j$
5. $I_{1} \vDash a\langle i \triangleleft e\rangle[j]=e$
6. $I_{1} \vDash a\langle i \triangleleft e\rangle[j]=a[i]$
7. $I_{1} \vDash a[i]=a[j]$
8. $I_{1} \vDash a\langle i \triangleleft e\rangle[j]=a[j]$
9. $I_{1} \vDash \perp$
assumption, \rightarrow
assumption, \rightarrow
$2, \forall, j \in D_{I}$
3,contra-positive of ROW-2
4,ROW-1
1,5 ,transitivity of $=$
4,Array Congruence
6,7, transitivity of $=$
3,8,contradiction

DECIDABILITY IN T_{A}

- The validity problem in T_{A} is not decidable.
- Any formula in FOL can be encoded as an equisatisfiable T_{A} formula (How?).
- Quantifier-free fragment of T_{A} is decidable.
- Unfortunately, this only allows us to express properties about specific elements of the array.
- Richer Fragments of T_{A} are also decidable.
- Array Property Fragment, which allows (syntactically restricted) formulae with universal quantification over index variables.

QUANTIFIER-FREE FRAGMENT OF FOL

- Formula constructed using FOL syntax, but without quantifiers.
- All variables are free.
- For the satisfiability problem, we assume implicit existential quantification of all variables.
- For the validity problem, we assume implicit universal quantification of all variables.
- Validity and Satisfiability are still duals: For a quantifier-free F, $\forall * . F$ is valid iff $\exists * . \neg F$ is unsatisfiable.
- Any quantifier-free FOL formula can be converted to a PL formula. (How?)
- Hence, Validity in the quantifier-free fragment of FOL is decidable and NP-complete.

OTHER COMMON THEORIES

- Many more theories..
- Theory of bit-vectors
- Theory of Lists
- Theory of Heap
- The aim is to build efficient decision procedures for the satisfiability modulo theory problem.

COMBINATION OF THEORIES

- We talked about individual theories: $T_{=}, T_{\mathbb{N}}, T_{\mathbb{Z}}, T_{A}, \ldots$, each imposing different restrictions on the symbols used in a FOL formula.
- However, in practice, we may have FOL formulae which combine symbols across theories.
- Consider the formula: $x^{\prime}=f(x)+1$.
- Which theories are used in this formula?
- $T_{\mathbb{Z}}$ and $T_{=}$

COMBINED THEORIES

- Given two theories T_{1} and T_{2}, such that $\Sigma_{1} \cap \Sigma_{2}=\{=\}$, the combined theory $T_{1} \cup T_{2}$ is defined as follows:
- Signature: $\Sigma_{1} \cup \Sigma_{2}$
- Axioms: $A_{1} \cup A_{2}$
- Consider the following formula:
- $1 \leq x \wedge x \leq 2 \wedge f(x) \neq f(1) \wedge f(x) \neq f(2)$
- Is it well-formed in $T_{=} \cup T_{\mathbb{N}}$?
- Is it valid/sat/unsat in $T_{=} \cup T_{\mathbb{N}}$?
- How about in $T_{=}$?

DECISION PROCEDURE FOR COMBINED THEORIES

- Given decision procedures for individual theories T_{1} and T_{2}, can we decide satisfiability modulo $T_{1} \cup T_{2}$?
- In the 1980 s, Nelson and Oppen invented a general methodology for combined theories.
- Given theories T_{1} and T_{2} such that $\Sigma_{1} \cap \Sigma_{2}=\{=\}$, if

1. satisfiability in quantifier-free fragment of T_{1} is decidable,
2. satisfiability in quantifier-free fragment of T_{2} is decidable,
3. certain other technical requirements are met,

- then, satisfiability in quantifier-free fragment of $T_{1} \cup T_{2}$ is decidable.

DECISION PROCEDURE FOR COMBINED THEORIES

- Further, if the decision procedures for T_{1} and T_{2} are in P (resp. NP), then the combined decision procedure for $T_{1} \cup T_{2}$ is also in P (resp. NP).
- Another example:
- $f(f(x)-f(y)) \neq f(z) \wedge x \leq y \wedge y+z \leq x \wedge z \geq 0$
- Theories? Sat/Unsat/Valid?

DECIDABLE FRAGMENTS OF FOL

- Monadic First Order Logic: Only allows unary predicates (i.e. arity is 1), disallows any function symbols.
- Monadic First Order Logic is decidable.
- Bernays-Schönfinkel Class: Does not allow function symbols. Further all quantified formulae must be of the form:
$\exists x_{1}, \ldots, x_{n} . \forall y_{1}, \ldots, y_{m} . F\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$.
- Bernays-Schönfinkel Class is decidable.
- Also called Effectively Propositional Logic.

COMPACTNESS OF FOL

- An infinite set of FOL formulae is simultaneously satisfiable if and only if every finite subset is satisfiable.
- Due to compactness, many interesting properties cannot be expressed in First-order Logic.
- In particular, transitive closure cannot be expressed in FOL
- Has major implications on using FOL for program verification!

TRANSITIVE CLOSURE

- Given a binary relation R, its transitive closure R^{*} is defined as follows:

$$
\begin{aligned}
& R^{1}=R \\
& R^{k}=R^{k-1} \circ R \\
& R^{*}=\bigcup_{i \geq 1} R^{i} \\
& P \circ Q=\{(x, z) \mid(x, y) \in P \wedge(y, z) \in Q\}
\end{aligned}
$$

TRANSITIVE CLOSURE IN FOL

- Let a binary predicate r represent the relation R, and let binary predicate T represent R^{*}.
- $F \triangleq \forall x, z . T(x, z) \leftrightarrow(r(x, z) \vee(\exists y \cdot T(x, y) \wedge r(y, z)))$
- Does this formula not represent transitive closure?!
- Seems to directly encode $R^{k}=R^{k-1} \circ R$?

TRANSITIVE CLOSURE IN FOL

$$
F \triangleq \forall x, z . T(x, z) \leftrightarrow(r(x, z) \vee(\exists y . T(x, y) \wedge r(y, z)))
$$

- Consider following interpretation I:
- $D_{I}=\{A, B\}$
- $\alpha_{I}[r]=\{(A, A) \mapsto \mathrm{T},(B, B) \mapsto \mathrm{T},(A, B) \mapsto \perp,(B, A) \mapsto \perp\}$
- $\alpha_{I}[T]=\{(A, A) \mapsto \top,(B, B) \mapsto \top,(A, B) \mapsto \top,(B, A) \mapsto \top\}$
- Transitive closure of r is r itself, but $I \vDash F$!
- F does not represent transitive closure.

COMPACTNESS OF FOL AND TRANSITIVE CLOSURE - I

- Compactness: An infinite set of FOL formulae is simultaneously satisfiable if and only if every finite subset is satisfiable.
- Assume that Γ is a FOL formula which encodes the transitive closure T of relation r.
- Let $\Psi_{n}(x, y)$ encode that there is no 'path' of length n in the relation r between x and y.
- $\Psi_{1}(x, y)=\neg r(x, y)$
- $\Psi_{n}(x, y)=\neg \exists x_{1}, \ldots, x_{n-1} \cdot r\left(x, x_{1}\right) \wedge \ldots r\left(x_{n-1}, y\right)$

COMPACTNESS OF FOL AND TRANSITIVE CLOSURE - II

- Consider the following infinite set of FOL formulae: $\Gamma^{\prime}=\left\{\Gamma, T(a, b), \Psi_{1}(a, b), \Psi_{2}(a, b), \ldots\right\}$
- Note that Γ^{\prime} is unsatisfiable. Why?
- Since Γ is a correct encoding of Transitive Closure, $T(a, b)$ asserts that there is some path.
- But all the Ψ s assert that there is no path of any length.

COMPACTNESS OF FOL AND TRANSITIVE CLOSURE - III

- However, consider any finite subset of $\Gamma^{\prime}=\left\{\Gamma, T(a, b), \Psi_{1}(a, b), \Psi_{2}(a, b), \ldots\right\}$.
- If it does not contain Γ or $T(a, b)$, then it is clearly satisfiable. (Why?)
- If it contains both Γ and $T(a, b)$, it will not contain $\Psi_{i}(a, b)$ for some i. Hence, it is again satisfiable.
- Thus, every finite subset of Γ^{\prime} is satisfiable, and hence by the compactness of FOL, Γ^{\prime} should also be satisfiable.
- This leads to contradiction, thus showing that there cannot exists Γ which can encode transitive closure.

