
INTERVAL ABSTRACT DOMAIN

•

•

• Also called Box abstract domain.

• ,

• Is a lattice?

• Is a complete lattice?

• Maximal element?

•

I = {[a, b] | a, b ∈ ℝ ∪ {−∞, ∞}} ∪ { ⊥ }

D = V → I

[a1, b1] ⊑ [a2, b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2 ∀d ∈ I . ⊥ ⊑ d

(I, ⊑)

(I, ⊑)

[a1, b1] ⊔ [a2, b2] = ???

INTERVAL ABSTRACT DOMAIN

•

•

• Also called Box abstract domain.

• ,

• Is a lattice?

• Is a complete lattice?

• Maximal element?

•

I = {[a, b] | a, b ∈ ℝ ∪ {−∞, ∞}} ∪ { ⊥ }

D = V → I

[a1, b1] ⊑ [a2, b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2 ∀d ∈ I . ⊥ ⊑ d

(I, ⊑)

(I, ⊑)

[a1, b1] ⊔ [a2, b2] = [min(a1, a2), max(b1, b2)]

INTERVAL ABSTRACT DOMAIN

•

•

• Also called Box abstract domain.

• ,

• Is a lattice?

• Is a complete lattice?

• Maximal element?

•

• :

I = {[a, b] | a, b ∈ ℝ ∪ {−∞, ∞}} ∪ { ⊥ }

D = V → I

[a1, b1] ⊑ [a2, b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2 ∀d ∈ I . ⊥ ⊑ d

(I, ⊑)

(I, ⊑)

[a1, b1] ⊔ [a2, b2] = [min(a1, a2), max(b1, b2)]

(D, ⊑) ∀d1, d2 ∈ D . d1 ⊑ d2 ⇔ ∀v ∈ V . d1(v) ⊑ d2(v)

ABSTRACTION AND CONCRETIZATION FUNCTION

INTERVAL ABSTRACT DOMAIN

•

•

•

•

• Is a Galois Connection?

• Is it an Onto Galois Connection?

α : ℙ(State) → D, γ : D → ℙ(State)

α(c) = d

d(v) = [min{σ(v) |σ ∈ c}, max{σ(v) |σ ∈ c}]

γ(d) = {σ | ∀v ∈ V . d(v) = [a, b] ⇒ a ≤ σ(v) ≤ b}

(ℙ(State), ⊆)
α

⇄
γ

(D, ⊑)

ABSTRACT TRANSFER FUNCTION

INTERVAL ABSTRACT DOMAIN

• Consider

• We can use interval arithmetic for

• Assuming

•

• Is monotonic?

• Is it distributive?

c : x := x + y
̂fc

d(x) = [lx, ux], d(y) = [ly, uy]
̂fc(d) = d[x ↦ [lx + ly, ux + uy]]
̂fc

USING INTERVAL DOMAIN

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

[]−∞, ∞

[0,k]

Interval Abstract Domain does not satisfy ACC, hence
Kildall’s Algorithm may not terminate

WIDENING

• A widening function on a poset satisfies
the following properties:

•

• For an increasing chain , the increasing chain
where and eventually stabilizes.

▿ : D × D → D (D, ≤)

∀x, y ∈ D . x ⊔ y ≤ x ▿ y

x0, x1, … y0, y1, …
y0 = x0 yn = yn−1 ▿ xn

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = ???

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

[0,2] ▿ [1,2] = ???

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

[0,2] ▿ [1,2] = [0,2]

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

•

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

[0,2] ▿ [1,2] = [0,2]

[2,3] ▿ [4,6] = ???

WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as
follows:

•

•

•

• Examples

•

•

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

[0,2] ▿ [1,2] = [0,2]

[2,3] ▿ [4,6] = [2,∞]

KILDALL’S ALGORITHM WITH WIDENING

AbstractForwardPropagate(,P)
S := { };

 := ;
 := , for ;

while S do{
 := Choose S;
 S := S \ ;
 foreach do{
 F := ;
 if then{

 S := S ;
 }
 }

 }

Γc
l0

̂μK(l0) α(P)
̂μK(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′) ∈ T

̂fc(̂μK(l))
¬(F ≤ ̂μK(l′))
̂μK(l′) := ̂μK(l′) ▿ F;

∪ {l′ }

WIDENING EXAMPLE

i := 0;
while(i < n) do
 i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

[]−∞, ∞

[0,]∞

[0,]∞

ANOTHER WIDENING EXAMPLE

l0

l1

i := 1

i := 2

[]−∞, ∞

[]1,∞

NARROWING

• A narrowing function on a poset satisfies
the following properties:

•

• For a decreasing chain , the decreasing chain
 where and eventually stabilizes.

△ : D × D → D (D, ≤)

∀x, y ∈ D . y ≤ x ⇒ y ≤ x △ y ≤ x

x0 ≥ x1 ≥ …
y0, y1, … y0 = x0 yn = yn−1 △ xn

NARROWING FOR THE INTERVAL DOMAIN

• We can define the narrowing operator for interval domain as
follows:

•

•

• Examples

•

•

[a, b] △ ⊥ = ⊥

[a1, b1] △ [a2, b2] = [(a1 = − ∞)?a2 : a1, (b1 = ∞)?b2 : b1]

[1,3] △ [1,2] =

[−∞,6] △ [1,3] =

NARROWING FOR THE INTERVAL DOMAIN

• We can define the narrowing operator for interval domain as
follows:

•

•

• Examples

•

•

[a, b] △ ⊥ = ⊥

[a1, b1] △ [a2, b2] = [(a1 = − ∞)?a2 : a1, (b1 = ∞)?b2 : b1]

[1,3] △ [1,2] = [1,3]

[−∞,6] △ [1,3] = [1,6]

NARROWING EXAMPLE

l0

l1

i := 1

i := 2

[]−∞, ∞

[]1,∞

Apply Narrowing pass after Widening

[] [2,2] = [1,2]1,∞ △

RELATIONAL DOMAINS

• Both the sign and the interval abstract domains are non-relational,
i.e. they do not track relationships between variables.

• Relational domains track relationships between variables and are
more powerful.

• Examples of relational domains

• Karr’s Domain: Tracks equalities between linear expressions
(e.g.)

• Octagon Domain: Constraints of the form

• Polyhedra Domain: Constraints of the form

x = 2y + z

±x ± y ≤ c

c1x1 + …cnxn ≤ c

INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the inter-
procedural LTS:

INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the inter-
procedural LTS:

l0

le

CALL
m1

lm1
0

lm1
e

lmn
0

lmn
e

main m1 mn

CALL
m1

INTER-PROCEDURAL ABSTRACT INTERPRETATION

• Assuming that variable names are distinct across functions,
function call and return statements can be replaced by
assignments to parameters and return variables.

• However, the challenge is to only consider inter-procedurally valid
paths.

• Naively applying AI on the inter-procedural LTS will result in highly
imprecise analysis.

SHARIR AND PNUELI’S APPROACHES TO INTER-PROCEDURAL AI

• Call-Strings based approach

• Change the abstract domain to also record the history of call-
sites.

• Since call-strings can be infinite in size, two practical
approaches are also proposed: Approximate call-string method
and Bounded call-string method.

• Functional approach

• Maintain an abstract summary of every method which maps
abstract value of input parameter(s) to abstract value of return
variable.

• Abstract summaries calculated on-the-fly during the analysis.

Micha Sharir and Amir Pnueli: Two approaches to interprocedural data flow analysis (1981)

LIMITATIONS OF ABSTRACT INTERPRETATION

• Precision depends upon the choice of the abstract domain.

• Hard to choose the right abstract domain: may depend on the
program and the specification.

• Hard to interpret a negative result

• If verification fails, then we don’t know whether the program is
actually incorrect, or the abstract domain was not precise
enough.

• No counterexample is provided as output.

