INTERVAL ABSTRACT DOMAIN

- $I=\{[a, b] \mid a, b \in \mathbb{R} \cup\{-\infty, \infty\}\} \cup\{\perp\}$
- $D=V \rightarrow I$
- Also called Box abstract domain.
- $\left[a_{1}, b_{1}\right] \sqsubseteq\left[a_{2}, b_{2}\right] \Leftrightarrow a_{2} \leq a_{1} \wedge b_{1} \leq b_{2}, \forall d \in I . \perp \sqsubseteq d$
- Is (I, \sqsubseteq) a lattice?
- Is (I, \sqsubseteq) a complete lattice?
- Maximal element?
- $\left[a_{1}, b_{1}\right] \sqcup\left[a_{2}, b_{2}\right]=$???

INTERVAL ABSTRACT DOMAIN

- $I=\{[a, b] \mid a, b \in \mathbb{R} \cup\{-\infty, \infty\}\} \cup\{\perp\}$
- $D=V \rightarrow I$
- Also called Box abstract domain.
- $\left[a_{1}, b_{1}\right] \sqsubseteq\left[a_{2}, b_{2}\right] \Leftrightarrow a_{2} \leq a_{1} \wedge b_{1} \leq b_{2}, \forall d \in I . \perp \sqsubseteq d$
- Is (I, \sqsubseteq) a lattice?
- Is (I, \sqsubseteq) a complete lattice?
- Maximal element?
- $\left[a_{1}, b_{1}\right] \sqcup\left[a_{2}, b_{2}\right]=\left[\min \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]$

INTERVAL ABSTRACT DOMAIN

- $I=\{[a, b] \mid a, b \in \mathbb{R} \cup\{-\infty, \infty\}\} \cup\{\perp\}$
- $D=V \rightarrow I$
- Also called Box abstract domain.
- $\left[a_{1}, b_{1}\right] \sqsubseteq\left[a_{2}, b_{2}\right] \Leftrightarrow a_{2} \leq a_{1} \wedge b_{1} \leq b_{2}, \forall d \in I . \perp \sqsubseteq d$
- Is (I, \sqsubseteq) a lattice?
- Is (I, \sqsubseteq) a complete lattice?
- Maximal element?
- $\left[a_{1}, b_{1}\right] \sqcup\left[a_{2}, b_{2}\right]=\left[\min \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]$
- $(D, \sqsubseteq): \forall d_{1}, d_{2} \in D . d_{1} \sqsubseteq d_{2} \Leftrightarrow \forall v \in V . d_{1}(v) \sqsubseteq d_{2}(v)$

INTERVAL ABSTRACT DOMAIN ABSTRACTION AND CONCRETIZATION FUNCTION

- $\alpha: \mathbb{P}($ State $) \rightarrow D, \gamma: D \rightarrow \mathbb{P}($ State $)$
- $\alpha(c)=d$
- $d(v)=[\min \{\sigma(v) \mid \sigma \in c\}, \max \{\sigma(v) \mid \sigma \in c\}]$
- $\gamma(d)=\{\sigma \mid \forall v \in V \cdot d(v)=[a, b] \Rightarrow a \leq \sigma(v) \leq b\}$
- Is $(\mathbb{P}($ State $), \subseteq) \stackrel{\alpha}{\rightleftarrows}(D, \sqsubseteq)$ a Galois Connection?
- Is it an Onto Galois Connection?

INTERVAL ABSTRACT DOMAIN ABSTRACT TRANSFER FUNCTION

- Consider $c: x:=x+y$
- We can use interval arithmetic for \hat{f}_{c}
- Assuming $d(x)=\left[l_{x}, u_{x}\right], d(y)=\left[l_{y}, u_{y}\right]$
- $\hat{f}_{c}(d)=d\left[x \mapsto\left[l_{x}+l_{y}, u_{x}+u_{y}\right]\right]$
- Is \hat{f}_{c} monotonic?
- Is it distributive?

USING INTERVAL DOMAIN

$$
\begin{aligned}
& i \quad:=0 ; \\
& \text { while }(i<n) \text { do } \\
& \quad i \quad:=i+1 ;
\end{aligned}
$$

Interval Abstract Domain does not satisfy ACC, hence Kildall's Algorithm may not terminate

WIDENING

- A widening function $\nabla: D \times D \rightarrow D$ on a poset (D, \leq) satisfies the following properties:
- $\forall x, y \in D . x \sqcup y \leq x \nabla y$
- For an increasing chain x_{0}, x_{1}, \ldots, the increasing chain y_{0}, y_{1}, \ldots where $y_{0}=x_{0}$ and $y_{n}=y_{n-1} \nabla x_{n}$ eventually stabilizes.

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=? ? ?$

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=[-\infty, 2]$

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=[-\infty, 2]$
- $[0,2] \nabla[1,2]=$???

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=[-\infty, 2]$
- $[0,2] \nabla[1,2]=[0,2]$

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=[-\infty, 2]$
- $[0,2] \nabla[1,2]=[0,2]$
- $[2,3] \nabla[4,6]=? ? ?$

WIDENING FOR THE INTERVAL DOMAIN

- We can define the widening operator for interval domain as follows:
- $[a, b] \nabla \perp=[a, b]$
- $\perp \nabla[a, b]=[a, b]$
- $\left[a_{1}, b_{1}\right] \nabla\left[a_{2}, b_{2}\right]=\left[\left(a_{2}<a_{1}\right) ?-\infty: a_{1},\left(b_{1}<b_{2}\right) ? \infty: b_{1}\right]$
- Examples
- $[1,2] \nabla[0,2]=[-\infty, 2]$
- $[0,2] \nabla[1,2]=[0,2]$
- $[2,3] \nabla[4,6]=[2, \infty]$

KILDALL'S ALGORITHM WITH WIDENING

```
AbstractForwardPropagate( }\mp@subsup{\Gamma}{c}{},\textrm{P}
    S := {l l };
    \hat{\mu}
    \mp@subsup{\mu}{K}{}(l) := \perp, for l l L\{lu}}
while S #= \varnothing do{
    l := Choose S;
    S := S \ {l};
    foreach (l,c,\mp@subsup{l}{}{\prime})\inT do{
        F := \hat{f}
        if }\neg(\textrm{F}\leq\mp@subsup{\hat{\mu}}{K}{}(\mp@subsup{l}{}{\prime}))\mathrm{ then{
            \mp@subsup{\hat{\mu}}{K}{}(\mp@subsup{l}{}{\prime}):=\mp@subsup{\hat{\mu}}{K}{}(\mp@subsup{l}{}{\prime})\nablaF;
            S := S \cup{l'};
        }
    }
}
```


WIDENING EXAMPLE

$$
i \quad:=0 ;
$$

while(i < n) do i := i + 1;
$i:=i+1$

ANOTHER WIDENING EXAMPLE

NARROWING

- A narrowing function $\triangle: D \times D \rightarrow D$ on a poset (D, \leq) satisfies the following properties:
- $\forall x, y \in D . y \leq x \Rightarrow y \leq x \triangle y \leq x$
- For a decreasing chain $x_{0} \geq x_{1} \geq \ldots$, the decreasing chain y_{0}, y_{1}, \ldots where $y_{0}=x_{0}$ and $y_{n}=y_{n-1} \triangle x_{n}$ eventually stabilizes.

NARROWING FOR THE INTERVAL DOMAIN

- We can define the narrowing operator for interval domain as follows:
- $[a, b] \triangle \perp=\perp$
- $\left[a_{1}, b_{1}\right] \triangle\left[a_{2}, b_{2}\right]=\left[\left(a_{1}=-\infty\right) ? a_{2}: a_{1},\left(b_{1}=\infty\right) ? b_{2}: b_{1}\right]$
- Examples
- $[1,3] \triangle[1,2]=$
- $[-\infty, 6] \triangle[1,3]=$

NARROWING FOR THE INTERVAL DOMAIN

- We can define the narrowing operator for interval domain as follows:
- $[a, b] \triangle \perp=\perp$
- $\left[a_{1}, b_{1}\right] \triangle\left[a_{2}, b_{2}\right]=\left[\left(a_{1}=-\infty\right) ? a_{2}: a_{1},\left(b_{1}=\infty\right) ? b_{2}: b_{1}\right]$
- Examples
- $[1,3] \triangle[1,2]=[1,3]$
- $[-\infty, 6] \triangle[1,3]=[1,6]$

NARROWING EXAMPLE

Apply Narrowing pass after Widening

RELATIONAL DOMAINS

- Both the sign and the interval abstract domains are non-relational, i.e. they do not track relationships between variables.
- Relational domains track relationships between variables and are more powerful.
- Examples of relational domains
- Karr's Domain: Tracks equalities between linear expressions (e.g. $x=2 y+z$)
- Octagon Domain: Constraints of the form $\pm x \pm y \leq c$
- Polyhedra Domain: Constraints of the form $c_{1} x_{1}+\ldots c_{n} x_{n} \leq c$

INTER-PROCEDURAL ABSTRACT INTERPRETATION

- For programs with multiple functions, we first consider the interprocedural LTS:

INTER-PROCEDURAL ABSTRACT INTERPRETATION

- For programs with multiple functions, we first consider the interprocedural LTS:

INTER-PROCEDURAL ABSTRACT INTERPRETATION

- Assuming that variable names are distinct across functions, function call and return statements can be replaced by assignments to parameters and return variables.
- However, the challenge is to only consider inter-procedurally valid paths.
- Naively applying AI on the inter-procedural LTS will result in highly imprecise analysis.

SHARIR AND PNUELI'S APPROACHES TO INTER-PROCEDURAL AI

- Call-Strings based approach
- Change the abstract domain to also record the history of callsites.
- Since call-strings can be infinite in size, two practical approaches are also proposed: Approximate call-string method and Bounded call-string method.
- Functional approach
- Maintain an abstract summary of every method which maps abstract value of input parameter(s) to abstract value of return variable.
- Abstract summaries calculated on-the-fly during the analysis.

LIMITATIONS OF ABSTRACT INTERPRETATION

- Precision depends upon the choice of the abstract domain.
- Hard to choose the right abstract domain: may depend on the program and the specification.
- Hard to interpret a negative result
- If verification fails, then we don't know whether the program is actually incorrect, or the abstract domain was not precise enough.
- No counterexample is provided as output.

