
INTERVAL ABSTRACT DOMAIN

•   

•  

• Also called Box abstract domain. 

• ,  

• Is  a lattice?  

• Is  a complete lattice?  

• Maximal element?  

•

I = {[a, b] | a, b ∈ ℝ ∪ {−∞, ∞}} ∪ { ⊥ }

D = V → I

[a1, b1] ⊑ [a2, b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2 ∀d ∈ I . ⊥ ⊑ d

(I, ⊑ )

(I, ⊑ )

[a1, b1] ⊔ [a2, b2] = ???
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INTERVAL ABSTRACT DOMAIN

•   

•  

• Also called Box abstract domain. 

• ,  

• Is  a lattice?  

• Is  a complete lattice?  

• Maximal element?  

•  

• : 

I = {[a, b] | a, b ∈ ℝ ∪ {−∞, ∞}} ∪ { ⊥ }

D = V → I

[a1, b1] ⊑ [a2, b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2 ∀d ∈ I . ⊥ ⊑ d

(I, ⊑ )

(I, ⊑ )

[a1, b1] ⊔ [a2, b2] = [min(a1, a2), max(b1, b2)]

(D, ⊑ ) ∀d1, d2 ∈ D . d1 ⊑ d2 ⇔ ∀v ∈ V . d1(v) ⊑ d2(v)



ABSTRACTION AND CONCRETIZATION FUNCTION

INTERVAL ABSTRACT DOMAIN

•  

•  

•  

•  

• Is  a Galois Connection? 

• Is it an Onto Galois Connection?

α : ℙ(State) → D, γ : D → ℙ(State)

α(c) = d

d(v) = [min{σ(v) |σ ∈ c}, max{σ(v) |σ ∈ c}]

γ(d) = {σ | ∀v ∈ V . d(v) = [a, b] ⇒ a ≤ σ(v) ≤ b}

(ℙ(State), ⊆ )
α

⇄
γ

(D, ⊑ )



ABSTRACT TRANSFER FUNCTION

INTERVAL ABSTRACT DOMAIN

• Consider  

• We can use interval arithmetic for  

• Assuming  

•  

• Is  monotonic? 

• Is it distributive?

c : x := x + y
̂fc

d(x) = [lx, ux], d(y) = [ly, uy]
̂fc(d) = d[x ↦ [lx + ly, ux + uy]]
̂fc



USING INTERVAL DOMAIN

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

[ ]−∞, ∞

[0,k]

Interval Abstract Domain does not satisfy ACC, hence 
Kildall’s Algorithm may not terminate



WIDENING

• A widening function  on a poset  satisfies 
the following properties: 

•  

• For an increasing chain , the increasing chain  
where  and  eventually stabilizes.

▿ : D × D → D (D, ≤ )

∀x, y ∈ D . x ⊔ y ≤ x ▿ y

x0, x1, … y0, y1, …
y0 = x0 yn = yn−1 ▿ xn



WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as 
follows: 

•  

•  

•  

• Examples 

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = ???
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WIDENING FOR THE INTERVAL DOMAIN

• We can define the widening operator for interval domain as 
follows: 

•  

•  

•  

• Examples 

•  

•  

•

[a, b] ▿ ⊥ = [a, b]

⊥ ▿ [a, b] = [a, b]

[a1, b1] ▿ [a2, b2] = [(a2 < a1)? − ∞ : a1, (b1 < b2)?∞ : b1]

[1,2] ▿ [0,2] = [−∞,2]

[0,2] ▿ [1,2] = [0,2]

[2,3] ▿ [4,6] = [2,∞]



KILDALL’S ALGORITHM WITH WIDENING

AbstractForwardPropagate( ,P) 
S := { }; 

 := ; 
 := , for ; 

while S   do{  
    := Choose S; 
   S := S \ ; 
   foreach  do{ 
      F := ; 
      if  then{ 
          
         S := S ; 
      } 
   } 

  }

Γc
l0

̂μK(l0) α(P)
̂μK(l) ⊥ l ∈ L∖{l0}

≠ ∅
l

{l}
(l, c, l′ ) ∈ T

̂fc( ̂μK(l))
¬(F ≤ ̂μK(l′ ))
̂μK(l′ ) := ̂μK(l′ ) ▿ F;

∪ {l′ }



WIDENING EXAMPLE

i := 0; 
while(i < n) do 
   i := i + 1;

l0

l1

l2

le

i := 0

assume(i < n)i := i + 1

assume(i ≥ n)

[ ]−∞, ∞

[0, ]∞

[0, ]∞



ANOTHER WIDENING EXAMPLE

l0

l1

i := 1

i := 2

[ ]−∞, ∞

[ ]1,∞



NARROWING

• A narrowing function  on a poset  satisfies 
the following properties: 

•  

• For a decreasing chain , the decreasing chain 
 where  and  eventually stabilizes. 

△ : D × D → D (D, ≤ )

∀x, y ∈ D . y ≤ x ⇒ y ≤ x △ y ≤ x

x0 ≥ x1 ≥ …
y0, y1, … y0 = x0 yn = yn−1 △ xn



NARROWING FOR THE INTERVAL DOMAIN

• We can define the narrowing operator for interval domain as 
follows: 

•  

•  

• Examples 

•  

•

[a, b] △ ⊥ = ⊥

[a1, b1] △ [a2, b2] = [(a1 = − ∞)?a2 : a1, (b1 = ∞)?b2 : b1]

[1,3] △ [1,2] =

[−∞,6] △ [1,3] =



NARROWING FOR THE INTERVAL DOMAIN

• We can define the narrowing operator for interval domain as 
follows: 

•  

•  

• Examples 

•  

•

[a, b] △ ⊥ = ⊥

[a1, b1] △ [a2, b2] = [(a1 = − ∞)?a2 : a1, (b1 = ∞)?b2 : b1]

[1,3] △ [1,2] = [1,3]

[−∞,6] △ [1,3] = [1,6]



NARROWING EXAMPLE

l0

l1

i := 1

i := 2

[ ]−∞, ∞

[ ]1,∞

Apply Narrowing pass after Widening

[ ]  [2,2] = [1,2]1,∞ △



RELATIONAL DOMAINS

• Both the sign and the interval abstract domains are non-relational, 
i.e. they do not track relationships between variables. 

• Relational domains track relationships between variables and are 
more powerful. 

• Examples of relational domains 

• Karr’s Domain: Tracks equalities between linear expressions 
(e.g. ) 

• Octagon Domain: Constraints of the form  

• Polyhedra Domain: Constraints of the form 

x = 2y + z

±x ± y ≤ c

c1x1 + …cnxn ≤ c



INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the inter-
procedural LTS:



INTER-PROCEDURAL ABSTRACT INTERPRETATION

• For programs with multiple functions, we first consider the inter-
procedural LTS:

l0

le

CALL 
m1

lm1
0

lm1
e

lmn
0

lmn
e

main m1 mn

CALL 
m1



INTER-PROCEDURAL ABSTRACT INTERPRETATION

• Assuming that variable names are distinct across functions, 
function call and return statements can be replaced by 
assignments to parameters and return variables. 

• However, the challenge is to only consider inter-procedurally valid 
paths. 

• Naively applying AI on the inter-procedural LTS will result in highly 
imprecise analysis.



SHARIR AND PNUELI’S APPROACHES TO INTER-PROCEDURAL AI

• Call-Strings based approach 

• Change the abstract domain to also record the history of call-
sites. 

• Since call-strings can be infinite in size, two practical 
approaches are also proposed: Approximate call-string method 
and Bounded call-string method. 

• Functional approach 

• Maintain an abstract summary of every method which maps 
abstract value of input parameter(s) to abstract value of return 
variable. 

• Abstract summaries calculated on-the-fly during the analysis.

Micha Sharir and Amir Pnueli: Two approaches to interprocedural data flow analysis (1981)



LIMITATIONS OF ABSTRACT INTERPRETATION

• Precision depends upon the choice of the abstract domain. 

• Hard to choose the right abstract domain: may depend on the 
program and the specification. 

• Hard to interpret a negative result 

• If verification fails, then we don’t know whether the program is 
actually incorrect, or the abstract domain was not precise 
enough. 

• No counterexample is provided as output.


