ABSTRACT

 INTERPRETATION
LABELLED TRANSITION SYSTEM

- We express the program c as a labelled transition system $\Gamma_{c} \equiv\left(V, L, l_{0}, l_{e}, T\right)$
- V is the set of program variables
- L is the set of program locations
- l_{0} is the start location
- l_{e} is the end location
- $T \subseteq L \times c \times L$ is the set of labelled transitions between locations.

EXAMPLE

i :=0;
while(i < n) do i := i + 1;
$i:=i+1$

PROGRAMS AS LTS

- There are various ways to construct the LTS of a program
- We can use control flow graph
- We can use basic paths as defined by the book (BM Chapter 5). A basic path is a sequence of instructions that begins at the start of the program or a loop head, and ends at a loop head or the end of the program.
- Program State (σ, l) consists of the values of the variables $(\sigma: V \rightarrow \mathbb{R})$ and the location.
- An execution is a sequence of program states, $\left(\sigma_{0}, l_{0}\right),\left(\sigma_{1}, l_{1}\right), \ldots,\left(\sigma_{n}, l_{n}\right)$, such that for all $i, 0 \leq i \leq n-1,\left(l_{i}, c, l_{i+1}\right) \in T$ and $\left(\sigma_{i}, c\right) \hookrightarrow *\left(\sigma_{i+1}\right.$, skip $)$.
- A program satisfies its specification $\{P\} c\{Q\}$ if $\forall \sigma \in P$, for all executions $\left(\sigma, l_{0}\right),\left(\sigma_{1}, l_{1}\right), \ldots,\left(\sigma^{\prime}, l_{e}\right)$ of $\Gamma_{c^{\prime}} \sigma^{\prime} \in Q$.

INDUCTIVE ASSERTION MAP

- With each location, we associate a set of states which are reachable at that location in any execution.
- $\mu: L \rightarrow \Sigma(V)$
- To express that such a map is an inductive assertion map, we will use Strongest Post-condition.
- $\forall\left(l, c, l^{\prime}\right) \in T \cdot \operatorname{sp}(\mu(l), c) \rightarrow \mu\left(l^{\prime}\right)$
- Then, if μ is an inductive assertion map on $\Gamma_{c^{\prime}}$ the Hoare triple $\{P\} c\{Q\}$ is valid if $P \rightarrow \mu\left(l_{0}\right)$ and $\mu\left(l_{e}\right) \rightarrow Q$.

GENERATING THE INDUCTIVE ASSERTION MAP

- We can express the inductive assertion map as a solution of a system of equations:
- $X_{l_{0}}=P$

For all other locations $l \in L \backslash\left\{l_{0}\right\}, X_{l}=\bigvee_{\left(l^{\prime}, c, l\right) \in T} \operatorname{sp}\left(X_{l^{\prime}}, c\right)$

GENERATING THE INDUCTIVE ASSERTION MAP

```
ForwardPropagate ( \(\Gamma_{c}, \mathrm{P}\) )
\(S:=\left\{l_{0}\right\}\);
\(\mu\left(l_{0}\right):=\mathrm{P}\);
\(\mu(l):=\) false, for \(l \in L \backslash\left\{l_{0}\right\}\);
while \(S \neq \varnothing\) do\{
    \(l:=\) Choose S ;
        \(\mathrm{S}:=\mathrm{S} \backslash\{l\}\);
        foreach \(\left(l, c, l^{\prime}\right) \in T\) do\{
            F := sp( \(\mu(l), c)\);
            if \(\neg\left(\mathrm{F} \rightarrow \mu\left(l^{\prime}\right)\right)\) then \(\{\)
            \(\mu\left(l^{\prime}\right):=\mu\left(l^{\prime}\right) \vee F ;\)
                \(\mathrm{S}:=\mathrm{S} \cup\left\{l^{\prime}\right\}\);
            \}
        \}
    \}
```


EXAMPLE

EXAMPLE

ABSTRACT INTERPRETATION: OVERVIEW

- Instead of maintaining an arbitrary set of states at each location, maintain an artificially constrained set of states, coming from an abstract domain D.
- $\hat{\mu}: L \rightarrow D$
- Let State $\triangleq V \rightarrow \mathbb{R}$ be the set of all possible concrete states.
- Abstraction function, $\alpha: \mathbb{P}($ State $) \rightarrow D$
- Concretization function, $\gamma: D \rightarrow \mathbb{P}($ State $)$
- $\hat{\mu}$ over approximates the set of states at every location.
- For all locations $l, \gamma(\hat{\mu}(l)) \supseteq \mu(l)$
- Use abstract strongest post-condition operator $\hat{s p}: D \times c \rightarrow D$
- $\gamma(\hat{s p}(d, c)) \supseteq s p(\gamma(d), c)$

GENERATING THE INDUCTIVE ASSERTION MAP

```
ForwardPropagate ( \(\Gamma_{c}, \mathrm{P}\) )
\(S:=\left\{l_{0}\right\}\);
\(\mu\left(l_{0}\right):=\mathrm{P}\);
\(\mu(l):=\) false, for \(l \in L \backslash\left\{l_{0}\right\}\);
while \(S \neq \varnothing\) do\{
    \(l:=\) Choose S ;
        \(\mathrm{S}:=\mathrm{S} \backslash\{l\}\);
        foreach \(\left(l, c, l^{\prime}\right) \in T\) do\{
            F := sp( \(\mu(l), c)\);
            if \(\neg\left(\mathrm{F} \rightarrow \mu\left(l^{\prime}\right)\right)\) then \(\{\)
            \(\mu\left(l^{\prime}\right):=\mu\left(l^{\prime}\right) \vee F ;\)
                \(\mathrm{S}:=\mathrm{S} \cup\left\{l^{\prime}\right\}\);
            \}
        \}
    \}
```


ABSTRACT FORWARD PROPAGATE

```
AbstractForwardPropagate ( \(\Gamma_{c}, \mathrm{P}\) )
    \(S:=\left\{l_{0}\right\}\);
    \(\hat{\mu}\left(l_{0}\right):=\alpha(\mathrm{P})\);
    \(\hat{\mu}(l):=\perp\), for \(l \in L \backslash\left\{l_{0}\right\}\);
    while \(S \neq \varnothing\) do\{
        \(l:=\) Choose S ;
        \(\mathrm{S}:=\mathrm{S} \backslash\{l\}\);
        foreach \(\left(l, c, l^{\prime}\right) \in T\) do\{
            F : \(=\hat{s p}(\hat{\mu}(l), c)\);
            if \(\neg\left(\mathrm{F} \leq \hat{\mu}\left(l^{\prime}\right)\right)\) then \(\{\)
            \(\hat{\mu}\left(l^{\prime}\right):=\hat{\mu}\left(l^{\prime}\right) \sqcup F ;\)
            \(\mathrm{S}:=\mathrm{S} \cup\left\{l^{\prime}\right\}\);
            \}
        \}
    \}
```


ABSTRACT FORWARD PROPAGATE

AbstractForwardPropagate(Γ_{c}, P)

$$
\mathrm{S}:=\left\{l_{0}\right\} ;
$$

$$
\hat{\mu}\left(l_{0}\right):=\alpha(\mathrm{P})
$$

$$
\hat{\mu}(l):=\perp, \text { for } l \in L \backslash\left\{l_{0}\right\} \text {; }
$$

$$
\text { while } S \neq \varnothing \text { do\{ }
$$

$$
l:=\text { Choose } \mathrm{S}
$$

$$
\mathrm{S}:=\mathrm{S} \backslash\{l\}
$$

Abstract Domain D is a lattice (D, \leq, \sqcup)

$$
\text { foreach }\left(l, c, l^{\prime}\right) \in T \text { do\{ }
$$

$$
\mathrm{F}:=\hat{s p}(\hat{\mu}(l), c) ;
$$

$$
\text { if } \neg\left(\mathrm{F} \leq \hat{\mu}\left(l^{\prime}\right)\right) \text { then }\{
$$

$$
\hat{\mu}\left(l^{\prime}\right):=\hat{\mu}\left(l^{\prime}\right) \sqcup F
$$

$$
\mathrm{S}:=\mathrm{S} \cup\left\{l^{\prime}\right\} ;
$$

$$
\}
$$

$$
\}
$$

$$
\}
$$

ABSTRACT INTERPRETATION: OVERVIEW

- At the end, we will check whether $\hat{\mu}\left(l_{e}\right) \leq \alpha(Q)$.
- Equivalently, $\gamma\left(\hat{\mu}\left(l_{e}\right)\right) \subseteq Q$

EXAMPLE

i := 0;
while(i < n) do i := i + 1;
$i:=i+1$

Suppose we want to prove the post-condition : $i \geq 0$

EXAMPLE

$$
\begin{aligned}
& i \quad:=0 ; \\
& \text { while(i<n) do } \\
& \quad i \quad:=i+1 ;
\end{aligned}
$$

Sign Abstract Domain:
$D=\{+-,+,-, \perp\}$
$\gamma(+-)=$ true
$\gamma(+)=i \geq 0$
$i:=i+1$
$\gamma(-)=i<0$
$\gamma(\perp)=$ false

EXAMPLE

Sign Abstract Domain:
$D=\{+-,+,-, \perp\}$
$\gamma(+-)=$ true
$\gamma(+)=i \geq 0$

ABSTRACT INTERPRETATION: OVERVIEW

- Desirable properties of Abstract Interpretation
- Soundness: $\hat{\mu}$ over approximates the set of states at every location.
- Guaranteed termination of AbstractForwardPropagate
- We will use concepts from lattice theory to characterise the conditions required for these properties.

PARTIAL ORDER

- Given a set D, a binary relation $\leq \subseteq D \times D$ is a partial order on D if
- \leq is reflexive: $\forall d \in D . d \leq d$
- \leq is anti-symmetric: $\forall d, d^{\prime} \in D . d \leq d^{\prime} \wedge d^{\prime} \leq d \rightarrow d=d^{\prime}$
- \leq is transitive: $\forall d_{1}, d_{2}, d_{3} \in D, d_{1} \leq d_{2} \wedge d_{2} \leq d_{3} \rightarrow d_{1} \leq d_{3}$
- Examples
- \leq on \mathbb{N} is a partial order.
- Given a set S, \subseteq on $\mathbb{P}(S)$ is a partial order.

PARTIAL ORDER - EXAMPLES

$$
S=\{a, b, c\}
$$

$\mathbb{P}(S)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$

Partially Ordered Set: $(\mathbb{P}(S), \subseteq)$

PARTIAL ORDER - EXAMPLES

$$
\begin{gathered}
S=\{a, b, c\} \\
\mathbb{P}(S)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}
\end{gathered}
$$

Hasse diagram:

- Doesn't show reflexive edges (self-loops)
- Doesn't show transitive edges

Partially Ordered Set: $(\mathbb{P}(S), \subseteq)$

PARTIAL ORDER - MORE EXAMPLES

- Which of the following are partially ordered sets (posets)?
- $(\mathbb{N} \times \mathbb{N},\{(a, b),(c, d) \mid a \leq c\})$
- $(\mathbb{N} \times \mathbb{N},\{(a, b),(c, d) \mid a \leq c \wedge b \leq d\})$
- $(\mathbb{N} \times \mathbb{N},\{(a, b),(c, d) \mid a \leq c \vee b \leq d\})$

LEAST UPPER BOUND

- Given a poset (D, \leq) and $X \subseteq D, u \in D$ is called an upper bound on X if $\forall x \in X . x \leq u$.
- $u \in D$ is called the least upper bound (lub) of X, if u is an upper bound of X, and for every other upper bound $u^{\prime}, u \leq u^{\prime}$.
- We use the notation $\sqcup X$ to denote the least upper bound of X. Also called the join of X.
- Homework: Prove that the least upper bound, if it exists, is unique.

GREATEST LOWER BOUND

- Given a poset (D, \leq) and $X \subseteq D, l \in D$ is called a lower bound on X if $\forall x \in X . l \leq x$.
- $l \in D$ is called the greatest lower bound (glb) of X, if l is a lower bound of X, and for every other lower bound $l^{\prime}, l^{\prime} \leq l$.
- We use the notation $\sqcap X$ to denote the greatest lower bound of X. Also called the meet of X.
- Homework: Prove that the greatest lower bound, if it exists, is unique.

LUB - EXAMPLE

$$
S=\{a, b, c\}
$$

$\mathbb{P}(S)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$

- Consider $X=\{\{a\},\{b\}\}$
- $\{a, b\},\{a, b, c\}$ are both upper bounds of X
- $\{a, b\}$ is the least upper bound.

LATTICE

- A lattice is a poset (D, \leq) such that $\forall x, y \in D, x \sqcup y$ and $x \sqcap y$ exist.
- A join semi-lattice is a poset (D, \leq) such that $\forall x, y \in D, x \sqcup y$ exists.
- A meet semi-lattice is a poset (D, \leq) such that $\forall x, y \in D, x \sqcap y$ exists.
- A complete lattice is a lattice such that $\forall X \subseteq D, \sqcup X$ and $\sqcap X$ exists.
- Example: $(\mathbb{P}(S), \subseteq)$ is a complete lattice.

LATTICE - MORE EXAMPLES

- What is the simplest example of a poset that is not a lattice?
- $(\{a, b\},\{(a, a),(b, b)\})$
- What is an example of a lattice which is not a complete lattice?
- ($\mathbb{N}, \leq)$

LATTICE - MORE EXAMPLES

- What is the simplest example of a poset that is not a lattice?
- $(\{a, b\},\{(a, a),(b, b)\})$
- What is an example of a lattice which is not a complete lattice?
- (\mathbb{N}, \leq)
- Sign Lattice:

SOME PROPERTIES OF LATTICES

- (D, \leq) is a lattice, $x, y, z \in D$
- If $x \leq y$, then $x \sqcup y=y$ and $x \sqcap y=x$.
- $x \sqcup x=x$ and $x \sqcap x=x$
- $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)=\sqcup\{x, y, z\}$
- If D is finite, then D is also a complete lattice.

MINIMUM AND MAXIMUM

- Given a poset $(D, \leq), x \in D$ is called the minimum element if $\forall y \in D . x \leq y$.
- Also called the bottom element. Denoted by \perp.
- Given a poset $(D, \leq), x \in D$ is called the maximum element if $\forall y \in D . y \leq x$.
- Also called the top element. Denoted by T.
- Complete lattices are guaranteed to have top and bottom elements.
- $\sqcup D=\top, \sqcap D=\perp$
- $ப \varnothing=\perp, \sqcap \varnothing=\top$

MONOTONIC FUNCTIONS

- Given two posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, function $f: D_{1} \rightarrow D_{2}$ is called monotonic (or order-preserving) if
- $\forall x, y \in D_{1} \cdot x \leq_{1} y \rightarrow f(x) \leq_{2} f(y)$
- In the special case when $D_{1}=D_{2}=D, f: D \rightarrow D$ is monotonic if
- $\forall x, y \in D . x \leq y \rightarrow f(x) \leq f(y)$

MONOTONIC FUNCTIONS - EXAMPLE

$$
\begin{gathered}
S=\{a, b, c\} \\
\mathbb{P}(S)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}
\end{gathered}
$$

- Consider $f: \mathbb{P}(S) \rightarrow \mathbb{P}(S)$, $f(X)=X \cup\{a\}$.
- f is monotonic.
- What about $f(X)=X \cap\{a\}$?
- Example of a non-monotonic function on $\mathbb{P}(S)$?

JOIN PRESERVING

- Given posets (D_{1}, \leq_{1}) and (D_{2}, \leq_{2}), a monotonic function $f: D_{1} \rightarrow D_{2}$, and $S \subseteq D_{1}$, if $\sqcup_{1} S$ and $\sqcup_{2} f(S)$ exist, then $\sqcup_{2} f(S) \leq_{2} f\left(\sqcup_{1} S\right)$.

JOIN PRESERVING

- Given posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, a monotonic function $f: D_{1} \rightarrow D_{2}$, and $S \subseteq D_{1}$, if $\sqcup_{1} S$ and $\sqcup_{2} f(S)$ exist, then $\sqcup_{2} f(S) \leq_{2} f\left(\sqcup_{1} S\right)$.

JOIN PRESERVING

- Given posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, a monotonic function $f: D_{1} \rightarrow D_{2}$, and $S \subseteq D_{1}$, if $\sqcup_{1} S$ and $\sqcup_{2} f(S)$ exist, then $\sqcup_{2} f(S) \leq_{2} f\left(\sqcup_{1} S\right)$.

Proof: Let $u=\sqcup_{1} S$.
Then $\forall x \in S . x \leq_{1} u$. This implies that $\forall x \in S . f(x) \leq_{2} f(u)$.
Thus $f(u)$ is an upper bound of $f(S)$.
Hence, $\sqcup_{2} f(S) \leq_{2} f(u)$.

FIXPOINTS

- A fixpoint of a function $f: D \rightarrow D$ is an element $x \in D$ such that $f(x)=x$.
- A pre-fixpoint of a function $f: D \rightarrow D$ is an element $x \in D$ such that $x \leq f(x)$.
- A post-fixpoint of a function $f: D \rightarrow D$ is an element $x \in D$ such that $f(x) \leq x$.

FIXPOINTS - EXAMPLE

- Fixpoint : c
- Pre-fixpoints : a, b, c
- Post-fixpoint : c,d

KNASTER-TARSKI FIXPOINT THEOREM

- Let (D, \leq) be a complete lattice, and $f: D \rightarrow D$ be a monotonic function on (D, \leq). Then:
- f has at least one fixpoint.
- f has a least fixpoint (lfp), which is the same as the glb of the set of post-fixpoints of f, and a greatest fixpoint (gfp) which is the same as the lub of the set of pre-fixpoints of f.
- The set of fixpoints of f itself forms a complete lattice under \leq.

KNASTER-TARSKI FIXPOINT THEOREM ILLUSTRATION

- Complete Lattice
- Monotonic Function
- Pre-fixpoints: a,c,e,f
- Post-fixpoints: c,d,f
- Fixpoints: c,f

PROOF OF KNASTER-TARSKI THEOREM

- Pre $=\{x \mid x \leq f(x)\}$
- We will show that \sqcup Pre is a fixpoint.
- Notice that Pre cannot be empty. Why?

Proof: Let $u=\sqcup$ Pre.
Consider $x \in$ Pre. Then, $x \leq u$. Hence, $f(x) \leq f(u)$. Since $x \leq f(x)$, we have $x \leq f(u)$. Thus, $f(u)$ is an upper bound of Pre. Since u is the least upper bound of Pre, we have $u \leq f(u)$.
$u \leq f(u) \Rightarrow f(u) \leq f(f(u))$. Hence, $f(u)$ is a pre-fixpoint. Therefore, $f(u) \leq u$.

This proves that $u=f(u)$.

PROOF OF KNASTER-TARSKI THEOREM

- Pre $=\{x \mid x \leq f(x)\}$
- \sqcup Pre is the greatest fixpoint.

Proof: Consider another fixpoint g.
Then, g is also a pre-fixpoint. Hence, $g \leq \sqcup$ Pre.

PROOF OF KNASTER-TARSKI THEOREM

- Post $=\{x \mid f(x) \leq x)\}$
- \sqcap Post is a fixpoint of f.
- \sqcap Post is the least fixpoint.

PROOF OF KNASTER-TARSKI THEOREM

- $P=\{x \mid f(x)=x\}$
- We will show that (P, \leq) is a complete lattice.

Proof Sketch: (P, \leq) is a partial order.
Let $X \subseteq P$. Let u be the $\sqcup X$ in D. Consider $U=\{a \in D \mid u \leq a\}$
Then (U, \leq) is a complete lattice. [Homework]
Further, $f(U) \subseteq U$. [Homework]
Hence, f is a monotonic function on complete lattice (U, \leq). By previous part of Knaster-Tarski Theorem, the least fixpoint of f in U exists.

Let v be the least fixpoint of f in U. Then v is the least upper bound of X in P. [Homework]

Similarly, we can show that $\sqcap X$ also exists in P. [Homework]

CHAINS

- Given a poset $(D, \leq), C \subseteq D$ is called a chain if $\forall x, y \in C . x \leq y \vee y \leq x$.
- A poset (D, \leq) satisfies the ascending chain condition, if for all sequences $x_{1} \leq x_{2} \leq \ldots, \exists k . \forall n \geq k . x_{n}=x_{k}$.
- We say that the sequence stabilizes to x_{k}.
- A poset (D, \leq) satisfies the descending chain condition, if for all sequences $x_{1} \geq x_{2} \geq \ldots, \exists k . \forall n \geq k . x_{n}=x_{k}$.
- A poset that satisfies the descending chain condition is also called well-ordered.
- Poset (D, \leq) is said to have finite height if it satisfies both the ascending and descending chain conditions.
- Does (\mathbb{N}, \leq) have finite height?

COMPUTING LFP

- Consider a complete lattice (D, \leq) and a monotonic function $f: D \rightarrow D$.
- Consider the sequence $\perp, f(\perp), f^{2}(\perp), f^{3}(\perp), \ldots$
- If it stabilizes, it will converge to a fixpoint of f.
- Further, this fixpoint will be the least fixpoint of f.
- Hence, if (D, \leq) satisfies the ascending chain condition, we can compute lfp (f) by finding the stable value of $\perp, f(\perp), f^{2}(\perp), f^{3}(\perp), \ldots$
- Homework: If $a \in$ Pre, and the sequence $a, f(a), f^{2}(a), \ldots$ stabilizes, it will converge to the least fixpoint greater than a (denoted by $l f p_{a}(f)$).

CONTINUOUS FUNCTIONS

- Given two posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, function $f: D_{1} \rightarrow D_{2}$ is called continuous if for all chains $C \subseteq D_{1}$ such that $\sqcup_{1} C$ exists, then $\sqcup_{2} f(C)$ also exists, and $\sqcup_{2} f(C)=f\left(\sqcup_{1} C\right)$.
- Are all continuous functions monotonic?
- Consider $x \leq_{1} y$. Now, $f\left(x \sqcup_{1} y\right)=f(x) \sqcup_{2} f(y)$. Hence, $f(y)=f(x) \sqcup_{2} f(y)$. This implies that $f(x) \leq f(y)$.
- Are all monotonic functions continuous?

CONTINUOUS FUNCTIONS

- Given a complete lattice (D, \leq) and continuous function $f: D \rightarrow D, \operatorname{lfp}(f)=\bigsqcup_{i \geq 0} f^{i}(\perp)$
- $f\left(\bigsqcup_{i \geq 0} f^{i}(\perp)\right)=\bigsqcup_{i \geq 1} f^{i}(\perp)=\bigsqcup_{i \geq 0} f^{i}(\perp)$
- Consider a fixpoint g. Then g is an upper bound of the chain $\perp, f(\perp), f^{2}(\perp), \ldots$
- Hence, $\bigsqcup_{i \geq 0} f^{i}(\perp) \leq g$

DISTRIBUTIVE AND INFINITELY DISTRIBUTIVE FUNCTIONS

- Given two posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, function $f: D_{1} \rightarrow D_{2}$ is called distributive if for $x, y \in D_{1}$ such that $x \sqcup_{1} y$ exists, then $f(x) \sqcup_{2} f(y)$ also exists, and $f\left(x \sqcup_{1} y\right)=f(x) \sqcup_{2} f(y)$.
- Given two posets $\left(D_{1}, \leq_{1}\right)$ and $\left(D_{2}, \leq_{2}\right)$, function $f: D_{1} \rightarrow D_{2}$ is called infinitely distributive if for all $X \subseteq D_{1}$ such that $\sqcup_{1} X$ exists, then $\sqcup_{2} f(X)$ also exists, and $\sqcup_{2} f(X)=f\left(\sqcup_{1} X\right)$.

GALOIS CONNECTION

- Given posets (C, \leq_{1}) and (D, \leq_{2}), a pair of functions (α, γ), $\alpha: C \rightarrow D$ and $\gamma: D \rightarrow C$ is called a Galois connection if
- $\forall c \in C . \forall d \in D . \alpha(c) \leq_{2} d \Leftrightarrow c \leq_{1} \gamma(d)$
- Also written as: $\left(C, \leq_{1}\right) \underset{\gamma}{\stackrel{\alpha}{\rightleftarrows}}\left(D, \leq_{2}\right)$

GALOIS CONNECTION

- Given posets (C, \leq_{1}) and (D, \leq_{2}), a pair of functions (α, γ), $\alpha: C \rightarrow D$ and $\gamma: D \rightarrow C$ is called a Galois connection if
- $\forall c \in C . \forall d \in D . \alpha(c) \leq_{2} d \Leftrightarrow c \leq_{1} \gamma(d)$
- Also written as: $\left(C, \leq_{1}\right) \underset{\gamma}{\stackrel{\alpha}{\rightleftarrows}}\left(D, \leq_{2}\right)$

PROPERTIES OF GALOIS CONNECTION

- $x \leq_{1} \gamma(\alpha(x))$
- Proof: $\alpha(x) \leq_{2} \alpha(x)$. Applying the definition of Galois connection, $x \leq_{1} \gamma(\alpha(x))$.
- $\alpha(\gamma(y)) \leq_{2} y$
- Proof: $\gamma(y) \leq_{1} \gamma(y)$. Applying the definition of Galois connection, $\alpha(\gamma(y)) \leq_{2} y$.

PROPERTIES OF GALOIS CONNECTION

- α is monotonic.
- Proof: Consider $c_{1}, c_{2} \in C$ such that $c_{1} \leq_{1} c_{2}$.
- We know that $c_{2} \leq \gamma\left(\alpha\left(c_{2}\right)\right)$. By transitivity, $c_{1} \leq \gamma\left(\alpha\left(c_{2}\right)\right)$. Hence, by definition of Galois connection, $\alpha\left(c_{1}\right) \leq_{2} \alpha\left(c_{2}\right)$.
- γ is monotonic.
- Proof: Homework.

ONTO GALOIS CONNECTION

- Recall: State $\triangleq V \rightarrow \mathbb{R}$. The concrete domain C will be $(\mathbb{P}($ State $), \subseteq)$.
- The abstract domain D will be a collection of artificially constrained set of states. We can represent this as $D \subseteq C$.
- The abstraction function α will map $c \in C$ to the smallest set $d \in D$ such that $c \subseteq d$.
- The concretization function γ will simply be $\gamma(d)=d$.
- Prove that this is a Galois Connection.

ONTO GALOIS CONNECTION - EXAMPLE

- Assume that $V=\{v\}$.
- Hence, State $=\mathbb{R}$, The concrete domain C is $(\mathbb{P}(\mathbb{R}), \subseteq)$
- Sign Abstract Domain: $D=\{+-,+,-, \perp\}$.
- $+-\triangleq \mathbb{R}$
- $+\triangleq\{n \in \mathbb{R} \mid n \geq 0\}$
- $-\triangleq\{n \in \mathbb{R} \mid n<0\}$
- $\perp \triangleq \varnothing$
- Clearly $D \subseteq C$.

ONTO GALOIS CONNECTION - EXAMPLE

- Define the Galois Connection: $(\mathbb{P}(\mathbb{R}), \subseteq) \underset{\gamma}{\stackrel{\alpha}{\rightleftarrows}}(D, \subseteq)$
- $\alpha(c)=+$ if $\min (c) \geq 0$
- $\alpha(c)=-$ if $\max (c)<0$
- $\alpha(\varnothing)=\perp$
- Otherwise, $\alpha(c)=+-$.
- $\gamma(d)=d$.
- Example: $\alpha(\{3,5\})=+, \alpha(\{3,6,-1,0\})=+-$

ONTO GALOIS CONNECTION

- The abstraction function α will map $c \in C$ to the smallest set $d \in D$ such that $c \subseteq d$.
- The concretization function γ will simply be $\gamma(d)=d$.
- Notice that $\alpha(\gamma(d))=d$.
- Also called Onto Galois Connection.
- From now onwards, we will assume that Galois Connections are Onto.

