
HOARE LOGIC

• We have already seen that the weakest pre-condition operator can
be used to prove Hoare Triples:

• iff

• Finding exact for loops is hard. We will instead use the loop
invariant as an approximate .

•

• Does this always hold?

• Also need to show that following side-conditions hold:

•

•

{P}c{Q} P ⇒ wp(Q, c)

wp
wp

awp(Q, while(F)@I do c) = I

{I ∧ F}c{I}

I ∧ ¬F ⇒ Q

VERIFICATION CONDITION GENERATION

RELATION BETWEEN AWP AND WP

• Let us formally define :

•

• Homework: Prove that this holds for ,
when the side-conditions hold.

• We defined

•

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

RELATION BETWEEN AWP AND WP

• Let us formally define :

•

• Homework: Prove that this holds for ,
when the side-conditions hold.

• We defined

•

• (, while(i < n)@(i >= 0) do i := i+1;) = ???

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0

RELATION BETWEEN AWP AND WP

• Let us formally define :

•

• Homework: Prove that this holds for ,
when the side-conditions hold.

• We defined

•

• (, while(i < n)@(i >= 0) do i := i+1;) =

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0 i ≥ 0

RELATION BETWEEN AWP AND WP

• Let us formally define :

•

• Homework: Prove that this holds for ,
when the side-conditions hold.

• We defined

•

• (, while(i < n)@(i >= 0) do i := i+1;) =

• (, while(i < n)@(i >= 0) do i := i+1;) = ???

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0 i ≥ 0

wp i ≥ 0

RELATION BETWEEN AWP AND WP

• Let us formally define :

•

• Homework: Prove that this holds for ,
when the side-conditions hold.

• We defined

•

• (, while(i < n)@(i >= 0) do i := i+1;) =

• (, while(i < n)@(i >= 0) do i := i+1;) =

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0 i ≥ 0

wp i ≥ 0 n ≥ 0 ∨ i ≥ 0

VC GENERATION - I

• We define to collect the side-conditions needed for
verifying that holds after execution of .

• For while(F)@I do c, there are two side-conditions:

•

•

• is valid if .

• c may contain loops, so we also need to consider .

• Hence,

VC(Q, c)
Q c

{I ∧ F}c{I}

I ∧ ¬F ⇒ Q

{I ∧ F}c{I} I ∧ F ⇒ awp(I, c)

VC(I, c)

VC(Q, while(F)@I do c) ≜ (I ∧ ¬F ⇒ Q) ∧ (I ∧ F ⇒ awp(I, c)) ∧ VC(I, c)

VC GENERATION - II

•

• Also defined as for all simple program commands (assert,
assume, havoc).

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ ???

VC GENERATION - II

•

• Also defined as for all simple program commands (assert,
assume, havoc).

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)

VC GENERATION - II

•

• Also defined as for all simple program commands (assert,
assume, havoc).

•

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)

VC(Q, if(F) then c1 else c2) ≜ ???

VC GENERATION - II

•

• Also defined as for all simple program commands (assert,
assume, havoc).

•

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)

VC(Q, if(F) then c1 else c2) ≜ VC(Q, c1) ∧ VC(Q, c2)

VC GENERATION - III

• except for while loops, for which
.

• Putting it all together, is valid if the following FOL
formula is valid:

•

awp(Q, c) ≜ wp(Q, c)
awp(Q, while(F)@I do c) = I

{P}c{Q}

(P → awp(Q, c)) ∧ VC(Q, c)

RELATION BETWEEN AWP AND HOARE TRIPLES

• What is the relation between and validity of the Hoare
Triple ?

• Is it possible that is valid and is not
valid?

• Is it possible that is valid and is
satisfiable?

• How about ?

awp(Q, c)
{P}c{Q}

P → awp(Q, c) {P}c{Q}

{P}c{Q} ¬(P → awp(Q, c))

¬(P → wp(Q, c))

SOUNDNESS AND COMPLETENESS

VC GENERATION

• Is the VC generation procedure sound?

• Yes. Prove this!

• Is the VC generation procedure complete?

• No. It is not even relatively complete.

• The annotated loop invariant may not be strong enough.

• Can the VC generation procedure be fully automated?

• Yes. Whole point of the exercise!

EXAMPLE

i := 1;
sum := 0;
while(i <= n) do
 j := 1;
 while(j <= i) do
 sum := sum + j; j := j + 1;
 i := i + 1;

{true}

{sum ≥ 0}

EXAMPLE

i := 1;
sum := 0;
while(i <= n)@() do
 j := 1;
 while(j <= i)@() do
 sum := sum + j; j := j + 1;
 i := i + 1;

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
•

•
•
•

VC(sum ≥ 0,outer loop) :
sum ≥ 0 ∧ i > n → sum ≥ 0
sum ≥ 0 ∧ i ≤ n → sum ≥ 0 ∧ 1 ≥ 0
VC(sum ≥ 0,inner loop)

EXAMPLE

i := 1;
sum := 0;
while(i <= n)@() do
 j := 1;
 while(j <= i)@() do
 sum := sum + j; j := j + 1;
 i := i + 1;

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
• :

•
•

VC(sum ≥ 0,inner loop)
sum ≥ 0 ∧ j ≥ 0 ∧ j > i → sum ≥ 0
sum ≥ 0 ∧ j ≥ 0 ∧ j ≤ i → sum + j ≥ 0 ∧ j + 1 ≥ 0

EXAMPLE

i := 1;
sum := 0;
while(i <= n)@() do
 j := 1;
 while(j <= i)@() do
 sum := sum + j; j := j + 1;
 i := i + 1;

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
• Final Formula:

• true → 0 ≥ 0 ∧ VC(sum ≥ 0,outer loop)

ADDING FUNCTIONS TO IMP

𝚙 = 𝙵*
𝙵 = 𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗 f(𝚡1, …, 𝚡n){𝚌}
𝚌 = 𝚡 := 𝚎𝚡𝚙 | 𝚡 := 𝚑𝚊𝚟𝚘𝚌

= | 𝚊𝚜𝚜𝚞𝚖𝚎(𝙵) | 𝚊𝚜𝚜𝚎𝚛𝚝(𝙵)
= | 𝚜𝚔𝚒𝚙 | 𝚌; 𝚌 | 𝚒𝚏(𝙵) 𝚝𝚑𝚎𝚗 𝚌 𝚎𝚕𝚜𝚎 𝚌 | 𝚠𝚑𝚒𝚕𝚎(𝙵) 𝚍𝚘 𝚌
= | 𝚡 := f(𝚎𝚡𝚙1, …, 𝚎𝚡𝚙n) | 𝚛𝚎𝚝𝚞𝚛𝚗 𝚎𝚡𝚙

MODULAR VERIFICATION

• Each function is annotated with a pre-condition and a post-
condition.

• Pre-condition specifies what is expected of the function’s arguments

• Formula in FOL whose free variables are the formal parameters of
the function.

• Post-condition describes the function’s return value

• Formula in FOL whose free variables are the formal parameters
and a special variable called .

• Together, pre-condition and post-condition specify a contract.

• If the function is called with values which obey the pre-condition,
then the output of the function will obey the post-condition.

ret

VERIFYING FUNCTION CONTRACT

function f(x1,…,xn)
 requires(Pre)
 ensures(Post)
 {Body;}

• The function contract can be verified by proving the validity of the
Hoare Triple {Pre} Body {Post}

VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)

•

• If we can guarantee that the function’s pre-condition holds before
the call, then we can assume that the function’s post-condition will
hold after the call.

• We model the function call as follows:

{P}x := f(e1, …, en){Q}

VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)

•

• If we can guarantee that the function’s pre-condition holds before the
call, then we can assume that the function’s post-condition will hold
after the call.

• We model the function call as follows:

{P}x := f(e1, …, en){Q}

assert(Pre[e1/x1,…,en/xn]);
assume(Post[tmp/ret,e1/x1,…,en/xn]);
y := tmp;

VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)

•

• If we can guarantee that the function’s pre-condition holds before the
call, then we can assume that the function’s post-condition will hold
after the call.

• We model the function call as follows:

• Why do we have to use

• What is the generated VC?

{P}x := f(e1, …, en){Q}

tmp?

assert(Pre[e1/x1,…,en/xn]);
assume(Post[tmp/ret,e1/x1,…,en/xn]);
y := tmp;

VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)

•

• If we can guarantee that the function’s pre-condition holds before the
call, then we can assume that the function’s post-condition will hold
after the call.

• We model the function call as follows:

• Why do we have to use

• What is the generated VC?

{P}x := f(e1, …, en){Q}

tmp?

P → (Pre ∧ (Post → Q[tmp/y]))

assert(Pre[e1/x1,…,en/xn]);
assume(Post[tmp/ret,e1/x1,…,en/xn]);
y := tmp;

EXAMPLE
FindMax(a,l,u)
requires(l >= 0 && l <= u && u < |a|)
ensures(i. l<=i<=u ret >= a[i])
{
 if (l == u)
 return a[l];
 else
 m := FindMax(a,l+1,u);
 if (a[l] > m)
 return a[l];
 else
 return m;
}

∀ →

EXAMPLE
FindMax(a,l,u)
requires(l >= 0 && l <= u && u < |a|)
ensures(i. l<=i<=u ret >= a[i])
{
 if (l == u)
 return a[l];
 else
 assert(Pre[l+1/l]);
 assume(Post[tmp/ret,l+1/l]);
 m := tmp;
 if (a[l] > m)
 return a[l];
 else
 return m;
}

∀ →

EXAMPLE

 if (l == u)
 ret:=a[l];
 else
 assert(Pre[l+1/l]);
 assume(Post[tmp/ret,l+1/l]);
 m := tmp;
 if (a[l] > m)
 ret:=a[l];
 else
 ret:=m;

{l ≥ 0 ∧ l ≤ u ∧ u < |a |}

{∀i . l ≤ i ≤ u → ret ≥ a[i]}

Pre → (l = u → Post[a[l]/ret]) ∧
l ≠ u → Pre[(l + 1)/l]
∧ Post[tmp/ret, (l + 1)/l] →
(a[l] > tmp → Post[a[l]/ret]) ∧ (a[l] ≤ tmp → Post[tmp/ret])

EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e)
requires(l >= 0 && u < |a|)
ensures(ret i.l <= i <= u & a[i] == e)
{
if (l > u) then
return false;

else
{
m := (l+u)/2;
if (a[m]==e) then
return true;

else
{
if (a[m] < e)
return BinarySearch(a,m+1,u,e);

else
return BinarySearch(a,l,m-1,e);

}
}

}

↔ ∃

EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e)
requires(l >= 0 && u < |a| && sorted(a,l,u))
ensures(ret i.l <= i <= u & a[i] == e)
{
if (l > u) then
return false;

else
{
m := (l+u)/2;
if (a[m]==e) then
return true;

else
{
if (a[m] < e)
return BinarySearch(a,m+1,u,e);

else
return BinarySearch(a,l,m-1,e);

}
}

}

↔ ∃

sorted(a, l, u) ⇔ ∀i, j . l ≤ i ≤ j ≤ u → a[i] ≤ a[j]

EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e)
requires(l >= 0 && u < |a| && sorted(a,l,u))
ensures(ret i.l <= i <= u & a[i] == e)
{
if (l > u) then
return false;

else
{
m := (l+u)/2;
if (a[m]==e) then
return true;

else
{
if (a[m] < e)
return BinarySearch(a,m+1,u,e);

else
return BinarySearch(a,l,m-1,e);

}
}

}

↔ ∃

sorted(a, l, u) ⇔ ∀i, j . l ≤ i ≤ j ≤ u → a[i] ≤ a[j]

BM CHAPTER 5 CONTAINS THE COMPLETE EXAMPLE

IN THE BOOK…

• More Examples (Chapters 5,6)

• Linear Search

• Bubble Sort

• Quick Sort

• A slightly different VC generation procedure

• Heuristics for crafting loop invariants

HANDLING GLOBAL VARIABLES

• If there are global variables shared across functions, then
executing a function can cause side effects.

• Is the previous approach still sound?

• We will use havoc assignments to model side-effects.

• Function contracts now specify global variables which may be
modified.

function f(x1,…,xn)
 requires(Pre)
 ensures(Post)
 modifies(v1,…,vm)
 {Body;}

HANDLING GLOBAL VARIABLES

• How to check correctness of the function contract?

• is replaced byy := f(e1, …, en)

assert(Pre[e1/x1,…,en/xn]);
v1:=havoc;… vm:=havoc;
assume(Post[tmp/ret,e1/x1,…,en/xn]);
y := tmp;

ADDING POINTERS TO IMP

• We add two more program statements:

• x := *y

• *x := e

• Consider the following code:

• x := y; *y := 3; *x := 2; z := *y;

• Does it satisfy the specification? What is ?

• We need new rules for assignment statements involving pointers.

{true} {z = 3}

wp(z = 3,c)

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

M

⟨ ⊲ ⟩

{???}x := * y{Q}

Adapted from Isil Dillig’s Lectures

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

Adapted from Isil Dillig’s Lectures

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{???} * x := e{Q}

Adapted from Isil Dillig’s Lectures

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

Adapted from Isil Dillig’s Lectures

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

•

• Consider the code again:

• x := y; *y := 3; *x := 2; z := *y;

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

{true} {z = 3}

Adapted from Isil Dillig’s Lectures

HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables
behaving as indices into the array.

• x := *y becomes x := M[y]

• *x := e becomes M := M x e

•

•

• Consider the code again:

• x := y; *y := 3; *x := 2; z := *y;

• VC:

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

{true} {z = 3}

true → M⟨y ⊲ 3⟩⟨y ⊲ 2⟩[y] = 3

Adapted from Isil Dillig’s Lectures

