
HOARE LOGIC

• We have already seen that the weakest pre-condition operator can 
be used to prove Hoare Triples: 

•  iff  

• Finding exact  for loops is hard. We will instead use the loop 
invariant as an approximate . 

•  

• Does this always hold? 

• Also need to show that following side-conditions hold: 

•  

•

{P}c{Q} P ⇒ wp(Q, c)

wp
wp

awp(Q, while(F)@I do c) = I

{I ∧ F}c{I}

I ∧ ¬F ⇒ Q

VERIFICATION CONDITION GENERATION



RELATION BETWEEN AWP AND WP

• Let us formally define : 

•  

• Homework: Prove that this holds for , 
when the side-conditions hold. 

• We defined  

•

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)



RELATION BETWEEN AWP AND WP

• Let us formally define : 

•  

• Homework: Prove that this holds for , 
when the side-conditions hold. 

• We defined  

•  

• ( , while(i < n)@(i >= 0) do i := i+1;) = ???

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0
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awp
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RELATION BETWEEN AWP AND WP

• Let us formally define : 

•  

• Homework: Prove that this holds for , 
when the side-conditions hold. 

• We defined  

•  

• ( , while(i < n)@(i >= 0) do i := i+1;) =  

• ( , while(i < n)@(i >= 0) do i := i+1;) =

awp

∀σ ∈ awp(Q, c) . ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q

awp(Q, while(F)@I do c) = I

wp(Q, c) ≜ {σ | ∀σ′ . (σ, c) ↪* (σ′ , skip) → σ′ ∈ Q}

awp(Q, c) ⊆ wp(Q, c)

awp i ≥ 0 i ≥ 0

wp i ≥ 0 n ≥ 0 ∨ i ≥ 0



VC GENERATION - I

• We define  to collect the side-conditions needed for 
verifying that  holds after execution of . 

• For while(F)@I do c, there are two side-conditions: 

•  

•  

•  is valid if . 

• c may contain loops, so we also need to consider . 

• Hence, 

VC(Q, c)
Q c

{I ∧ F}c{I}

I ∧ ¬F ⇒ Q

{I ∧ F}c{I} I ∧ F ⇒ awp(I, c)

VC(I, c)

VC(Q, while(F)@I do c) ≜ (I ∧ ¬F ⇒ Q) ∧ (I ∧ F ⇒ awp(I, c)) ∧ VC(I, c)



VC GENERATION - II

•  

• Also defined as  for all simple program commands (assert, 
assume, havoc). 

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ ???



VC GENERATION - II

•  

• Also defined as  for all simple program commands (assert, 
assume, havoc). 

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)



VC GENERATION - II

•  

• Also defined as  for all simple program commands (assert, 
assume, havoc). 

•  

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)

VC(Q, if(F) then c1 else c2) ≜ ???



VC GENERATION - II

•  

• Also defined as  for all simple program commands (assert, 
assume, havoc). 

•  

•

VC(Q, x:=e) ≜ true

true

VC(Q, c1; c2) ≜ VC(Q, c2) ∧ VC(awp(Q, c2), c1)

VC(Q, if(F) then c1 else c2) ≜ VC(Q, c1) ∧ VC(Q, c2)



VC GENERATION - III

•  except for while loops, for which 
. 

• Putting it all together,  is valid if the following FOL 
formula is valid: 

•

awp(Q, c) ≜ wp(Q, c)
awp(Q, while(F)@I do c) = I

{P}c{Q}

(P → awp(Q, c)) ∧ VC(Q, c)



RELATION BETWEEN AWP AND HOARE TRIPLES

• What is the relation between  and validity of the Hoare 
Triple ? 

• Is it possible that  is valid and  is not 
valid? 

• Is it possible that  is valid and  is 
satisfiable? 

• How about ?

awp(Q, c)
{P}c{Q}

P → awp(Q, c) {P}c{Q}

{P}c{Q} ¬(P → awp(Q, c))

¬(P → wp(Q, c))



SOUNDNESS AND COMPLETENESS

VC GENERATION

• Is the VC generation procedure sound? 

• Yes. Prove this! 

• Is the VC generation procedure complete? 

• No. It is not even relatively complete. 

• The annotated loop invariant may not be strong enough. 

•  Can the VC generation procedure be fully automated? 

• Yes. Whole point of the exercise!



EXAMPLE

 
i := 1; 
sum := 0; 
while(i <= n) do 
   j := 1; 
   while(j <= i) do 
      sum := sum + j; j := j + 1; 
   i := i + 1;  

  

{true}

{sum ≥ 0}



EXAMPLE

 
i := 1; 
sum := 0; 
while(i <= n)@( ) do 
   j := 1; 
   while(j <= i)@( ) do 
      sum := sum + j; j := j + 1; 
   i := i + 1;  

  

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
•  

•  
•  
•

VC(sum ≥ 0,outer loop) :
sum ≥ 0 ∧ i > n → sum ≥ 0
sum ≥ 0 ∧ i ≤ n → sum ≥ 0 ∧ 1 ≥ 0
VC(sum ≥ 0,inner loop)



EXAMPLE

 
i := 1; 
sum := 0; 
while(i <= n)@( ) do 
   j := 1; 
   while(j <= i)@( ) do 
      sum := sum + j; j := j + 1; 
   i := i + 1;  

  

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
• : 

•  
•

VC(sum ≥ 0,inner loop)
sum ≥ 0 ∧ j ≥ 0 ∧ j > i → sum ≥ 0
sum ≥ 0 ∧ j ≥ 0 ∧ j ≤ i → sum + j ≥ 0 ∧ j + 1 ≥ 0



EXAMPLE

 
i := 1; 
sum := 0; 
while(i <= n)@( ) do 
   j := 1; 
   while(j <= i)@( ) do 
      sum := sum + j; j := j + 1; 
   i := i + 1;  

  

{true}

sum ≥ 0

sum ≥ 0 ∧ j ≥ 0

{sum ≥ 0}
• Final Formula: 

• true → 0 ≥ 0 ∧ VC(sum ≥ 0,outer loop)



ADDING FUNCTIONS TO IMP

𝚙 = 𝙵*
𝙵 = 𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗 f(𝚡1, …, 𝚡n){𝚌}
𝚌 = 𝚡 := 𝚎𝚡𝚙 | 𝚡 := 𝚑𝚊𝚟𝚘𝚌

= | 𝚊𝚜𝚜𝚞𝚖𝚎(𝙵) | 𝚊𝚜𝚜𝚎𝚛𝚝(𝙵)
= | 𝚜𝚔𝚒𝚙 | 𝚌; 𝚌 | 𝚒𝚏(𝙵) 𝚝𝚑𝚎𝚗 𝚌 𝚎𝚕𝚜𝚎 𝚌 | 𝚠𝚑𝚒𝚕𝚎(𝙵) 𝚍𝚘 𝚌
= | 𝚡 := f(𝚎𝚡𝚙1, …, 𝚎𝚡𝚙n) | 𝚛𝚎𝚝𝚞𝚛𝚗 𝚎𝚡𝚙



MODULAR VERIFICATION

• Each function is annotated with a pre-condition and a post-
condition. 

• Pre-condition specifies what is expected of the function’s arguments 

• Formula in FOL whose free variables are the formal parameters of 
the function. 

• Post-condition describes the function’s return value 

• Formula in FOL whose free variables are the formal parameters 
and a special variable called . 

• Together, pre-condition and post-condition specify a contract. 

• If the function is called with values which obey the pre-condition, 
then the output of the function will obey the post-condition.

ret



VERIFYING FUNCTION CONTRACT

function f(x1,…,xn) 
   requires(Pre) 
   ensures(Post) 
   {Body;}

• The function contract can be verified by proving the validity of the 
Hoare Triple {Pre} Body {Post}



VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself) 

•  

• If we can guarantee that the function’s pre-condition holds before 
the call, then we can assume that the function’s post-condition will 
hold after the call. 

• We model the function call as follows:

{P}x := f(e1, …, en){Q}



VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself) 

•  

• If we can guarantee that the function’s pre-condition holds before the 
call, then we can assume that the function’s post-condition will hold 
after the call. 

• We model the function call as follows: 

{P}x := f(e1, …, en){Q}

assert(Pre[e1/x1,…,en/xn]); 
assume(Post[tmp/ret,e1/x1,…,en/xn]); 
y := tmp;



VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself) 

•  

• If we can guarantee that the function’s pre-condition holds before the 
call, then we can assume that the function’s post-condition will hold 
after the call. 

• We model the function call as follows: 

• Why do we have to use  

• What is the generated VC?

{P}x := f(e1, …, en){Q}

tmp?

assert(Pre[e1/x1,…,en/xn]); 
assume(Post[tmp/ret,e1/x1,…,en/xn]); 
y := tmp;



VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself) 

•  

• If we can guarantee that the function’s pre-condition holds before the 
call, then we can assume that the function’s post-condition will hold 
after the call. 

• We model the function call as follows: 

• Why do we have to use  

• What is the generated VC? 

{P}x := f(e1, …, en){Q}

tmp?

P → (Pre ∧ (Post → Q[tmp/y]))

assert(Pre[e1/x1,…,en/xn]); 
assume(Post[tmp/ret,e1/x1,…,en/xn]); 
y := tmp;



EXAMPLE
FindMax(a,l,u) 
requires(l >= 0 && l <= u && u < |a|) 
ensures( i. l<=i<=u  ret >= a[i]) 
{ 
   if (l == u) 
      return a[l]; 
   else 
      m := FindMax(a,l+1,u); 
      if (a[l] > m) 
         return a[l]; 
      else 
         return m;       
}

∀ →



EXAMPLE
FindMax(a,l,u) 
requires(l >= 0 && l <= u && u < |a|) 
ensures( i. l<=i<=u  ret >= a[i]) 
{ 
   if (l == u) 
      return a[l]; 
   else 
      assert(Pre[l+1/l]); 
      assume(Post[tmp/ret,l+1/l]); 
      m := tmp; 
      if (a[l] > m) 
         return a[l]; 
      else 
         return m;       
}

∀ →



EXAMPLE
   
   if (l == u) 
      ret:=a[l]; 
   else 
      assert(Pre[l+1/l]); 
      assume(Post[tmp/ret,l+1/l]); 
      m := tmp; 
      if (a[l] > m) 
         ret:=a[l]; 
      else 
         ret:=m;  
       

{l ≥ 0 ∧ l ≤ u ∧ u < |a |}

{∀i . l ≤ i ≤ u → ret ≥ a[i]}

Pre → (l = u → Post[a[l]/ret]) ∧
l ≠ u → Pre[(l + 1)/l]
∧ Post[tmp/ret, (l + 1)/l] →
(a[l] > tmp → Post[a[l]/ret]) ∧ (a[l] ≤ tmp → Post[tmp/ret])



EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e) 
requires(l >= 0 && u < |a|) 
ensures(ret  i.l <= i <= u & a[i] == e) 
{ 
if (l > u) then 
return false; 

else 
{ 
m := (l+u)/2; 
if (a[m]==e) then 
return true; 

else 
{ 
if (a[m] < e) 
return BinarySearch(a,m+1,u,e); 

else 
return BinarySearch(a,l,m-1,e); 

} 
} 

}

↔ ∃



EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e) 
requires(l >= 0 && u < |a| && sorted(a,l,u) ) 
ensures(ret  i.l <= i <= u & a[i] == e) 
{ 
if (l > u) then 
return false; 

else 
{ 
m := (l+u)/2; 
if (a[m]==e) then 
return true; 

else 
{ 
if (a[m] < e) 
return BinarySearch(a,m+1,u,e); 

else 
return BinarySearch(a,l,m-1,e); 

} 
} 

}

↔ ∃

sorted(a, l, u) ⇔ ∀i, j . l ≤ i ≤ j ≤ u → a[i] ≤ a[ j]



EXAMPLE - BINARY SEARCH
BinarySearch(a,l,u,e) 
requires(l >= 0 && u < |a| && sorted(a,l,u) ) 
ensures(ret  i.l <= i <= u & a[i] == e) 
{ 
if (l > u) then 
return false; 

else 
{ 
m := (l+u)/2; 
if (a[m]==e) then 
return true; 

else 
{ 
if (a[m] < e) 
return BinarySearch(a,m+1,u,e); 

else 
return BinarySearch(a,l,m-1,e); 

} 
} 

}

↔ ∃

sorted(a, l, u) ⇔ ∀i, j . l ≤ i ≤ j ≤ u → a[i] ≤ a[ j]

BM CHAPTER 5 CONTAINS THE COMPLETE EXAMPLE



IN THE BOOK…

• More Examples (Chapters 5,6) 

• Linear Search 

• Bubble Sort 

• Quick Sort 

• A slightly different VC generation procedure 

• Heuristics for crafting loop invariants 



HANDLING GLOBAL VARIABLES

• If there are global variables shared across functions, then 
executing a function can cause side effects. 

• Is the previous approach still sound? 

• We will use havoc assignments to model side-effects. 

• Function contracts now specify global variables which may be 
modified. 

function f(x1,…,xn) 
   requires(Pre) 
   ensures(Post) 
   modifies(v1,…,vm) 
   {Body;}



HANDLING GLOBAL VARIABLES

• How to check correctness of the function contract? 

•  is replaced byy := f(e1, …, en)

assert(Pre[e1/x1,…,en/xn]); 
v1:=havoc;… vm:=havoc; 
assume(Post[tmp/ret,e1/x1,…,en/xn]); 
y := tmp;



ADDING POINTERS TO IMP

• We add two more program statements:  

• x := *y 

• *x := e 

• Consider the following code: 

• x := y; *y := 3; *x := 2; z := *y;  

• Does it satisfy the specification? What is ? 

• We need new rules for assignment statements involving pointers. 

{true} {z = 3}

wp(z = 3,c)



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•

M

⟨ ⊲ ⟩

{???}x := * y{Q}

Adapted from Isil Dillig’s Lectures



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

Adapted from Isil Dillig’s Lectures



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•  

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{???} * x := e{Q}

Adapted from Isil Dillig’s Lectures



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•  

•

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

Adapted from Isil Dillig’s Lectures



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•  

•  

• Consider the code again: 

• x := y; *y := 3; *x := 2; z := *y;

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

{true} {z = 3}

Adapted from Isil Dillig’s Lectures



HANDLING POINTERS

• We treat the memory as a giant array , with the pointer variables 
behaving as indices into the array. 

• x := *y becomes x := M[y] 

• *x := e becomes M := M x e  

•  

•  

• Consider the code again: 

• x := y; *y := 3; *x := 2; z := *y;  

• VC: 

M

⟨ ⊲ ⟩

{Q[M[y]/x]}x := * y{Q}

{Q[M⟨x ⊲ e⟩/M]} * x := e{Q}

{true} {z = 3}

true → M⟨y ⊲ 3⟩⟨y ⊲ 2⟩[y] = 3

Adapted from Isil Dillig’s Lectures


