We have already seen that the weakest pre-condition operator can be used to prove Hoare Triples:

\[\{P\} c \{Q\} \iff P \Rightarrow \text{wp}(Q, c) \]

Finding exact \(\text{wp} \) for loops is hard. We will instead use the loop invariant as an approximate \(\text{wp} \).

\[\text{awp}(Q, \text{while}(F)@I \text{ do } c) = I \]

Does this always hold?

Also need to show that following side-conditions hold:

\[\{I \land F\} c \{I\} \]

\[I \land \neg F \Rightarrow Q \]
RELATION BETWEEN AWP AND WP

• Let us formally define awp:
 • $\forall \sigma \in awp(Q, c) . \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q$
 • Homework: Prove that this holds for $awp(Q, \text{while}(F)@I \text{ do } c) = I$, when the side-conditions hold.

• We defined $wp(Q, c) \triangleq \{ \sigma | \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q \}$
 • $awp(Q, c) \subseteq wp(Q, c)$
RELATION BETWEEN AWP AND WP

• Let us formally define awp:
 - $\forall \sigma \in awp(Q, c). \forall \sigma'. (\sigma, c) \leftrightarrow^*(\sigma', skip) \rightarrow \sigma' \in Q$

• Homework: Prove that this holds for $awp(Q, \text{while}(F)@I \text{ do } c) = I$, when the side-conditions hold.

• We defined $wp(Q, c) \overset{\Delta}{=} \{ \sigma \mid \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q \}$
 - $awp(Q, c) \subseteq wp(Q, c)$
 - $awp(i \geq 0, \text{while}(i < n)@ (i \geq 0) \text{ do } i := i+1;) = ???$
RELATION BETWEEN AWP AND WP

• Let us formally define \(awp \):

\[
\forall \sigma \in awp(Q, c). \forall \sigma'. (\sigma, c) \xrightarrow{*} (\sigma', \text{skip}) \rightarrow \sigma' \in Q
\]

• Homework: Prove that this holds for \(awp(Q, \text{while}(F)@I \text{ do } c) = I \), when the side-conditions hold.

• We defined \(wp(Q, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \xrightarrow{*} (\sigma', \text{skip}) \rightarrow \sigma' \in Q\} \)

• \(awp(Q, c) \subseteq wp(Q, c) \)

• \(awp(i \geq 0, \text{while}(i < n)@(i \geq 0) \text{ do } i := i+1;) = i \geq 0 \)
RELATION BETWEEN AWP AND WP

- Let us formally define awp:
 - $\forall \sigma \in awp(Q, c). \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', skip) \rightarrow \sigma' \in Q$
 - Homework: Prove that this holds for $awp(Q, \text{while}(F)@I \text{ do } c) = I$, when the side-conditions hold.
- We defined $wp(Q, c) \triangleq \{ \sigma \mid \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q\}$
 - $awp(Q, c) \subseteq wp(Q, c)$
 - $awp(i \geq 0, \text{while}(i < n)@(i \geq 0) \text{ do } i := i+1;) = i \geq 0$
 - $wp(i \geq 0, \text{while}(i < n)@(i \geq 0) \text{ do } i := i+1;) = ???$
RELATION BETWEEN AWP AND WP

Let us formally define awp:

- $\forall \sigma \in awp(Q, c) . \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q$

Homework: Prove that this holds for $awp(Q, \text{while}(F)@I \text{ do } c) = I$, when the side-conditions hold.

We defined $wp(Q, c) \triangleq \{ \sigma | \forall \sigma'. (\sigma, c) \leftrightarrow^* (\sigma', \text{skip}) \rightarrow \sigma' \in Q \}$

- $awp(Q, c) \subseteq wp(Q, c)$
- $awp(i \geq 0, \text{while}(i < n)@i >= 0 \text{ do } i := i+1;) = i \geq 0$
- $wp(i \geq 0, \text{while}(i < n)@i >= 0 \text{ do } i := i+1;) = n \geq 0 \lor i \geq 0$
VC GENERATION - I

• We define $VC(Q, c)$ to collect the side-conditions needed for verifying that Q holds after execution of c.

• For $\text{while}(F)@I$ do c, there are two side-conditions:
 - $\{I \land F\}c\{I\}$
 - $I \land \neg F \Rightarrow Q$
 - $\{I \land F\}c\{I\}$ is valid if $I \land F \Rightarrow awp(I, c)$.
 - c may contain loops, so we also need to consider $VC(I, c)$.

• Hence,
 $VC(Q, \text{while}(F)@I$ do $c) \triangleq (I \land \neg F \Rightarrow Q) \land (I \land F \Rightarrow awp(I, c)) \land VC(I, c)$
VC GENERATION - II

• \(VC(Q, x:=e) \triangleq true \)

• Also defined as \(true \) for all simple program commands (assert, assume, havoc).

• \(VC(Q, c_1; c_2) \triangleq ??? \)
VC GENERATION - II

- $VC(Q, x:=e) \triangleq true$

- Also defined as true for all simple program commands (assert, assume, havoc).

- $VC(Q, c_1; c_2) \triangleq VC(Q, c_2) \land VC(awp(Q, c_2), c_1)$
VC GENERATION - II

- $VC(Q, x:=e) \triangleq true$
- Also defined as $true$ for all simple program commands (assert, assume, havoc).
- $VC(Q, c_1; c_2) \triangleq VC(Q, c_2) \land VC(awp(Q, c_2), c_1)$
- $VC(Q, if(F) then c_1 else c_2) \triangleq ???$
VC GENERATION - II

- $VC(Q, x:=e) \triangleq true$
- Also defined as $true$ for all simple program commands (assert, assume, havoc).
- $VC(Q, c_1; c_2) \triangleq VC(Q, c_2) \land VC(awp(Q, c_2), c_1)$
- $VC(Q, if(F) then c_1 else c_2) \triangleq VC(Q, c_1) \land VC(Q, c_2)$
VC GENERATION - III

- $awp(Q, c) \triangleq wp(Q, c)$ except for while loops, for which $awp(Q, \text{while}(F)@I \text{ do } c) = I$.

- Putting it all together, $\{P\}c\{Q\}$ is valid if the following FOL formula is valid:

 - $(P \rightarrow awp(Q, c)) \land VC(Q, c)$
RELATION BETWEEN AWP AND HOARE TRIPLES

• What is the relation between $awp(Q, c)$ and validity of the Hoare Triple $\{P\}c\{Q\}$?
 • Is it possible that $P \rightarrow awp(Q, c)$ is valid and $\{P\}c\{Q\}$ is not valid?
 • Is it possible that $\{P\}c\{Q\}$ is valid and $\neg(P \rightarrow awp(Q, c))$ is satisfiable?
 • How about $\neg(P \rightarrow wp(Q, c))$?
VC GENERATION
SOUNDNESS AND COMPLETENESS

• Is the VC generation procedure sound?
 • Yes. Prove this!

• Is the VC generation procedure complete?
 • No. It is not even relatively complete.
 • The annotated loop invariant may not be strong enough.

• Can the VC generation procedure be fully automated?
 • Yes. Whole point of the exercise!
EXAMPLE

{true}
i := 1;
sum := 0;
while(i <= n) do
 j := 1;
 while(j <= i) do
 sum := sum + j; j := j + 1;
 i := i + 1;
{sum ≥ 0}
EXAMPLE

\{true\}
i := 1;
sum := 0;
while(i <= n)@ (sum \geq 0) do
 j := 1;
 while(j <= i)@ (sum \geq 0 \land j \geq 0) do
 sum := sum + j; j := j + 1;
 i := i + 1;
\{sum \geq 0\}

- \text{VC}(sum \geq 0, \text{outer loop}) :
 - sum \geq 0 \land i > n \rightarrow sum \geq 0
 - sum \geq 0 \land i \leq n \rightarrow sum \geq 0 \land 1 \geq 0
 - \text{VC}(sum \geq 0, \text{inner loop})
EXAMPLE

{true}
i := 1;
sum := 0;
while(i <= n)@((sum \geq 0) \land (j \geq 0)) do
 j := 1;
 while(j <= i)@((sum \geq 0) \land (j \geq 0)) do
 sum := sum + j; j := j + 1;
i := i + 1;
{sum \geq 0}
• \textit{VC}(sum \geq 0, \text{inner loop}):
 • sum \geq 0 \land j \geq 0 \land j > i \rightarrow sum \geq 0
 • sum \geq 0 \land j \geq 0 \land j \leq i \rightarrow sum + j \geq 0 \land j + 1 \geq 0
EXAMPLE

```plaintext
{true}
i := 1;
sum := 0;
while(i <= n)(sum ≥ 0) do
    j := 1;
    while(j <= i)(sum ≥ 0 ∧ j ≥ 0) do
        sum := sum + j; j := j + 1;
    i := i + 1;
{sum ≥ 0}
```

- Final Formula:
 - true → 0 ≥ 0 ∧ VC(sum ≥ 0, outer loop)
ADDING FUNCTIONS TO IMP

\[p = F^* \]
\[F = \text{function } f(x_1, \ldots, x_n)\{c\} \]
\[c = x := \text{exp} \mid x := \text{havoc} \]
\[= | \text{assume}(F) \mid \text{assert}(F) \]
\[= | \text{skip} \mid c; c \mid \text{if}(F) \text{ then } c \text{ else } c \mid \text{while}(F) \text{ do } c \]
\[= | x := f(\text{exp}_1, \ldots, \text{exp}_n) \mid \text{return } \text{exp} \]
MODULAR VERIFICATION

• Each function is annotated with a pre-condition and a post-condition.

• Pre-condition specifies what is expected of the function’s arguments
 • Formula in FOL whose free variables are the formal parameters of the function.

• Post-condition describes the function’s return value
 • Formula in FOL whose free variables are the formal parameters and a special variable called \(ret \).

• Together, pre-condition and post-condition specify a \textit{contract}.
 • If the function is called with values which obey the pre-condition, then the output of the function will obey the post-condition.
VERIFYING FUNCTION CONTRACT

function f(x1,...,xn)
 requires(Pre)
 ensures(Post)
 {Body;}

- The function contract can be verified by proving the validity of the Hoare Triple \{Pre\} Body \{Post\}
VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)
 • \{P\}x := f(e_1, \ldots, e_n)\{Q\}
 • If we can guarantee that the function’s pre-condition holds before the call, then we can assume that the function’s post-condition will hold after the call.
 • We model the function call as follows:
VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)
 • \(\{P\} x := f(e_1, \ldots, e_n)\{Q\} \)

• If we can guarantee that the function’s pre-condition holds before the call, then we can assume that the function’s post-condition will hold after the call.

• We model the function call as follows:

  ```
  assert(Pre[e1/x1,\ldots,en/xn]);
  assume(Post[tmp/ret,e1/x1,\ldots,en/xn]);
  y := tmp;
  ```
VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)
 • \{P\}x := f(e_1, ..., e_n)\{Q\}
 • If we can guarantee that the function’s pre-condition holds before the call, then we can assume that the function’s post-condition will hold after the call.

• We model the function call as follows:

  ```
  assert(Pre[e_1/x_1, ..., e_n/x_n]);
  assume(Post[tmp/ret, e_1/x_1, ..., e_n/x_n]);
  y := tmp;
  ```

• Why do we have to use tmp?

• What is the generated VC?
VERIFYING FUNCTION CALLS

• The function body may have calls to other functions (or even itself)
 • \(\{P\} x := f(e_1, \ldots, e_n) \{Q\} \)
 • If we can guarantee that the function's pre-condition holds before the call, then we can assume that the function's post-condition will hold after the call.

• We model the function call as follows:

assert(Pre[e_1/x_1,\ldots,e_n/x_n]);
assume(Post[tmp/ret,e_1/x_1,\ldots,e_n/x_n]);
y := tmp;

• Why do we have to use \(tmp \)?
• What is the generated VC? \(P \rightarrow (Pre \land (Post \rightarrow Q[tmp/y])) \)
EXAMPLE

FindMax(a, l, u)
 requires(l >= 0 && l <= u && u < |a|)
 ensures(∀i. l <= i <= u → ret >= a[i])
{
 if (l == u)
 return a[l];
 else
 m := FindMax(a, l+1, u);
 if (a[l] > m)
 return a[l];
 else
 return m;
}
EXAMPLE

FindMax(a, l, u)
 requires(l >= 0 && l <= u && u < |a|)
 ensures(∀i. l<=i<=u → ret >= a[i])
{
 if (l == u)
 return a[l];
 else
 assert(Pre[l+1/l]);
 assume(Post[tmp/ret, l+1/l]);
 m := tmp;
 if (a[l] > m)
 return a[l];
 else
 return m;
}
EXAMPLE

\{l \geq 0 \land l \leq u \land u < |a|\}
if (l == u)
 ret := a[l];
else
 assert(Pre[l+1/l]);
 assume(Post[tmp/ret, l+1/l]);
 m := tmp;
 if (a[l] > m)
 ret := a[l];
 else
 ret := m;
\{\forall i. l \leq i \leq u \rightarrow ret \geq a[i]\}

\textit{Pre} \rightarrow (l = u \rightarrow Post[a[l]/ret]) \land
l \neq u \rightarrow Pre[(l + 1)/l]
\land Post[tmp/ret, (l + 1)/l] \rightarrow
(a[l] > tmp \rightarrow Post[a[l]/ret]) \land (a[l] \leq tmp \rightarrow Post[tmp/ret])
EXAMPLE - BINARY SEARCH

BinarySearch(a, l, u, e)
 requires(l >= 0 && u < |a|)
 ensures(ret ↔ ∃i.l ≤ i ≤ u & a[i] == e)
 {
 if (l > u) then
 return false;
 else
 {
 m := (l+u)/2;
 if (a[m] == e) then
 return true;
 else
 {
 if (a[m] < e)
 return BinarySearch(a, m+1, u, e);
 else
 return BinarySearch(a, l, m-1, e);
 }
 }
 }
EXAMPLE - BINARY SEARCH

BinarySearch(a, l, u, e)
 requires(l >= 0 && u < |a| && sorted(a, l, u))
 ensures(ret <= i <= u & a[i] == e)
{
 if (l > u) then
 return false;
 else
 {
 m := (l+u)/2;
 if (a[m] == e) then
 return true;
 else
 {
 if (a[m] < e)
 return BinarySearch(a, m+1, u, e);
 else
 return BinarySearch(a, l, m-1, e);
 }
 }
}

sorted(a, l, u) ⇔ ∀i, j. l ≤ i ≤ j ≤ u → a[i] ≤ a[j]
EXAMPLE - BINARY SEARCH

BinarySearch(a,l,u,e)
 requires(l >= 0 && u < |a| && sorted(a,l,u))
 ensures(ret ← ∃i.l <= i <= u & a[i] == e)
 {
 if (l > u) then
 return false;
 else
 {
 m := (l+u)/2;
 if (a[m]==e) then
 return true;
 else
 {
 if (a[m] < e)
 return BinarySearch(a,m+1,u,e);
 else
 return BinarySearch(a,l,m-1,e);
 }
 }
 }

 sorted(a, l, u) ⇔ ∀i, j.l ≤ i ≤ j ≤ u → a[i] ≤ a[j]

BM CHAPTER 5 CONTAINS THE COMPLETE EXAMPLE
• More Examples (Chapters 5,6)
 • Linear Search
 • Bubble Sort
 • Quick Sort
• A slightly different VC generation procedure
• Heuristics for crafting loop invariants
HANDLING GLOBAL VARIABLES

• If there are global variables shared across functions, then executing a function can cause side effects.
 • Is the previous approach still sound?
• We will use havoc assignments to model side-effects.
• Function contracts now specify global variables which may be modified.

```plaintext
function f(x1,...,xn)
  requires(Pre)
  ensures(Post)
  modifies(v1,...,vm)
  {Body;}
```
HANDLING GLOBAL VARIABLES

- How to check correctness of the function contract?
- $y := f(e_1, \ldots, e_n)$ is replaced by

```plaintext
assert(Pre[e1/x1,\ldots,en/xn]);
v1:=havoc;... vm:=havoc;
assume(Post[tmp/ret,e1/x1,\ldots,en/xn]);
y := tmp;
```
ADDING POINTERS TO IMP

• We add two more program statements:
 • x := *y
 • *x := e

• Consider the following code:
 • {true} x := y; *y := 3; *x := 2; z := *y; \{ z = 3 \}

• Does it satisfy the specification? What is \(wp(z = 3,c) \)?

• We need new rules for assignment statements involving pointers.
HANDLING POINTERS

• We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.

 • $x := *y$ becomes $x := M[y]$

 • $*x := e$ becomes $M := M\langle x\leftarrow e\rangle$

 • $\{ ??? \} x := *y\{ Q \}$

Adapted from Isil Dillig’s Lectures
HANDLING POINTERS

• We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.

 • $x := *y$ becomes $x := M[y]$

 • $*x := e$ becomes $M := M\langle x\triangleleft e\rangle$

 • $\{Q[M[y]/x]\}x := *y\{Q\}$

Adapted from Isil Dillig’s Lectures
HANDLING POINTERS

- We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.
 - $x := *y$ becomes $x := M[y]$
 - $\ast x := e$ becomes $M := M\langle x<e\rangle$
- $\{Q[M[y]/x]\}x := \ast y\{Q\}$
- $\{???\} \ast x := e\{Q\}$

Adapted from Isil Dillig’s Lectures
HANDLING POINTERS

• We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.
 • $x := *y$ becomes $x := M[y]$
 • $*x := e$ becomes $M := M(x < e)$
 • $\{Q[M[y]/x]\} x := *y \{Q\}$
 • $\{Q[M(x < e)/M]\} *x := e \{Q\}$

Adapted from Isil Dillig’s Lectures
HANDLING POINTERS

• We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.
 • $x := *y$ becomes $x := M[y]$
 • $*x := e$ becomes $M := M(x=e)$

• Consider the code again:
 • $\{true\}x := y; \ y := 3; \ *x := 2; \ z := *y; \{z = 3\}$

Adapted from Isil Dillig’s Lectures
HANDLING POINTERS

- We treat the memory as a giant array M, with the pointer variables behaving as indices into the array.

- $x := *y$ becomes $x := M[y]$

- $*x := e$ becomes $M := M\langle x<e\rangle$

- $\{Q[M[y]/x]\}x := *y\{Q\}$

- $\{Q[M\langle x<e\rangle/M]\} *x := e\{Q\}$

- Consider the code again:

 - $\{true\}x := y; *y := 3; *x := 2; z := *y; \{z = 3\}$

 - VC: $true \rightarrow M\langle y < 3\rangle\langle y < 2\rangle[y] = 3$

Adapted from Isil Dillig’s Lectures