
REACHABILITY AND VERIFICATION

• Let be the set of transitions () defined in the previous
slides.

• Is finite?

• Is defined for a specific program or for any program?

• Given a program c, a sequence of transitions
 is called an execution of c.

• A program state is called reachable if there exists an execution
 which ends in the state .

• Verification Problem: Is reachable for some ?

• Program c is called safe if the error state is not reachable.

• What about the initial state?

T ⊆ S × S ↪

T

T c

(σ0, c) ↪ (σ1, c1)… ↪ (σn, cn)

σ
(σ0, c) ↪ … ↪ (σ, cn) σ

(Error, c′) c′

EXAMPLE

assume(i = 0 n 0);

while(i < n) do

 i := i + 1;

assert(i = n);

∧ ≥

• Is reachable?(Error, c′)

PRE/POST-CONDITIONS AND VERIFICATION

• Alternatively, we can express the Verification problem in terms of
pre-conditions and post-conditions.

• A program c satisfies the specification if:

•

• is also called a ‘Hoare Triple’.

• If c satisfies the specification , then we also say that the
Hoare Triple is valid.

{P}c{Q}

∀σ, σ′ . σ ⊨ P ∧ (σ, c) ↪* (σ′ , skip) → σ′ ⊨ Q

{P}c{Q}

{P}c{Q}
{P}c{Q}

TOTAL CORRECTNESS

• Both ways of specifying the verification problem deal with Partial
Correctness

• They only consider terminating executions. Non-terminating
executions trivially satisfy both definitions.

• Total Correctness also requires all program executions to be of
finite length.

• A program c satisfies the specification if

•

[P]c[Q]

∀σ . σ ⊨ P → ∃n, σ′ . (σ, c) ↪n (σ′ , skip) ∧ σ′ ⊨ Q

TOTAL CORRECTNESS

• Both ways of specifying the verification problem deal with Partial
Correctness

• They only consider terminating executions. Non-terminating
executions trivially satisfy both definitions.

• Total Correctness also requires all program executions to be of
finite length.

• A program c satisfies the specification if

•

•

[P]c[Q]

∀σ . σ ⊨ P ⇒ ∃n, σ′ . (σ, c) ↪n (σ′ , skip) ∧ σ′ ⊨ Q
∀σ . ∃n . σ ⊨ P → ¬(∃m, σ′ . m > n ∧ (σ, c) ↪m (σ′ , c′))
∧ ∀σ, σ′ . σ ⊨ P ∧ (σ, c) ↪* (σ′ , skip) → σ′ ⊨ Q

EXAMPLES OF HOARE TRIPLES

• What can be said about the following triples?

•

•

•

•

• Partial and total correctness

• Is valid?

• What about ?

{true} c {Q}

{false} c {Q}

{P} c {true}

{true} c {false}

{x = 0} while(x ≥ 0) do x:=x+1 {x = 1}

[x = 0] while(x ≥ 0) do x:=x+1 [x = 1]

AUTOMATED VERIFICATION

• We will reduce the verification problem to the satisfiability
problem (modulo theories) in FOL.

• First, we will consider the ‘reachability of error states’-based
definition of verification.

• Let us encode the semantics of every individual command in FOL.

• If is the set of variables used in a program c, then an FOL
formula encodes a set of states of the program.

• E.g. If , then the formula encodes the set
of states

V
F[V]

V = {x, y, z} x + y > 0
{(x ↦ m, y ↦ n, z ↦ o) | m + n > 0}

AUTOMATED VERIFICATION

• If , then we will use the FOL formula to
encode the states .

• All states , such that are satisfying
interpretations of formula (with the domain of being

).

• E.g.

• We will a special variable to indicate the state
(obtained after assertion failure). indicates a non-error
state.

(σ, c) ↪ (σ′ , skip) ρ(c)[V, V′]
σ and σ′

σ, σ′ (σ, c) ↪ (σ′ , skip)
ρ(c)[V, V′] σ′

V′

ρ(x:=y+1) ≜ x' = y + 1 ∧ y' = y

error ∈ V Error
error = 0

SEMANTICS IN FOL

For , we define to be the formula

• E.g. ,

Now, the semantics of commands in FOL can be defined as follows:
•
•
•
•

U ⊆ V frame(U) ⋀
v∈V∖U

v' = v

V = {x, y, z} frame(x) ≜ (y' = y) ∧ (z' = z)

ρ(x:=e) ≜ x' = e ∧ frame(x)
ρ(x:=havoc) ≜ frame(x)
ρ(assume(F)) ≜ F ∧ frame(∅)
ρ(assert(F)) ≜ F → frame(∅)

