REACHABILITY AND VERIFICATION

* Let T C S X S be the set of transitions (=) defined in the previous
slides.

e Is T finite?
* Is T defined for a specific program c or for any program?

« Given a program c, a sequence of transitions
(6y, ) = (01,¢p)... < (0,,¢;) is called an execution of c.

« A program state o is called reachable if there exists an execution
(6p,€) & ... & (0, c,) which ends in the state o.

» Verification Problem: Is (Error, c’) reachable for some ¢?
* Program c is called safe if the error state is not reachable.

« What about the initial state?




EXAMPLE

assume(i = 0 A n > 0):
while(i < n) do
Io==-7 1 1=

assert(i = n);

* Is (Error,c’) reachable?




PRE/POST-CONDITIONS AND VERIFICATION

Alternatively, we can express the Verification problem in terms of
pre-conditions and post-conditions.

A program c satisfies the specification {P}c{Q} if:
« Voo ok PA(oe)S" (g, skip) > a FEQO
{P}c{Q} is also called a '"Hoare Triple’.

If c satisfies the specification {P}c{(Q}, then we also say that the
Hoare Triple {P}c{Q} is valid.




TOTAL CORRECTNESS

* Both ways of specifying the verification problem deal with Partial
Correctness

* They only consider terminating executions. Non-terminating
executions trivially satisfy both definitions.

» Total Correctness also requires all program executions to be of
finite length.

« A program c satisfies the specification [P]c[Q] if

e YVo.0F P — dn,o'.(0,c) " (6,skip) Ao’ E QO




TOTAL CORRECTNESS

* Both ways of specifying the verification problem deal with Partial
Correctness

* They only consider terminating executions. Non-terminating
executions trivially satisfy both definitions.

» Total Correctness also requires all program executions to be of
finite length.

« A program c satisfies the specification [P]c[Q] if

/ n / e /
% % 9 9

Yo.dn o BE P —> ~(dme-.m>nAloc)S” (0o,c)
° AVo,06'.6 EPA(0c,c) S* (0,skip) > o' E Q




EXAMPLES OF HOARE TRIPLES

* What can be said about the following triples?

o {true} c {0}
* {false} c { O}
s (P} cdirie]
o {true} c {false}
 Partial and total correctness
e Is {x =0} while(x > 0) do x:=x+1 {x =1} valid?

« What about [x = 0] while(x > 0) do x:=x+1 [x = 1]?




AUTOMATED VERIFICATION

* We will reduce the verification problem to the satisfiability
problem (modulo theories) in FOL.

 First, we will consider the ‘reachability of error states’-based
definition of verification.

* Let us encode the semantics of every individual command in FOL.

 If Vis the set of variables used in a program c, then an FOL
formula F[V] encodes a set of states of the program.

« E.g. If V={x,y,z}, then the formula x + y > 0 encodes the set
of states {(x » m,y—~ n,z— 0) | m+n > 0}




AUTOMATED VERIFICATION

* If (0,c) & (0, skip), then we will use the FOL formula p(c)[V, V'] to
encode the states ¢ and &'

- All states o, ¢/, such that (c,c) & (0, skip) are satisfying
interpretations of formula p(c)[V, V'] (with the domain of ¢’ being
V.

o Eg p(x:=y+1) £ X' = y + 1 /\yl =Yy

We will a special variable error € V to indicate the Error state
(obtained after assertion failure). error = O indicates a non-error
state.




SEMANTICS IN FOL

For U C V, we define frame(U) to be the formula /\ Ve —
veV\U

s FEa Vo | frameg =0l =) o = 2

Now, the semantics of commands in FOL can be defined as follows:
.+ p(x:=e) £ x' = e A frame(X)

. p(x:=havoc) £ frame(x)

o p(assume(F)) £ F A frame(Q)

o p(assert(F)) 2 F — frame(Q)




