
REACHABILITY AND VERIFICATION

• Let  be the set of transitions ( ) defined in the previous 
slides. 

• Is  finite? 

• Is  defined for a specific program  or for any program? 

• Given a program c, a sequence of transitions 
 is called an execution of c. 

• A program state  is called reachable if there exists an execution 
 which ends in the state . 

• Verification Problem: Is  reachable for some ? 

• Program c is called safe if the error state is not reachable. 

• What about the initial state?

T ⊆ S × S ↪

T

T c

(σ0, c) ↪ (σ1, c1)… ↪ (σn, cn)

σ
(σ0, c) ↪ … ↪ (σ, cn) σ

(Error, c′ ) c′ 



EXAMPLE

assume(i = 0  n  0); 

while(i < n) do 

  i := i + 1; 

assert(i = n);  

∧ ≥

• Is  reachable?(Error, c′ )



PRE/POST-CONDITIONS AND VERIFICATION

• Alternatively, we can express the Verification problem in terms of 
pre-conditions and post-conditions. 

• A program c satisfies the specification  if: 

•   

•  is also called a ‘Hoare Triple’.  

• If c satisfies the specification , then we also say that the 
Hoare Triple  is valid.

{P}c{Q}

∀σ, σ′ . σ ⊨ P ∧ (σ, c) ↪* (σ′ , skip) → σ′ ⊨ Q

{P}c{Q}

{P}c{Q}
{P}c{Q}



TOTAL CORRECTNESS

• Both ways of specifying the verification problem deal with Partial 
Correctness 

• They only consider terminating executions. Non-terminating 
executions trivially satisfy both definitions. 

• Total Correctness also requires all program executions to be of 
finite length. 

• A program c satisfies the specification  if 

•

[P]c[Q]

∀σ . σ ⊨ P → ∃n, σ′ . (σ, c) ↪n (σ′ , skip) ∧ σ′ ⊨ Q



TOTAL CORRECTNESS

• Both ways of specifying the verification problem deal with Partial 
Correctness 

• They only consider terminating executions. Non-terminating 
executions trivially satisfy both definitions. 

• Total Correctness also requires all program executions to be of 
finite length. 

• A program c satisfies the specification  if 

•  

•  

[P]c[Q]

∀σ . σ ⊨ P ⇒ ∃n, σ′ . (σ, c) ↪n (σ′ , skip) ∧ σ′ ⊨ Q
∀σ . ∃n . σ ⊨ P → ¬(∃m, σ′ . m > n ∧ (σ, c) ↪m (σ′ , c′ ))
∧ ∀σ, σ′ . σ ⊨ P ∧ (σ, c) ↪* (σ′ , skip) → σ′ ⊨ Q



EXAMPLES OF HOARE TRIPLES

• What can be said about the following triples? 

•  

•  

•  

•  

• Partial and total correctness 

• Is  valid? 

• What about ?

{true} c {Q}

{false} c {Q}

{P} c {true}

{true} c {false}

{x = 0} while(x ≥ 0) do x:=x+1 {x = 1}

[x = 0] while(x ≥ 0) do x:=x+1 [x = 1]



AUTOMATED VERIFICATION

• We will reduce the verification problem to the satisfiability 
problem (modulo theories) in FOL. 

• First, we will consider the ‘reachability of error states’-based 
definition of verification. 

• Let us encode the semantics of every individual command in FOL. 

• If  is the set of variables used in a program c, then an FOL 
formula  encodes a set of states of the program. 

• E.g. If , then the formula  encodes the set 
of states 

V
F[V ]

V = {x, y, z} x + y > 0
{(x ↦ m, y ↦ n, z ↦ o) | m + n > 0}



AUTOMATED VERIFICATION

• If , then we will use the FOL formula  to 
encode the states . 

• All states , such that  are satisfying 
interpretations of formula  (with the domain of  being 

). 

• E.g.  

• We will a special variable  to indicate the  state 
(obtained after assertion failure).  indicates a non-error 
state.

(σ, c) ↪ (σ′ , skip) ρ(c)[V, V′ ]
σ and σ′ 

σ, σ′ (σ, c) ↪ (σ′ , skip)
ρ(c)[V, V′ ] σ′ 

V′ 

ρ(x:=y+1) ≜ x' = y + 1 ∧ y' = y

error ∈ V Error
error = 0



SEMANTICS IN FOL

For , we define  to be the formula  

• E.g. ,   

Now, the semantics of commands in FOL can be defined as follows: 
•  
•  
•  
•

U ⊆ V frame(U) ⋀
v∈V∖U

v' = v

V = {x, y, z} frame(x) ≜ (y' = y) ∧ (z' = z)

ρ(x:=e) ≜ x' = e ∧ frame(x)
ρ(x:=havoc) ≜ frame(x)
ρ(assume(F)) ≜ F ∧ frame(∅)
ρ(assert(F)) ≜ F → frame(∅)


