LAST LECTURE

- Semantic Argument-based method for Validity of FOL Formula
 - Can it be directly used for checking satisfiability of FOL Formula? No. Consider the formula $\forall x . \exists y . p(x, y)$. Applying the proof rules will result in an interpretation which is not satisfying.
- Why do we insist on fresh values in some proof rules?
 - Example in class: $\exists x . \exists y . \exists z . p(x, y) \land \neg p(x, z)$.
- Prenex Normal Form
 - Is $\forall x . \exists y . p(x, y) \Leftrightarrow \exists y . \forall x . p(x, y)$?
 - What about $\forall x . \exists y . p(x) \land q(y)$ and $\exists y . \forall x . p(x) \land q(y)$?

SATISFIABILITY MODULO THEORIES (SMT)

SMT - INTRODUCTION

- In FOL, predicates and functions are in general uninterpreted
- In practice, we may have a specific meaning in mind for certain predicates and functions (e.g. = , ≤ , + , etc.)
- First-order Theories allow us to formalise the meaning of certain structures.

FIRST-ORDER THEORY

- A First-order Theory (T) is defined by two components:
 - Signature (Σ_T) : Contains constant, predicate and function symbols
 - Axioms (A_T) : Set of closed FOL formulae containing only the symbols in Σ_T
- A $\Sigma_T-{\rm formula}$ is a normal FOL formula which only contains symbols from Σ_T

SATISFIABILITY AND VALIDITY MODULO THEORIES

- An interpretation I is called a T-interpretation if it satisfies all the axioms of the theory T
 - For all $A \in A_T$, $I \models A$
- A Σ_T -formula F is satisfiable modulo T if there is a T-interpretation that satisfies F
- A Σ_T -formula F is valid modulo T if every T-interpretation satisfies F
 - Also denoted as $T \models F$

SATISFIABILITY AND VALIDITY MODULO THEORIES

- Which is of the following holds?
 - F is satisfiable \Rightarrow F is satisfiable modulo T
 - F is satisfiable modulo $T \Rightarrow F$ is satisfiable
- Which is of the following holds?
 - F is valid \Rightarrow F is valid modulo T
 - F is valid modulo $T \Rightarrow F$ is valid

COMPLETENESS AND DECIDABILITY

- A theory T is complete if for every closed formula F, either F or ¬F is valid modulo T
 - $T \vDash F$ or $T \vDash \neg F$
- Is FOL (i.e.'empty' theory) complete?
 - No. Consider $F : \exists x . p(x)$. Neither F nor $\neg F$ is valid.
- A theory T is decidable if $T \vDash F$ is decidable for every formula F.
- Even though FOL (or empty theory) is undecidable, various useful theories are actually decidable.

PRESBURGER ARITHMETIC (T_N) THE THEORY OF NATURAL NUMBERS

• Signature, $\Sigma_{\mathbb{N}}$: 0,1, + , =

• 0,1 are constants

• + is a binary function

• = is a binary predicate.

• Axioms:

1.
$$\forall x. \neg (x + 1 = 0)$$
 (zero)
2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)
4. $\forall x. x + 0 = x$ (plus zero)
5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)

PRESBURGER ARITHMETIC

1. $\forall x. \neg (x + 1 = 0)$ 2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ 3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x + 0 = x$ 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (zero) (successor) (induction) (plus zero) (plus successor)

- The intended T_N -interpretation is \mathbb{N} , the set of natural numbers
- Does there exist a finite subset of $\mathbb N$ which is also a $T_{\mathbb N}-$ interpretation?
 - Which axiom will be violated by any finite subset?
- Are negative numbers allowed by the axioms?