PRESBURGER ARITHMETIC (7)
THE THEORY OF NATURAL NUMBERS

e Signature, 2y : 0,1, +, =

*(0,1 are constants
* + is a binary function

* = is a binary predicate.

* Axioms:

. Vz. 2(z+1=0) (zero)
Ve,2yr+1l=y+1 — (successor)
. F[0] A (Vz. Flz| = Flz +1]) — Vz. Flz] (induction)
Vr.z4+ 0=z (plus zero)
Vreyy. x4+ (y+1)=(z+y)+1 (plus successor)




PRESBURGER ARITHMETIC

INTERPRETATION

1. Vz. =(x +1=0) (zero
2. Ve,y.z+1=y+1 — Y successor

xr = (
3. FIO] A (Vz. Flz] — Flx +1]) — V. F|x] (induction
4. V. x+0=x (plus zero
5. Ve,y.z+ (y+1)=(x+y) +1 (plus successor

e The intended Ty—interpretation is N, the set of natural numbers

» Does there exist a finite subset of N which is also a T—
interpretation?

« Which axiom(s) will be violated by any finite subset?

e Are negative numbers allowed by the axioms?




PRESBURGER ARITHMETIC

EXAMPLES

« Examples of X -formulae
s Sy x—=y+ I

e IxF5=Dy

 Can be expressedas (x+x)+(1+1+14+14+1)=(+y)

e Vx.dy.x+f(y) =35 is not a 2 -formula
* How to express x <y and x < y?
e e =0 v= 1t

silr V= 7




PRESBURGER ARITHMETIC

EXPANDING TO THEORY OF INTEGERS

* How to expand the domain to negative numbers?
s v +y=(
- Converted to esi) 4= () — 9 e 0

« Convertedtox,+y, <x,+,

« Converted to Elz.z;éO/\xp+yp+z=xn+y,,




THEORY OF INTEGERS (75)
LINEAR INTEGER ARITHMETIC

LD 02 e 32000 . B ae s o ol
* Signature:

e ..,—2.—1,0.1,2,... are constants

ey — 3+, —2-,2.3-, ... are unary functions to represent
coefficients of variables

+, — are binary functions

« =, <, < are binary predicates.

e Any T,—formula can be converted to a Ty—formula.




PRESBURGER ARITHMETIC

DECIDABILITY

Validity in quantifier-free fragment of Presgurber Arithmetic is decidable
* NP-Complete

Validity in full Presburger Arithmetic is also decidable

» Super Exponential Complexity : 0(22n)

Conjunctions of quantifier-free linear constraints can be solved
efficiently

* Using Simplex Method or Omega test.

Presburger Arithmetic is also complete

* For any closed Ty—formula F, either Ty F For Ty F = F




THEORY OF EQUALITY (7.)

* One of the simplest first-order theories
e X_: All symbols used in FOL and the special symbol =

 Allows uninterpreted functions and predicates, but = is
interpreted.

« Axioms of Equality

l. Ve.z ==z (reflexivity)
2. Vr,y. =y — y==2x (symmetry)
3. Ve, y,z. o=y N y=2 — x =2 (transitivity)




AXIOMS OF EQUALITY

e Function Congruence: For a n-ary function f, two terms f(X) and
f(¥) are equal if X and y are equal:

vZ,7. (/\xz—yz> — f(@)=r{)

e Predicate Congruence: For a n-ary predicate p, two formulas (%)
> : = —
and p(y) are equivalent if X and y are equal:

VI, 7. (/\ T; = yz> — (p(T) < p(¥))




AXIOMS OF EQUALITY

* Function Congruence and Predicate Congruence are actually
Axiom Schemes, which can be instantiated with any function or
predicate to get axioms.

 Similar to the induction axiom scheme in Presburger arithmetic.

* For example, for a unary function g, the function congruence
axiom is:

* Vx,y.x=y — glx)=g)




SEMANTIC ARGUMENT METHOD IN T_

We can use the semantic argument method to prove validity
modulo 7_.

Along with the usual proof rules, axioms of equality can be used
to derive facts.

As usual, we look for a contradiction in all branches.




EXAMPLE

Provethat F:a=bAb=c — g(f(a),b) = g(f(c),a) is valid

assumption

’
, —

, (transitivity)
funct|on congruence)
wmmaw)

, 8 (function congruence)
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DECIDABILITY OF VALIDITY IN T_

e T_ being an extension of FOL, the validity problem is clearly
undecidable.

- However, validaty in the quantifier-free fragment of 7_ is
decidable, but NP-complete.

¢ Conjunctions of quantifier-free equality constraints can be solved
efficiently.

e Congruence closure algorithm can be used to decide
satisfiability of conjunctions of equality constraints in
polynomial time




THEORY OF RATIONALS

Theory of Rationals (7)
Also called Linear Real Arithmetic.
Same symbols as Presburger arithmetic, but many more axioms.
* Interpretation is R.
Example: dx. 2x = 3. Satisfiable in Tj,.

* Is it satisfiable in T,?

Conjunctive quantifier-free fragment is efficiently decidable in
polynomial time.




THEORIES ABOUT DATA STRUCTURES

« So far, we have looked at theories of numbers and arithmetic.

» But, we can also formalize behaviour of data structures using
theories.

« Very useful for automated verification




THEORY OF ARRAYS (7,)

Signatire, 2, > [ =] | - <1 ), —
ali] is a binary function

* Read array a at index i

* Returns the value read.

a(i < v) is a ternary function

* Write value v at index i in array a

* Returns the modified array.

= is a binary predicate




EXAMPLES

. (@2 <5)2]=5

e Write the value 5 at index 2 in array a, then from the resulting
array, the value at index 2 is 5.

* (a2 25))[2] =3

« Write the value 5 at index 2 in array a, then from the resulting
array, the value at index 2 is 3.

« According to the usual semantics of arrays, which of the formulae
is valid/sat/unsat?




AXIOMS OF 7,

The axioms of 7, include reflexivity, symmetry and transitivity
axioms of T_.

Array Congruence:

e Vaiji—7 > alil=a]

Read over Write 1:

s Na i Lri=]i > aid <Al =V
Read over Write 2:

s Yailivitis al<y)il=alj]




EXAMPLE

Prove that I : Va,i,e.a[i] = e — Vj.a{i < e)[j] = a[j] is valid

{E
T EY .l <e)]] =al 7
1 Fali <e)lj] # aljl
L Ei=j

1 Eali < e)]]
A Fal(i<e)l]]
1 E ali] = alj]
1 FEali <e)[j]
LEd

2
3
4
5
6
7/
8
9

I Ealil]=e

assumption, —
assumption, —

2N ED,
3,contra-positive of ROW-2
4,ROW-1

1,5,transitivity of =

4,Array Congruence

6,7 ,transitivity of =

3.8,contradiction




DECIDABILITY IN T,

« The validity problem in 7, is not decidable.

« Any formula in FOL can be encoded as an equisatisfiable 7,—
formula (How?).

« Quantifier-free fragment of 7, is decidable.

* Unfortunately, this only allows us to express properties about
specific elements of the array.

 Richer Fragments of T, are also decidable.

 Array Property Fragment, which allows (syntactically restricted)
formulae with universal quantification over index variables.




QUANTIFIER-FREE FRAGMENT OF FOL

Formula constructed using FOL syntax, but without quantifiers.
 All variables are free.

For the satisfiability problem, we assume implicit existential
quantification of all variables.

For the validity problem, we assume implicit universal quantification
of all variables.

 Validity and Satisfiability are still duals: For a quantifier-free F,
V* Fis valid iff 3%.=F is unsatisfiable.

Any quantifier-free FOL formula can be converted to a PL formula.
(How?)

Hence, Validity is decidable and NP-complete.




OTHER COMMON THEORIES

* Many more theories..
* Theory of bit-vectors
* Theory of Lists
* Theory of Heap

* The aim is to build efficient decision procedures for the
satisfiability modulo theory problem.




COMBINATION OF THEORIES

« We talked about individual theories: T_, T\, T,, 7}, ..., each

imposing different restrictions on the symbols used in a FOL
formula.

* However, in practice, we may have FOL formulae which combine
symbols across theories.

» Consider the formula: x" = f(x) + 1.
« Which theories are used in this formula?

e« T,and T_




COMBINED THEORIES

* Given two theories 7| and 75, such that 2, N2, = { = }, the combined
theory T, U T, is defined as follows:

 Signature: 2, U 2,

* Axioms: A UA,

Consider the following formula:

* 1 <xAxZ2Af() # (1) Af(x) # f(2)
s it well-formed in T_ U T?
Is it valid/sat/unsat in T_ U T?

How about in 7_7?




DECISION PROCEDURE FOR COMBINED THEORIES

Given decision procedures for individual theories T} and 75, can we
decide satisfiability modulo T; U 7,7

In the 1980s, Nelson and Oppen invented a general methodology
for combined theories.

Given theories T} and T, such that X, N %, = { =}, if

1. satisfiability in quantifier-free fragment of T is decidable,

2. satisfiability in quantifier-free fragment of 7, is decidable,

3. certain other technical requirements are met,

then, satisfiability in quantifier-free fragment of 7| U T, is decidable.




DECISION PROCEDURE FOR COMBINED THEORIES

Further, if the decision procedures for T; and T, are in P (resp.
NP), then the combined decision procedure for 7, U T, is also in P
(resp. NP).

Another example:

s f(f)—fON)#f) A x<y A y+z<x Az=>0

Theories? Sat/Unsat/Valid?




DECIDABLE FRAGMENTS OF FOL

* Monadic First Order Logic: Only allows unary predicates (i.e. arity
is 1), disallows any function symbols.

* Monadic First Order Logic is decidable.

« Bernays-Schonfinkel Class: Does not allow function symbols.
Further all quantified formulae must be of the form:

Epired vk R B G abe Sl e R )
« Bernays-Schonfinkel Class is decidable.

 Also called Effectively Propositional Logic.




