
THE THEORY OF NATURAL NUMBERS

PRESBURGER ARITHMETIC ( )Tℕ

• Signature,  

•  are constants 
• + is a binary function 
• = is a binary predicate. 

• Axioms:

Σℕ : 0,1, + , =

0,1



INTERPRETATION

PRESBURGER ARITHMETIC

• The intended interpretation is , the set of natural numbers 

• Does there exist a finite subset of  which is also a 
interpretation? 

• Which axiom(s) will be violated by any finite subset? 

• Are negative numbers allowed by the axioms?

Tℕ− ℕ

ℕ Tℕ−



EXAMPLES

PRESBURGER ARITHMETIC

• Examples of -formulae 

•  

•  

• Can be expressed as  

•  is not a -formula 

• How to express ? 

•  

•

Σℕ

∀x . ∃y . x = y + 1

3x + 5 = 2y

(x + x) + (1 + 1 + 1 + 1 + 1) = (y + y)

∀x . ∃y . x + f(y) = 5 Σℕ

x < y and x ≤ y

∃z . z ≠ 0 ∧ y = x + z

∃z . y = x + z



EXPANDING TO THEORY OF INTEGERS

PRESBURGER ARITHMETIC

• How to expand the domain to negative numbers? 

•   

• Converted to  

• Converted to  

• Converted to 

x + y < 0

(xp − xn) + (yp − yn) < 0

xp + yp < xn + yn

∃z . z ≠ 0 ∧ xp + yp + z = xn + yn



• Signature: 

•  are constants 

•  are unary functions to represent 
coefficients of variables 

•  are binary functions 

• are binary predicates.  

• Any formula can be converted to a formula.

…, − 2, − 1,0,1,2,…

…, − 3·, − 2·,2·,3·, …

+, −

= , < , ≤

Tℤ− Tℕ−

{…, − 2, − 1,0,1,2,…} ∪ {…, − 3·, − 2·,2·,3·, …} ∪ { + , − , = , < , ≤ }
SIGNATURE:

THEORY OF INTEGERS ( )Tℤ
LINEAR INTEGER ARITHMETIC



DECIDABILITY

PRESBURGER ARITHMETIC

• Validity in quantifier-free fragment of Presgurber Arithmetic is decidable 

• NP-Complete 

• Validity in full Presburger Arithmetic is also decidable 

• Super Exponential Complexity :  

• Conjunctions of quantifier-free linear constraints can be solved 
efficiently 

• Using Simplex Method or Omega test. 

• Presburger Arithmetic is also complete 

• For any closed formula , either 

O(22n)

Tℕ− F Tℕ ⊨ F or Tℕ ⊨ ¬F



THEORY OF EQUALITY ( )T=

• One of the simplest first-order theories 

•  : All symbols used in FOL and the special symbol  

• Allows uninterpreted functions and predicates, but  is 
interpreted. 

• Axioms of Equality

Σ= =

=



AXIOMS OF EQUALITY

• Function Congruence: For a n-ary function , two terms  and 
 are equal if  and  are equal: 

• Predicate Congruence: For a n-ary predicate , two formulas  
and  are equivalent if  and  are equal:

f f( x )
f( y ) x y

p p( x )
p( y ) x y



AXIOMS OF EQUALITY

• Function Congruence and Predicate Congruence are actually 
Axiom Schemes, which can be instantiated with any function or 
predicate to get axioms. 

• Similar to the induction axiom scheme in Presburger arithmetic. 

• For example, for a unary function , the function congruence 
axiom is: 

•

g

∀x, y . x = y → g(x) = g(y)



SEMANTIC ARGUMENT METHOD IN T=

• We can use the semantic argument method to prove validity 
modulo . 

• Along with the usual proof rules, axioms of equality can be used 
to derive facts. 

• As usual, we look for a contradiction in all branches.

T=



EXAMPLE

Prove that  is valid F : a = b ∧ b = c → g( f(a), b) = g( f(c), a)



DECIDABILITY OF VALIDITY IN T=

•  being an extension of FOL, the validity problem is clearly 
undecidable. 

• However, validaty in the quantifier-free fragment of  is 
decidable, but NP-complete. 

• Conjunctions of quantifier-free equality constraints can be solved 
efficiently. 

• Congruence closure algorithm can be used to decide 
satisfiability of conjunctions of equality constraints in 
polynomial time

T=

T=



THEORY OF RATIONALS

• Theory of Rationals ( ) 

• Also called Linear Real Arithmetic. 

• Same symbols as Presburger arithmetic, but many more axioms.  

• Interpretation is . 

• Example: . Satisfiable in . 

• Is it satisfiable in ? 

• Conjunctive quantifier-free fragment is efficiently decidable in 
polynomial time.

Tℚ

ℝ

∃x . 2x = 3 Tℚ

Tℤ



THEORIES ABOUT DATA STRUCTURES

• So far, we have looked at theories of numbers and arithmetic. 

• But, we can also formalize behaviour of data structures using 
theories. 

• Very useful for automated verification



THEORY OF ARRAYS ( )TA

• Signature,  

•  is a binary function 

• Read array  at index  

• Returns the value read. 

•  is a ternary function 

• Write value  at index  in array  

• Returns the modified array. 

•  is a binary predicate

ΣA : { ⋅ [ ⋅ ], ⋅ ⟨ ⋅ ⊲ ⋅ ⟩, = }

a[i]

a i

a⟨i ⊲ v⟩

v i a

=



EXAMPLES

•  

• Write the value 5 at index 2 in array , then from the resulting 
array, the value at index 2 is 5. 

•  

• Write the value 5 at index 2 in array , then from the resulting 
array, the value at index 2 is 3. 

• According to the usual semantics of arrays, which of the formulae 
is valid/sat/unsat?

(a⟨2 ⊲ 5⟩)[2] = 5

a

(a⟨2 ⊲ 5⟩)[2] = 3

a



AXIOMS OF TA

• The axioms of  include reflexivity, symmetry and transitivity 
axioms of . 

• Array Congruence: 

•  

• Read over Write 1: 

•  

• Read over Write 2: 

•

TA
T=

∀a, i, j . i = j → a[i] = a[ j]

∀a, i, j, v . i = j → a⟨i ⊲ v⟩[ j] = v

∀a, i, j, v . i ≠ j → a⟨i ⊲ v⟩[ j] = a[ j]



EXAMPLE

Prove that  is valid F : ∀a, i, e . a[i] = e → ∀j . a⟨i ⊲ e⟩[ j] = a[ j]

1.                                 
2.           
3.                
4.                                      
5.                    
6.                
7.                           
8.               
9.                                       

I ⊨ a[i] = e assumption, →
I ⊭ ∀j . a⟨i ⊲ e⟩[ j] = a[ j] assumption, →
I1 ⊨ a⟨i ⊲ e⟩[ j] ≠ a[ j] 2,∀, j ∈ DI
I1 ⊨ i = j 3,contra-positive of ROW-2
I1 ⊨ a⟨i ⊲ e⟩[ j] = e 4,ROW-1
I1 ⊨ a⟨i ⊲ e⟩[ j] = a[i] 1,5,transitivity of =
I1 ⊨ a[i] = a[ j] 4,Array Congruence
I1 ⊨ a⟨i ⊲ e⟩[ j] = a[ j] 6,7,transitivity of =
I1 ⊨ ⊥ 3,8,contradiction



DECIDABILITY IN TA

• The validity problem in  is not decidable. 

• Any formula in FOL can be encoded as an equisatisfiable 
formula (How?).  

• Quantifier-free fragment of  is decidable. 

• Unfortunately, this only allows us to express properties about 
specific elements of the array. 

• Richer Fragments of  are also decidable. 

• Array Property Fragment, which allows (syntactically restricted) 
formulae with universal quantification over index variables.

TA

TA−

TA

TA



QUANTIFIER-FREE FRAGMENT OF FOL

• Formula constructed using FOL syntax, but without quantifiers. 

• All variables are free. 

• For the satisfiability problem, we assume implicit existential 
quantification of all variables. 

• For the validity problem, we assume implicit universal quantification 
of all variables. 

• Validity and Satisfiability are still duals: For a quantifier-free , 
 is valid iff  is unsatisfiable. 

• Any quantifier-free FOL formula can be converted to a PL formula. 
(How?) 

• Hence, Validity is decidable and NP-complete.

F
∀ * .F ∃ * . ¬F



OTHER COMMON THEORIES

• Many more theories.. 

• Theory of bit-vectors 

• Theory of Lists 

• Theory of Heap 

• … 

• The aim is to build efficient decision procedures for the 
satisfiability modulo theory problem.



COMBINATION OF THEORIES

• We talked about individual theories: , each 
imposing different restrictions on the symbols used in a FOL 
formula. 

• However, in practice, we may have FOL formulae which combine 
symbols across theories. 

• Consider the formula: . 

• Which theories are used in this formula? 

•  

T=, Tℕ, Tℤ, TA, …

x′ = f(x) + 1

Tℤ and T=



COMBINED THEORIES

• Given two theories  and , such that , the combined 
theory  is defined as follows: 

• Signature:  

• Axioms:  

• Consider the following formula: 

•  

• Is it well-formed in ? 

• Is it valid/sat/unsat in ?  

• How about in ?

T1 T2 Σ1 ∩ Σ2 = { = }
T1 ∪ T2

Σ1 ∪ Σ2

A1 ∪ A2

1 ≤ x ∧ x ≤ 2 ∧ f(x) ≠ f(1) ∧ f(x) ≠ f(2)

T= ∪ Tℕ

T= ∪ Tℕ

T=



DECISION PROCEDURE FOR COMBINED THEORIES

• Given decision procedures for individual theories  and , can we 
decide satisfiability modulo ? 

• In the 1980s, Nelson and Oppen invented a general methodology 
for combined theories. 

• Given theories  and  such that , if  

1. satisfiability in quantifier-free fragment of  is decidable, 

2. satisfiability in quantifier-free fragment of  is decidable, 

3. certain other technical requirements are met, 

• then, satisfiability in quantifier-free fragment of  is decidable.

T1 T2
T1 ∪ T2

T1 T2 Σ1 ∩ Σ2 = { = }

T1

T2

T1 ∪ T2



DECISION PROCEDURE FOR COMBINED THEORIES

• Further, if the decision procedures for  and  are in P (resp. 
NP), then the combined decision procedure for  is also in P 
(resp. NP). 

• Another example:  

•  

• Theories? Sat/Unsat/Valid?

T1 T2
T1 ∪ T2

f( f(x) − f(y)) ≠ f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0



DECIDABLE FRAGMENTS OF FOL

• Monadic First Order Logic: Only allows unary predicates (i.e. arity 
is 1), disallows any function symbols. 

• Monadic First Order Logic is decidable. 

• Bernays-Schönfinkel Class: Does not allow function symbols. 
Further all quantified formulae must be of the form: 

. 

• Bernays-Schönfinkel Class is decidable. 

• Also called Effectively Propositional Logic.

∃x1, …, xn . ∀y1, …, ym . F(x1, …, xn, y1, …, ym)


