PRESBURGER ARITHMETIC (T_N) THE THEORY OF NATURAL NUMBERS

• Signature, $\Sigma_{\mathbb{N}}$: 0,1, + , =

• 0,1 are constants

• + is a binary function

= is a binary predicate. Axioms:

1.
$$\forall x. \neg (x + 1 = 0)$$
 (zero)
2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)
4. $\forall x. x + 0 = x$ (plus zero)
5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)

PRESBURGER ARITHMETIC

1. $\forall x. \neg (x+1=0)$ 2. $\forall x, y. x+1=y+1 \rightarrow x=y$ 3. $F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x+0=x$ 5. $\forall x, y. x+(y+1)=(x+y)+1$

(zero) (successor) (induction) (plus zero) (plus successor)

- The intended T_N -interpretation is \mathbb{N} , the set of natural numbers
- Does there exist a finite subset of $\mathbb N$ which is also a $T_{\mathbb N}-$ interpretation?
 - Which axiom(s) will be violated by any finite subset?
- Are negative numbers allowed by the axioms?

PRESBURGER ARITHMETIC

EXAMPLES

- Examples of Σ_N -formulae
 - $\forall x . \exists y . x = y + 1$
 - 3x + 5 = 2y
 - Can be expressed as (x + x) + (1 + 1 + 1 + 1) = (y + y)
 - $\forall x . \exists y . x + f(y) = 5$ is not a $\Sigma_{\mathbb{N}}$ -formula
- How to express x < y and $x \le y$?
 - $\exists z \, . \, z \neq 0 \land y = x + z$
 - $\exists z . y = x + z$

PRESBURGER ARITHMETIC EXPANDING TO THEORY OF INTEGERS

- How to expand the domain to negative numbers?
 - x + y < 0
 - Converted to $(x_p x_n) + (y_p y_n) < 0$
 - Converted to $x_p + y_p < x_n + y_n$
 - Converted to $\exists z \, . \, z \neq 0 \land x_p + y_p + z = x_n + y_n$

THEORY OF INTEGERS $(T_{\mathbb{Z}})$

LINEAR INTEGER ARITHMETIC

SIGNATURE:

- $\{\ldots, -2, -1, 0, 1, 2, \ldots\} \cup \{\ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots\} \cup \{+, -, =, <, \leq\}$
 - Signature:
 - ..., − 2, − 1,0,1,2,... are constants
 - ..., −3·, −2·,2·,3·, ... are unary functions to represent coefficients of variables
 - +, are binary functions
 - = , < , \leq are binary predicates.
 - Any $T_{\mathbb{Z}}$ -formula can be converted to a $T_{\mathbb{N}}$ -formula.

PRESBURGER ARITHMETIC DECIDABILITY

- Validity in quantifier-free fragment of Presgurber Arithmetic is decidable
 - NP-Complete
- Validity in full Presburger Arithmetic is also decidable
 - Super Exponential Complexity : $O(2^{2^n})$
- Conjunctions of quantifier-free linear constraints can be solved efficiently
 - Using Simplex Method or Omega test.
- Presburger Arithmetic is also complete
 - For any closed $T_{\mathbb{N}}$ -formula F, either $T_{\mathbb{N}} \vDash F$ or $T_{\mathbb{N}} \vDash \neg F$

THEORY OF EQUALITY $(T_{=})$

- One of the simplest first-order theories
 - $\Sigma_{=}$: All symbols used in FOL and the special symbol =
 - Allows uninterpreted functions and predicates, but = is interpreted.
- Axioms of Equality

1. $\forall x. \ x = x$ 2. $\forall x, y. \ x = y \rightarrow y = x$ 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (reflexivity) (symmetry) (transitivity)

AXIOMS OF EQUALITY

• Function Congruence: For a n-ary function f, two terms $f(\vec{x})$ and $f(\vec{y})$ are equal if \vec{x} and \vec{y} are equal:

$$\forall \overline{x}, \overline{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \to f(\overline{x}) = f(\overline{y})$$

• Predicate Congruence: For a n-ary predicate p, two formulas $p(\vec{x})$ and $p(\vec{y})$ are equivalent if \vec{x} and \vec{y} are equal:

$$\forall \overline{x}, \overline{y}. \ \left(\bigwedge_{i=1}^n x_i = y_i \right) \ \to \ \left(p(\overline{x}) \leftrightarrow p(\overline{y}) \right)$$

AXIOMS OF EQUALITY

- Function Congruence and Predicate Congruence are actually Axiom Schemes, which can be instantiated with any function or predicate to get axioms.
 - Similar to the induction axiom scheme in Presburger arithmetic.
- For example, for a unary function g, the function congruence axiom is:

•
$$\forall x, y \, x = y \rightarrow g(x) = g(y)$$

SEMANTIC ARGUMENT METHOD IN $T_{=}$

- We can use the semantic argument method to prove validity modulo $T_{=}$.
- Along with the usual proof rules, axioms of equality can be used to derive facts.
- As usual, we look for a contradiction in all branches.

EXAMPLE

Prove that $F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$ is valid

1.
$$I \not\models F$$
 assumption
2. $I \not\models a = b \land b = c$
3. $I \not\models g(f(a), b) = g(f(c), a)$
4. $I \not\models a = b$
5. $I \not\models b = c$
6. $I \not\models a = c$
7. $I \not\models f(a) = f(c)$
8. $I \not\models b = a$
9. $I \not\models g(f(a), b) = g(f(c), a)$
10. $I \not\models \bot$
3. $g(f(a), b) = g(f(c), a)$
3. $g(f(a), b) = g(f(a), b) = g(f(c), a)$

DECIDABILITY OF VALIDITY IN $T_{=}$

- $T_{=}$ being an extension of FOL, the validity problem is clearly undecidable.
- However, validaty in the quantifier-free fragment of $T_{=}$ is decidable, but NP-complete.
- Conjunctions of quantifier-free equality constraints can be solved efficiently.
 - Congruence closure algorithm can be used to decide satisfiability of conjunctions of equality constraints in polynomial time

THEORY OF RATIONALS

- Theory of Rationals $(T_{\mathbb{Q}})$
 - Also called Linear Real Arithmetic.
 - Same symbols as Presburger arithmetic, but many more axioms.
 - Interpretation is \mathbb{R} .
 - Example: $\exists x . 2x = 3$. Satisfiable in $T_{\mathbb{Q}}$.
 - Is it satisfiable in $T_{\mathbb{Z}}$?
 - Conjunctive quantifier-free fragment is efficiently decidable in polynomial time.

THEORIES ABOUT DATA STRUCTURES

- So far, we have looked at theories of numbers and arithmetic.
- But, we can also formalize behaviour of data structures using theories.
 - Very useful for automated verification

THEORY OF ARRAYS (T_A)

- Signature, $\Sigma_A : \{ \cdot [\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle, = \}$
- *a*[*i*] is a binary function
 - Read array *a* at index *i*
 - Returns the value read.
- $a\langle i \triangleleft v \rangle$ is a ternary function
 - Write value v at index i in array a
 - Returns the modified array.
- = is a binary predicate

EXAMPLES

- $(a\langle 2 \triangleleft 5 \rangle)[2] = 5$
 - Write the value 5 at index 2 in array *a*, then from the resulting array, the value at index 2 is 5.
- $(a\langle 2 \triangleleft 5 \rangle)[2] = 3$
 - Write the value 5 at index 2 in array *a*, then from the resulting array, the value at index 2 is 3.
- According to the usual semantics of arrays, which of the formulae is valid/sat/unsat?

AXIOMS OF T_A

- The axioms of T_A include reflexivity, symmetry and transitivity axioms of $T_{=}$.
- Array Congruence:
 - $\forall a, i, j \, : i = j \rightarrow a[i] = a[j]$
- Read over Write 1:
 - $\forall a, i, j, v \, : \, i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$
- Read over Write 2:
 - $\forall a, i, j, v \, : i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$

EXAMPLE

Prove that $F : \forall a, i, e . a[i] = e \rightarrow \forall j . a \langle i \triangleleft e \rangle [j] = a[j]$ is valid

1. $I \models a[i] = e$ 2. $I \not\models \forall j . a \langle i \triangleleft e \rangle [j] = a[j]$ 3. $I_1 \models a \langle i \triangleleft e \rangle [j] \neq a[j]$ 4. $I_1 \models i = j$ 5. $I_1 \models a \langle i \triangleleft e \rangle [j] = e$ 6. $I_1 \models a \langle i \triangleleft e \rangle [j] = a[i]$ 7. $I_1 \models a[i] = a[j]$ 8. $I_1 \models a \langle i \triangleleft e \rangle [j] = a[j]$ 9. $I_1 \models \bot$

assumption, \rightarrow assumption, \rightarrow 2, \forall , $j \in D_I$ 3,contra-positive of ROW-2 4,ROW-1 1,5,transitivity of = 4,Array Congruence 6,7,transitivity of = 3,8,contradiction

DECIDABILITY IN T_A

- The validity problem in T_A is not decidable.
 - Any formula in FOL can be encoded as an equisatisfiable T_A formula (How?).
- Quantifier-free fragment of T_A is decidable.
 - Unfortunately, this only allows us to express properties about specific elements of the array.
- Richer Fragments of T_A are also decidable.
 - Array Property Fragment, which allows (syntactically restricted) formulae with universal quantification over index variables.

QUANTIFIER-FREE FRAGMENT OF FOL

- Formula constructed using FOL syntax, but without quantifiers.
 - All variables are free.
- For the satisfiability problem, we assume implicit existential quantification of all variables.
- For the validity problem, we assume implicit universal quantification of all variables.
 - Validity and Satisfiability are still duals: For a quantifier-free F, $\forall * .F$ is valid iff $\exists * . \neg F$ is unsatisfiable.
- Any quantifier-free FOL formula can be converted to a PL formula. (How?)
- Hence, Validity is decidable and NP-complete.

OTHER COMMON THEORIES

- Many more theories..
 - Theory of bit-vectors
 - Theory of Lists
 - Theory of Heap

• The aim is to build efficient decision procedures for the satisfiability modulo theory problem.

COMBINATION OF THEORIES

- We talked about individual theories: $T_{=}, T_{\mathbb{N}}, T_{\mathbb{Z}}, T_{A}, \ldots$, each imposing different restrictions on the symbols used in a FOL formula.
- However, in practice, we may have FOL formulae which combine symbols across theories.
- Consider the formula: x' = f(x) + 1.
 - Which theories are used in this formula?
 - $T_{\mathbb{Z}}$ and $T_{=}$

COMBINED THEORIES

- Given two theories T₁ and T₂, such that Σ₁ ∩ Σ₂ = { = }, the combined theory T₁ ∪ T₂ is defined as follows:
 - Signature: $\Sigma_1 \cup \Sigma_2$
 - Axioms: $A_1 \cup A_2$
- Consider the following formula:
 - $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
 - Is it well-formed in $T_{=} \cup T_{\mathbb{N}}$?
 - Is it valid/sat/unsat in $T_{=} \cup T_{\mathbb{N}}$?
 - How about in *T*₌?

DECISION PROCEDURE FOR COMBINED THEORIES

- Given decision procedures for individual theories T_1 and T_2 , can we decide satisfiability modulo $T_1 \cup T_2$?
- In the 1980s, Nelson and Oppen invented a general methodology for combined theories.
- Given theories T_1 and T_2 such that $\Sigma_1 \cap \Sigma_2 = \{ = \}$, if
 - 1. satisfiability in quantifier-free fragment of T_1 is decidable,
 - 2. satisfiability in quantifier-free fragment of T_2 is decidable,
 - 3. certain other technical requirements are met,
- then, satisfiability in quantifier-free fragment of $T_1 \cup T_2$ is decidable.

DECISION PROCEDURE FOR COMBINED THEORIES

- Further, if the decision procedures for T_1 and T_2 are in P (resp. NP), then the combined decision procedure for $T_1 \cup T_2$ is also in P (resp. NP).
- Another example:
 - $f(f(x) f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land z \geq 0$
- Theories? Sat/Unsat/Valid?

DECIDABLE FRAGMENTS OF FOL

- Monadic First Order Logic: Only allows unary predicates (i.e. arity is 1), disallows any function symbols.
 - Monadic First Order Logic is decidable.
- Bernays-Schönfinkel Class: Does not allow function symbols. Further all quantified formulae must be of the form: $\exists x_1, ..., x_n . \forall y_1, ..., y_m . F(x_1, ..., x_n, y_1, ..., y_m).$
 - Bernays-Schönfinkel Class is decidable.
 - Also called Effectively Propositional Logic.