
LAST LECTURE

• Bounded Model Checking of Programs by reduction to SMT

• Assignment to variables replaced by equality predicate, arithmetic
operators replaced by corresponding functions/predicates in LIA.

Z3

INTRODUCTION

• Z3 is a constraint-solver/theorem-prover developed at Microsoft
Research.

• Basic Operation:

• It takes as input a formula [PL/FOL/SMT].

• Outputs SAT/UNSAT.

• Supports a whole range of theories (including all theories we have
seen).

• Open-source (written in C++)

• Latest version available at Z3 Github page (https://github.com/
Z3Prover/z3).

INPUT/OUTPUT FORMAT

1. APIs for Python, C++, Java, etc.

• API functions for declaring variables, constants, predicates,
functions, and for constructing formula.

• API functions for accessing a satisfying interpretation (in case of
SAT).

2. SMT-LIB 2.0

• Standard input format for all SMT solvers

• Formula written in SMT-LIB 2.0 can be directly provided to the
Z3 executable.

INPUT FORMAT

• Z3 expects input formula in Many Sorted First Order Logic
(MSFOL).

• ‘sort’ is similar to type. Variables, constants, functions,
predicates must be given appropriate types.

• Built-in sorts: Bool, Integer, Real, Array,…

• Users can also define new sorts.

SMT-LIB EXAMPLE

 year0 = 2008 ⋀
 g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀

 g1 = (IsLeapYear(year0)) ⋀
 g2 = (days0 > 366)) ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 && g2, days1,
days0)⋀
year2 = ite(g1 && g2, year1,
year0)⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3)
⋀
year4 = ite(g1, year2, year3)
⋀
(¬(days4 < oldDays0)⋁
¬(days4 <= 365))

(declare-const year0 Int)
(declare-const g0 Bool)
(declare-fun IsLeapYear (Int)
Bool)
.
.
(assert (= year0 2008))
(assert (= g0 (> days0 365)))
.
.
(assert (or (not (< days4
oldDays0)) (not (<= days4
365))))

(check-sat)
(get-model)

TUTORIALS

• For SMT-LIB

• https://rise4fun.com/Z3/tutorial/guide

• For Python API

• http://theory.stanford.edu/~nikolaj/programmingz3.html

• Download, Installation instructions

• https://github.com/Z3Prover/z3

TOPICS NOT COVERED

• Decision procedures for various theories

• First-Order Logic Normal Forms (Clausal Normal Form, Skolem
Normal Form), FOL Resolution.

• Nelson-Oppen Method, DPLL(T)

• Extensions of FOL for Verification: Linear Temporal Logic,
Computational Tree Logic

COURSE STRUCTURE

• Propositional Logic, SAT solving, DPLL
• First-Order Logic, SMT
• First-Order Theories

CONSTRAINT
SOLVERS

DEDUCTIVE
VERIFICATION

• Operational Semantics
• Strongest Post-condition, Weakest Pre-

condition
• Hoare Logic

MODEL CHECKING AND
OTHER VERIFICATION

TECHNIQUES

• Predicate Abstraction, CEGAR
• Abstract Interpretation
• Property-directed Reachability
• …

FORMAL SPECIFICATION
AND VERIFICATION OF

PROGRAMS

INTRODUCTION

• So far we have seen…

• Syntax, Semantics for Propositional Logic and First-Order Logic
and (some examples of) Decision Procedures for Validity/
Satisfiability

• Underlying engine for Deductive Verification of programs

• Now we will study some well-known schemes to reduce the
automated verification problem to the satisfiability problem in
first-order logic.

OVERVIEW

AUTOMATED VERIFICATION

DEDUCTIVE
VERIFIER

PROGRAM

SPECIFICATION

SMT SOLVER/
THEOREM
PROVERFOL FORMULA

VERIFIED

COUNTER
EXAMPLE

OVERVIEW

AUTOMATED VERIFICATION

DEDUCTIVE
VERIFIER

PROGRAM

SPECIFICATION

SMT SOLVER/
THEOREM
PROVERFOL FORMULA

VERIFIED

COUNTER
EXAMPLE

• Assertions
• Pre-conditions/Post-conditions
• Invariants
• …

A SMALL IMPERATIVE PROGRAMMING LANGUAGE

IMP

• Let be a set of program variables

• Let be the set of linear expressions, and be the set of
linear formulae over

• are terms in Linear Real Arithmetic

• are formulae in Linear Real Arithmetic

• Examples

•

•

V

Exp(V) Σ(V)
V

Exp(V)

Σ(V)

3x + 2y ∈ Exp({x, y})

x ≤ y + z ∧ z = w ∈ Σ({x, y, z, w})

IMP
A SMALL IMPERATIVE PROGRAMMING LANGUAGE

𝚌 = 𝚡 := 𝚎𝚡𝚙 | 𝚡 := 𝚑𝚊𝚟𝚘𝚌
= | 𝚊𝚜𝚜𝚞𝚖𝚎(𝙵) | 𝚊𝚜𝚜𝚎𝚛𝚝(𝙵)
= | 𝚜𝚔𝚒𝚙 | 𝚌; 𝚌 | 𝚒𝚏(𝙵) 𝚝𝚑𝚎𝚗 𝚌 𝚎𝚕𝚜𝚎 𝚌 | 𝚠𝚑𝚒𝚕𝚎(𝙵) 𝚍𝚘 𝚌

𝚎𝚡𝚙 ∈ Exp(V)

𝙵 ∈ Σ(V)

Assigns a random value

EXAMPLES

assume(i = 0 n 0);

while(i < n) do

 i := i + 1;

assert(i = n);

∧ ≥

PRE-CONDITION

POST-CONDITION

EXAMPLES

assume(i = 0 n 0);

while(i < n) do

 i := i + 1;

assert(i = n);

∧ ≥

FOL formula in LRA whose
free variables are program variables

EXAMPLES

{i = 0 n 0}

while(i < n) do

 i := i + 1;

{i = n}

∧ ≥

EXAMPLES

{Pre-condition}

Program

{Post-condition}

{i = 0 n 0}

while(i < n) do

 i := i + 1;

{i = n}

∧ ≥

EXAMPLES

i := l;
present := false;
while(i <= u && !present)
{
 if (a[i] == e) then
 present := true;
 else
 i := i + 1;
}

Linear Search
Input: Array a, Lower limit l, Upper limit u, Element to be searched e

Output: true if element is present, false otherwise

EXAMPLES

assume(?);
i := l;
present := false;
while(i <= u && !present)
{
 if (a[i] == e) then
 present := true;
 else
 i := i + 1;
}
assert(?);

Linear Search
Input: Array a, Lower limit l, Upper limit u, Element to be searched e

Output: true if element is present, false otherwise

EXAMPLES

assume(l 0 u |a|);
i := l;
present := false;
while(i <= u && !present)
{
 if (a[i] == e) then
 present := true;
 else
 i := i + 1;
}
assert(?);

≥ ∧ ≤

Linear Search
Input: Array a, Lower limit l, Upper limit u, Element to be searched e

Output: true if element is present, false otherwise

EXAMPLES

assume(l 0 u |a|);
i := l;
present := false;
while(i <= u && !present)
{
 if (a[i] == e) then
 present := true;
 else
 i := i + 1;
}
assert(present);

≥ ∧ ≤

↔ l ≤ i ≤ u ∧ a[i] = e

Linear Search
Input: Array a, Lower limit l, Upper limit u, Element to be searched e

Output: true if element is present, false otherwise

EXAMPLES

assume(l 0 u |a|);
i := l;
present := false;
while(i <= u && !present)
{
 if (a[i] == e) then
 present := true;
 else
 i := i + 1;
}
assert(present);

≥ ∧ ≤

↔ ∃x .l ≤ x ≤ u ∧ a[x] = e

Linear Search
Input: Array a, Lower limit l, Upper limit u, Element to be searched e

Output: true if element is present, false otherwise

