
LAST LECTURE

• Bounded Model Checking of Programs by reduction to SMT 

• Assignment to variables replaced by equality predicate, arithmetic 
operators replaced by corresponding functions/predicates in LIA.



Z3



INTRODUCTION

• Z3 is a constraint-solver/theorem-prover developed at Microsoft 
Research. 

• Basic Operation: 

• It takes as input a formula [PL/FOL/SMT]. 

• Outputs SAT/UNSAT. 

• Supports a whole range of theories (including all theories we have 
seen). 

• Open-source (written in C++) 

• Latest version available at Z3 Github page (https://github.com/
Z3Prover/z3).



INPUT/OUTPUT FORMAT

1. APIs for Python, C++, Java, etc. 

• API functions for declaring variables, constants, predicates, 
functions, and for constructing formula. 

• API functions for accessing a satisfying interpretation (in case of 
SAT). 

2. SMT-LIB 2.0 

• Standard input format for all SMT solvers 

• Formula written in SMT-LIB 2.0 can be directly provided to the 
Z3 executable.



INPUT FORMAT

• Z3 expects input formula in Many Sorted First Order Logic 
(MSFOL). 

• ‘sort’ is similar to type. Variables, constants, functions, 
predicates must be given appropriate types. 

• Built-in sorts: Bool, Integer, Real, Array,… 

• Users can also define new sorts.



SMT-LIB EXAMPLE

  year0 = 2008 ⋀ 
  g0 = (days0 > 365) ⋀  
oldDays0 = days0 ⋀   

  g1 = (IsLeapYear(year0)) ⋀ 
  g2 = (days0 > 366)) ⋀ 
days1 = days0 - 366 ⋀ 
year1 = year0 + 1 ⋀ 
days2 = ite(g1 && g2, days1, 
days0)⋀ 
year2 = ite(g1 && g2, year1, 
year0)⋀ 
days3 = days0 - 365 ⋀ 
year3 = year0 + 1 ⋀ 
days4 = ite(g1, days2, days3) 
⋀ 
year4 = ite(g1, year2, year3) 
⋀ 
(¬(days4 < oldDays0)⋁ 
¬(days4 <= 365)) 

(declare-const year0 Int) 
(declare-const g0 Bool) 
(declare-fun IsLeapYear (Int) 
Bool) 
. 
. 
(assert (= year0 2008)) 
(assert (= g0 (> days0 365))) 
. 
. 
(assert (or (not (< days4 
oldDays0)) (not (<= days4 
365)))) 

(check-sat) 
(get-model)



TUTORIALS

• For SMT-LIB 

• https://rise4fun.com/Z3/tutorial/guide 

• For Python API 

• http://theory.stanford.edu/~nikolaj/programmingz3.html 

• Download, Installation instructions 

• https://github.com/Z3Prover/z3



TOPICS NOT COVERED 

• Decision procedures for various theories 

• First-Order Logic Normal Forms (Clausal Normal Form, Skolem 
Normal Form), FOL Resolution. 

• Nelson-Oppen Method, DPLL(T) 

• Extensions of FOL for Verification: Linear Temporal Logic, 
Computational Tree Logic



COURSE STRUCTURE

• Propositional Logic, SAT solving, DPLL 
• First-Order Logic, SMT 
• First-Order Theories

CONSTRAINT 
SOLVERS

DEDUCTIVE 
VERIFICATION

• Operational Semantics 
• Strongest Post-condition, Weakest Pre-

condition 
• Hoare Logic

MODEL CHECKING AND 
OTHER VERIFICATION 

TECHNIQUES 

• Predicate Abstraction, CEGAR 
• Abstract Interpretation 
• Property-directed Reachability 
• …



FORMAL SPECIFICATION 
AND VERIFICATION OF 

PROGRAMS



INTRODUCTION

• So far we have seen… 

• Syntax, Semantics for Propositional Logic and First-Order Logic 
and (some examples of) Decision Procedures for Validity/
Satisfiability 

• Underlying engine for Deductive Verification of programs 

• Now we will study some well-known schemes to reduce the 
automated verification problem to the satisfiability problem in 
first-order logic.
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• Assertions 
• Pre-conditions/Post-conditions 
• Invariants 
• …



A SMALL IMPERATIVE PROGRAMMING LANGUAGE

IMP

• Let  be a set of program variables 

• Let  be the set of linear expressions, and  be the set of 
linear formulae over  

•  are terms in Linear Real Arithmetic 

•  are formulae in Linear Real Arithmetic 

• Examples 

•  

•  

V

Exp(V ) Σ(V )
V

Exp(V )

Σ(V )

3x + 2y ∈ Exp({x, y})

x ≤ y + z ∧ z = w ∈ Σ({x, y, z, w})



IMP
A SMALL IMPERATIVE PROGRAMMING LANGUAGE

𝚌 = 𝚡 := 𝚎𝚡𝚙 | 𝚡 := 𝚑𝚊𝚟𝚘𝚌
= | 𝚊𝚜𝚜𝚞𝚖𝚎(𝙵) | 𝚊𝚜𝚜𝚎𝚛𝚝(𝙵)
= | 𝚜𝚔𝚒𝚙 | 𝚌; 𝚌 | 𝚒𝚏(𝙵) 𝚝𝚑𝚎𝚗 𝚌 𝚎𝚕𝚜𝚎 𝚌 | 𝚠𝚑𝚒𝚕𝚎(𝙵) 𝚍𝚘 𝚌

𝚎𝚡𝚙 ∈ Exp(V )

𝙵 ∈ Σ(V )

Assigns a random value



EXAMPLES

assume(i = 0  n  0); 

while(i < n) do 

  i := i + 1; 

assert(i = n);  

∧ ≥

PRE-CONDITION

POST-CONDITION



EXAMPLES

assume(i = 0  n  0); 

while(i < n) do 

  i := i + 1; 

assert(i = n);  

∧ ≥

FOL formula in LRA whose  
free variables are program variables



EXAMPLES

{i = 0  n  0} 

while(i < n) do 

  i := i + 1; 

{i = n} 

∧ ≥



EXAMPLES

{Pre-condition} 

Program 

{Post-condition} 

{i = 0  n  0} 

while(i < n) do 

  i := i + 1; 

{i = n} 

∧ ≥



EXAMPLES

i := l; 
present := false; 
while(i <= u && !present) 
{ 
  if (a[i] == e) then 
    present := true; 
  else 
    i := i + 1; 
} 

Linear Search 
Input: Array a, Lower limit l, Upper limit u, Element to be searched e 

Output: true if element is present, false otherwise



EXAMPLES

assume(?); 
i := l; 
present := false; 
while(i <= u && !present) 
{ 
  if (a[i] == e) then 
    present := true; 
  else 
    i := i + 1;  
} 
assert(?);

Linear Search 
Input: Array a, Lower limit l, Upper limit u, Element to be searched e 

Output: true if element is present, false otherwise



EXAMPLES

assume(l  0  u  |a|); 
i := l; 
present := false; 
while(i <= u && !present) 
{ 
  if (a[i] == e) then 
    present := true; 
  else 
    i := i + 1; 
} 
assert(?);

≥ ∧ ≤

Linear Search 
Input: Array a, Lower limit l, Upper limit u, Element to be searched e 

Output: true if element is present, false otherwise



EXAMPLES

assume(l  0  u  |a|); 
i := l; 
present := false; 
while(i <= u && !present) 
{ 
  if (a[i] == e) then 
    present := true; 
  else 
    i := i + 1; 
} 
assert(present  );

≥ ∧ ≤

↔ l ≤ i ≤ u ∧ a[i] = e

Linear Search 
Input: Array a, Lower limit l, Upper limit u, Element to be searched e 

Output: true if element is present, false otherwise



EXAMPLES

assume(l  0  u  |a|); 
i := l; 
present := false; 
while(i <= u && !present) 
{ 
  if (a[i] == e) then 
    present := true; 
  else 
    i := i + 1; 
} 
assert(present  );

≥ ∧ ≤

↔ ∃x .l ≤ x ≤ u ∧ a[x] = e

Linear Search 
Input: Array a, Lower limit l, Upper limit u, Element to be searched e 

Output: true if element is present, false otherwise


