
Replicated Data Types
Tutorial, ATVA 2025

Kartik Nagar

nagark@cse.iitm.ac.in

IIT Madras, India

1

mailto:nagark@cse.iitm.ac.in

SOSP 2007

• Solution: Replication and Object
versioning.

• Synchronous replica co-ordination
required for strong consistency

• Providing the illusion of a centralized

data store.

• Does not work under failure scenarios

(“Network Partitions”).

2

Strong Consistency, Availability and Tolerance against Network Partitions
cannot be simultaneously achieved.

CAP Theorem:

SOSP 2007

3

Strong Consistency, Availability and Tolerance against Network Partitions
cannot be simultaneously achieved.

CAP Theorem:

• Optimistic Replication

• Every update at a replica generates a

new version.

• Writes are instantaneous and need no

synchronization.

• Reads also return instantaneously.

• May not return the most recently
updated value.

• Replicas periodically merge their
versions.

Eventual Consistency

SOSP 2007

AddtoC
art(Br

ead)

4

AddtoCart(Butter)

SOSP 2007

Bread

5

Butter • Classical conflict resolution
strategy: Last writer wins

• Amazon’s requirement: “Add
to cart” operation can never
be forgotten or rejected.

• Need for an customized
merge operation which can
cater to application
requirements.

• Genesis for the “Add-wins”
Set replicated data type.

V1

V2

Merging V1 and V2

Fast forward to today…

6

Replicated Data Types have been widely adopted by the industry, studied in
academia and have found use-case in a number of collaborative applications

Academia

• New RDT Paradigms

• State-based, Op-based,

Delta-state

• Space and time-efficient RDT

designs

• New datatypes

• JSON, Rich textual format,

Augmented Reality

• Automated Verification and

Analysis

Industry Applications

Part A: RDT Basics

7

RDT Basics

• Abstract Data Type interface for clients

• A set of operations for each data type

• Register: {wr(v), rd}

• Counter: {inc, dec, rd}

• Set: {add(e), rem(e), lookup(e)}

• List: {addAfter(a,b), remove(a), rd}

• Each operation is either a query or an update.

• The state is maintained at different replicas or nodes.n

8

RDT Basics

9

• Each replica is initialized to the same state.

• Client issues an operation at any replica, which is

immediately executed at that replica.

• Periodically, a replica broadcasts a message to

every other replica.

• The contents of the message and the period

depends on the RDT paradigm.

• When a replica receives a message, it updates its

state.

• Different RDT paradigms also have different

requirements on the network behavior, e.g.
whether the messages can get lost, duplicated, re-
ordered, etc.

Happens-before Order
• A replicated system is a distributed system where replicas send messages

to each other to communicate updates.

• To define the concurrency semantics, two relations play a crucial role.

• An event happens-before (denoted by) if one of the following
conditions hold:

• occurs before on the same replica

• sends a message , and is the receive event corresponding to

• There exists another event such that and .

• An update event happens-before if has already been applied on
the replica where is applied.

e1 e2 e1 ≺ e2

e1 e2

e1 m e2 m
e e1 ≺ e e ≺ e2

u1 u2 u1
u2

10

Arbitration Order

• Arbitration order is a total order among update events.

• Should subsume happens-before order between update events.

• Useful to define last-writer-wins semantics.

• Can be implemented using Lamport time-stamps.

11

Formalism: Client Interaction
• We fix a data-type . Let be the set of states maintained by .

• Let be the initial state.

• Let be the set of operations supported by .

• can be partitioned into and containing update and query operations
respectively.

• defines a function

• When a client issues an update operation at a replica with state :

• is installed at .

• timestamp is supplied by the replica.

• also defines , which is called when a client issues a query
operation.

𝒟 Σ 𝒟
σinit

O 𝒟
O Ou Oq

𝒟 do : Σ × Ou × 𝖳𝗂𝗆𝖾𝗌𝗍𝖺𝗆𝗉 → Σ
o r σ

do(σ, o, t) r
t

𝒟 ret : Σ × Oq → V

12

Example: Increment-only Counter
•

•

•

•

•

•

•

Σ = ℕ
σinit = 0
O = {inc, rd}

Ou = {inc}
Oq = {rd}

do(σ, inc, t) = σ + 1
ret(σ, rd) = σ

13

Formalism: Messaging between replicas

• Let be the set of messages used by

• defines a function

• Periodically, a replica with state will broadcast to all other
replicas.

• defines a function

• When a replica with state receives message , the state
 will be installed at .

M 𝒟
𝒟 send : Σ → M

σ send(σ)

𝒟 receive : Σ × M → Σ
r σ m

receive(σ, m) r

14

Two major paradigms in RDT Design
• The paradigms differ in what and when messages are sent.

• State-based CRDTs

• The entire state is sent as a message.

• Formally, ,

• Messages can be sent at any time.

• , also known as .

• Op-based CRDTs

• A function (also known as an effector) is sent as a message.

• Formally, , typically

• A message is sent after every update operation is performed.

•

M = Σ send(σ) = σ

receive : Σ × Σ → Σ merge

M = Σ → Σ send(do(σ, o, t)) = λσ′￼. do(σ′￼, o, t)

receive(σ, F) = F(σ)

15

Network Assumptions

• State-based CRDTs require minimal constraints on the underlying network.

✓Messages can be lost, duplicated, or re-ordered.

- They cannot be forged, i.e. any message received must have been sent

by some replica.

• Op-based CRDTs require more stringent constraints on the network.

✓Messages can be lost.

- Messages cannot be duplicated.

- Messages cannot be forged.

- Re-ordering is allowed to a limited extent: more on this later.

16

Op-based Increment-only Counter
•

•

•

•

•

•

Σ = ℕ
O = {inc, rd}
do(σ, inc, t) = σ + 1
ret(σ, rd) = σ
send(do(σ, o, t)) = λσ′￼. do(σ′￼, o, t)
receive(σ, F) = F(σ)

17 Ref: A comprehensive study of CRDTs, Shapiro et al.

An execution of the Op-based Counter

18

do(n, inc, t1) = n + 1

send(inc)

send(inc)

n

n
do(n, inc, t2) = n + 1

recv(n + 1,inc) = n + 2

recv(n + 1,inc) = n + 2

n + 2

n + 2

r1

r2

r1

r2

✴Commutativity of increment and decrement simplifies the design.

✴Note that “no duplication of messages” network assumption is critical.

Strong Eventual Consistency
• We associate an abstract state with each state which collects the update

operations applied directly or indirectly to get .

• For the initial RDT state , .

• On performing ,

• For state-based RDTs:

• On performing ,

• For op-based RDTs:

• On performing , if was the generator of , then

𝒞(σ) σ
σ

σ𝗂𝗇𝗂𝗍 𝒞(σ𝗂𝗇𝗂𝗍) = ∅
do(σ, o, t) 𝒞(do(σ, o, t)) = 𝒞 ∪ {(o, t)}

receive(σr, σm) 𝒞(receive(σr, σm)) = 𝒞(σr) ∪ 𝒞(σm)

receive(σr, F) (o, t) F
𝒞(receive(σr, (o, t))) = 𝒞(σr) ∪ {(o, t)}

19

A RDT is strong eventually consistent if for any two states and
present at any two replicas,
𝒟 σ1 σ2

𝒞(σ1) = 𝒞(σ2) ⟹ σ1 = σ2

An execution of the Op-based Counter

20

send(inc)

send(inc)

n

n

recv(n + 1,inc) = n + 2

recv(n + 1,inc) = n + 2

n + 2

n + 2

𝒞(n + 2) = 𝒞(n) ∪ {inc1, inc2}

r1

r2

r1

r2

do(n, inc, t1) = n + 1

do(n, inc, t2) = n + 1

State-based increment-only Counter

• (assume is the set of replicas)

•

• At replica ,

•

•

•

Σ = ℛ → ℕ ℛ
O = {inc, rd}

r do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
receive(σr, σm) = λr . max(σr(r), σm(r))

21

✴Extra meta-data as compared to Op-based counter

✴Works under more relaxed network assumptions: duplication, arbitrary re-

ordering of messages
Ref: A comprehensive study of CRDTs, Shapiro et al.

An execution of the state-based Counter

22

σ
r1 ↦ n
r2 ↦ n

σ1
r1 ↦ n + 1

r2 ↦ n
r1 ↦ n

r2 ↦ n + 1

σ2 σ3
r1 ↦ n + 1
r2 ↦ n + 1

r1

σ3

r2

σ3

do(σ, inc, t1) = σ1

send(σ1)

send(σ2)

do(σ, inc, t2) = σ2

recv(σ1, σ2) = σ3

r1

r2

recv(σ2, σ1) = σ3

σ

σ

State-based LWW Register

23

• (assume is the value set)

•

•

•

•

•

Σ = V × T V
O = {set(v) | v ∈ V} ∪ {get}

do((v′￼, t′￼), set(v), t) = {(v, t) if t > t′￼

(v′￼, t′￼) otherwise
ret((v, t), get) = v
send(σ) = σ

receive((vr, tr), (vm, tm)) = {(vr, tr) if tr > tm
(vm, tm) otherwise

Ref: A comprehensive study of CRDTs, Shapiro et al.

Designing an Op-based Set RDT

24

Add(e)
S

S

send(Add(e))

send(Rem(e))

Rem(e)

Rem(e)
r1

r2

S ∪ {e}

r2
Add(e)

r1

S∖{e}

Violation of Strong Eventual Consistencydo(σ, Add(e), t) = σ ∪ {e}
do(σ, Rem(e), t) = σ∖{e}

Designing an Op-based Set RDT

25

S

S

r1

r2

do(S, Add(e), t) =
S ∪ {(e, t)}

do(S, Rem(e), t) =
S∖{(e, t′￼) | (e, t′￼) ∈ S}

send(λσ . σ∖{(e, t′￼) | (e, t′￼) ∈ S})

send(λσ . σ ∪ {(e, t}))

(λσ . σ ∪ {(e, t})) S′￼

r1

S′￼∪
{(e, t)}

r2

S′￼∪
{(e, t)}

S′￼ = S∖{(e, t′￼) | (e, t′￼) ∈ S}

😁Add-wins Set

Uniqueness of Timestamps

(λσ . σ∖{(e, t′￼) | (e, t′￼) ∈ S}) (S ∪ {(e, t)})
= S′￼∪ {(e, t)}

Op-based Add-wins Set
•

•

•

•

•

•

•

•

Σ = ℙ(V × T)
O = {Add(v) |v ∈ V} ∪ {Rem(v) |v ∈ V} ∪ {lookup(v) |v ∈ V}
do(σ, Add(v), t) = σ ∪ {(v, t)}
do(σ, Rem(v), t) = σ∖{(v, t′￼) | (v, t′￼) ∈ σ}
ret(σ, lookup(v)) = ∃t . (v, t) ∈ σ
send(do(σ, Add(v), t)) = λσ′￼. σ′￼∪ {(v, t)}
send(do(σ, Rem(v), t)) = λσ′￼. σ′￼∖{(e, t′￼) | (e, t′￼) ∈ σ}
receive(σ, F) = F(σ)

26

✴Note that the effector is slightly different from the function of .

✴However, the function is an application of the effector on the source replica

Rem do Rem
do

Ref: A comprehensive study of CRDTs, Shapiro et al.

Op-based Add-wins Set
•

•

•

•

•

•

•

•

Σ = ℙ(V × T)
O = {Add(v) |v ∈ V} ∪ {Rem(v) |v ∈ V} ∪ {lookup(v) |v ∈ V}
do(σ, Add(v), t) = σ ∪ {(v, t)}
do(σ, Rem(v), t) = σ∖{(v, t′￼ ￼
ret(σ, lookup(v)) = ∃t . (v, t) ∈ σ
send(do(σ, Add(v), t)) = λσ′￼ ￼
send(do(σ, Rem(v), t)) = λσ′￼ ￼ ￼ ￼
receive(σ, F) = F(σ)

27

✴The functions sent as messages are also known as eff
✴Note the do function is also an application of the eff

Does this always work?
Unfortunately not!

Needs stronger network assumptions

A diverging execution of the Add-wins Set

28

Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

S′￼

∪ {(v, t)}

Violation of Strong Eventual Consistency

A diverging execution of the Add-wins Set

29

Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

S′￼

∪ {(v, t)}
Need a stronger network guarantee: Causal consistency

If happens-before , then must be

received before at each replica
send(m1) send(m2) m1

m2

Standard requirement for Op-based RDTs

A execution of the Add-wins Set under Causal
Consistency

30 S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼

Need a stronger network guarantee: Causal consistency

If happens-before , then must be

received before at each replica
send(m1) send(m2) m1

m2

Other RDTs

• Multi-value register

• State-based PN Counter

• Remove-wins set

• List (Replicated Growable Array)

• Update-wins/Remove-wins Map

• Graphs

• JSON (Automerge)

• …

31

Other RDT Paradigms: MRDT
• Mergeable Replicated Data Types (MRDT)

• A variant of state-based RDTs

• Uses a 3-way merge function to update the state on receipt of a

message.

• : is the state at the receiving replica, is the state
of the sending replica, and is the lowest common ancestor state of

 and .

• Can lead to very efficient RDT implementations.

• Inspired by distributed version control systems such as Git.

merge(σlca, σ1, σ2) σ1 σ2
σlca

σ1 σ2

32

Increment-only Counter MRDT
•

•

• At replica ,

•

•

•

Σ = ℕ
O = {inc, rd}

r do(σ, inc, t) = σ + 1
ret(σ, rd) = σ
send(σ) = σ
merge(σl, σr, σm) = σl + (σr − σl) + (σm − σl)

33

✴No extra meta-data (space and time complexity same as the Op-based Counter)

✴Works under more relaxed network assumptions: duplication, arbitrary re-

ordering of messages

Best of both worlds

An execution of the Counter MRDT

34

do(σ, inc, t1) = σ + 1

do(σ, inc, t2) = σ + 1

merge(σ, σ + 1,σ + 1)

r1

r2

σ

σ

send(σ + 1)

send(σ + 1)

merge(σ, σ + 1,σ + 1)

σ

σ + 1 σ + 1

merge(σ, σ + 1,σ + 1) = σ + (σ + 1 − σ) + (σ + 1 − σ) = σ + 2

σ + 2

Version Graph

Another execution of the Counter MRDT

35

5

5

inc

inc merge(5,6,6)

inc

merge(6,7,7)
= 7 = 8

Other RDT Paradigms: Delta-state CRDTs

• Sending the entire state as a message could get expensive and may be
unnecessary.

• E.g. in state-based Counter CRDT, an increment operation only updates

a small part of the overall state.

• Delta-state CRDTs send delta-mutators as messages, which encodes all

the changes that have been made at a replica since its last
communication.

36

37

After the break, Specification and Verification of RDTs…

Part B: Specification and
Verification of RDTs

38

Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

39

Recall: Strong Eventual Consistency
• We associate an abstract state with each state which collects the update

operations applied directly or indirectly to get .

• For the initial RDT state , .

• On performing ,

• For state-based RDTs:

• On performing ,

• For op-based RDTs:

• On performing , if was the generator of , then

𝒞(σ) σ
σ

σ𝗂𝗇𝗂𝗍 𝒞(σ𝗂𝗇𝗂𝗍) = ∅
do(σ, o, t) 𝒞(do(σ, o, t)) = 𝒞 ∪ {(o, t)}

receive(σr, σm) 𝒞(receive(σr, σm)) = 𝒞(σr) ∪ 𝒞(σm)

receive(σr, F) (o, t) F
𝒞(receive(σr, (o, t))) = 𝒞(σr) ∪ {(o, t)}

40

A RDT is strong eventually consistent if for any two states and
present at any two replicas,
𝒟 σ1 σ2

𝒞(σ1) = 𝒞(σ2) ⟹ σ1 = σ2

Strong Eventual Consistency for state-based
CRDTs

• Concepts from Lattice Theory can be used to verify convergence of state-
based CRDTs.

• The first thing we need is for to be a join semi-lattice.

• Let be a set and be a partial order on .

• For any , is the least upper bound of and , i.e.

• , and

• For any such that , .

• For any , if exists, it must be unique.

• is a join semi-lattice if exists for all elements .

Σ
D ≤ ⊆ D × D D

x, y ∈ D x ⊔ y x y
x ≤ x ⊔ y y ≤ x ⊔ y

z ∈ D x ≤ z, y ≤ z x ⊔ y ≤ z
x, y ∈ D x ⊔ y

(D, ≤ , ⊔) x ⊔ y x, y ∈ D

41

Strong Eventual Consistency for state-based
CRDTs

• The first thing we need is for to be a join semi-lattice.

• will be the lattice join function ().

• The ordering can be induced from the join function:

•

• will be a partial order only if

• is idempotent, commutative and associative.

Σ
merge : Σ × Σ → Σ ⊔

≤
σ ≤ σ′￼ ⇔ merge(σ, σ′￼) = σ′￼

≤
merge

42

 is a join semi-lattice if is idempotent, commutative and
associative.

(Σ, ≤ , merge) merge

Strong Eventual Consistency for state-based
CRDTs

• A function is monotonic if .

• We say that all update functions of a CRDT are monotonic, if for every
update operation , for all timestamps , is
monotonic.

• A state-based CRDT is convergent if

• is a join semi-lattice with being the join function.

• Every update operation of is monotonic.

• Intuitively, the uniqueness of join guarantees convergence.

f : D → D ∀x, y ∈ D, x ≤ y ⟹ f(x) ≤ f(y)
𝒟

o ∈ Ou t do(o, t) : Σ → Σ

𝒟
Σ merge

𝒟

43 Ref: A comprehensive study of CRDTs, Shapiro et al.

State-based increment-only Counter
• (assume is the set of replicas)

•

• At replica ,

•

•

•

Σ = ℝ → ℕ ℝ
O = {inc, rd}

r do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
merge(σr, σm) = λr . max(σr(r), σm(r))

44

σ1 ≤ σ2 ⇔ ∀r ∈ ℝ . σ1(r) ≤ σ2(r)

 is idempotent, commutative and
associative

merge

 is a join semi-lattice (Σ, ≤ , merge)

 is a monotonic functiondo(inc, t)

Strong Eventual Consistency for Op-based CRDTs

45

(Add(e))𝖾𝖿𝖿

S

S
(Rem(e))𝖾𝖿𝖿

(Rem(e))𝖾𝖿𝖿
r1

r2 r2
(Add(e))𝖾𝖿𝖿

r1

S′￼∪
{(e, t)}

send((Add(e))𝖾𝖿𝖿)

send((Rem(e))𝖾𝖿𝖿)

By , we mean applying the effector of o𝖾𝖿𝖿 o

Effectors can be applied in either order, hence they
must commute.

Sr1

Sr2

Sr3

.

.

..

.

. S′￼

S′￼

S′￼

(Add(e))𝖾𝖿𝖿

(Rem(e))𝖾𝖿𝖿

Not always though!

S′￼∪
{(e, t)}

Causal consistency ensures that some
effectors are always applied in the same order

Such effectors need not commute with each
other

Concurrently generated effectors

Causally dependent effectors

(Add(e))𝖾𝖿𝖿 ∘ (Rem(e))𝖾𝖿𝖿 = (Rem(e))𝖾𝖿𝖿 ∘ (Add(e))𝖾𝖿𝖿

Strong Eventual Consistency for Op-based CRDTs

• Commutativity of effectors which are concurrently generated is enough to
ensure convergence of Op-based RDTs.

• Commutativity modulo consistency policy

• The behavior of an effector depends on the state of the generating replica.

• For the Op-based Add wins Set,

send(do(σ, Rem(v), t)) = λσ′￼. σ′￼∖{(e, t′￼) | (e, t′￼) ∈ σ}

46

Rem(v)𝖾𝖿𝖿

➡Effectively an infinite set of effectors

➡ We need to show commutativity for every pair of such concurrently
generated effectors

Ref: Automated Parameterized Verification of CRDTs. Nagar and Jagannathan.

Verifying commutativity modulo consistency
policy

• The behaviour of an
effector depends on
the state of the
generating replica.

• But the state of the
generating replica
itself is obtained by
applying a sequence
of effectors.

• We can use

induction on this
sequence.

47

. . .

σinit

. . .

σinit

σ1 σ2

o𝖾𝖿𝖿
1

o1

o𝖾𝖿𝖿
2

o2

. . .

σinit

. . .

σinit

σ′￼1 σ′￼2

o𝖾𝖿𝖿′￼

1
o1

o𝖾𝖿𝖿′￼

2
o2

New Effectors

Inductive Check:

If and commute,
then and also
commute.

o𝖾𝖿𝖿
1 o𝖾𝖿𝖿

2
o𝖾𝖿𝖿′￼

1 o𝖾𝖿𝖿′￼

2

Non-interference to commutativity

Quite effective in practice

Fully Automated Approach

Both Base case and
inductive case encoded

using SMT
Ref: Automated Parameterized Verification of CRDTs, Nagar and Jagannathan.

Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

48

Declarative Sequential Specifications
• Specification over sequences of update operations.

• Constrains the return value of a query operation occurring after a

sequence of update operations.

• Formally,

• Examples:

• For counter, where is a sequence of
operations.

• For register,

• For set, contains an
operation not followed by a operation.

𝒮𝒟 : O*u × Oq → V

𝒟 = 𝒮𝒟(π, rd) = |π | π inc

𝒟 = 𝒮𝒟(π ⋅ set(v), get) = v
𝒟 = 𝒮𝒟(π, lookup(v)) = True ⇔ π add(v)

rem(v)

49

Declarative RDT Specification
• Instead of using a sequence of update operations, RDT specifications are

over an operation context

• is a set of events

•

•

• is an acyclic relation.

• RDT Specification is defined as a function which takes as input an
operation context and a query operation and returns a value.

• is the abstract state of the replica at which the query
operation is performed.

(E, oper, time, hb)
E
oper : E → Ou

time : E → 𝖳𝗂𝗆𝖾𝗌𝗍𝖺𝗆𝗉
hb ⊆ E × E

ℱ(𝒟)
L

L . E 𝒞(r) r

50
Ref: Replicated Data Types: Specification, Verification and Optimality. Burckhardt et al.

Operation Context: Examples

51

recv(σ1, σ2) = σ3

r1

r2
recv(σ2, σ1) = σ3

σ

σ

inc

inc

send(σ1)

send(σ2)

rd

e1 e2

inc inc

An execution of the state-based Counter

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)
lookup(v)

e1 e2

Add(v) Rem(v)

hb

An execution of the op-based Set

Declarative RDT Specification: Examples

• For counter, .

• For LWW register, where
is the sequence obtained by ordering operations in in increasing order of
their timestamps.

• For Add-wins set,

𝒟 = ℱ𝒟(L, rd) = |L . E |
𝒟 = ℱ𝒟(L, get) = 𝒮𝒟(L . E𝗍𝗂𝗆𝖾, get) L . E𝗍𝗂𝗆𝖾

E

𝒟 =
ℱ𝒟(L, lookup(v)) = True ⇔ ∃e ∈ L . E . oper(e) = Add(v)

∧ ¬(∃f . oper(f) = Rem(v) ∧ L . hb(e, f))

52

Correctness using Declarative RDT Specifications

53

A RDT implementation is correct if for every execution and every query
operation in , the return value of matches where is the

operation context of

𝒟 E
q E q ℱ𝒟(L, q) L

q

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)

lookup(v)Sr3 ..

returns True

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿

A correct execution of the op-based Add-wins Set

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)

lookup(v)Sr3 ..

returns False
(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿

A incorrect execution of the op-based Add-wins Set

Actually prohibited by Causal Consistency
e1 e2

Add(v) Rem(v)

hb

Operation context of lookup(v)

Verifying Declarative RDT Specifications for state-
based RDTs

• A Replication-aware Simulation relation relates an operation
context with the concrete state .

• Verification using is carried in two steps:

1. We show that holds inductively at all replicas in any

execution where is the operation context at and is the concrete
state at .

2. We show that is sufficient to discharge the RDT
specification.

ℛ𝗌𝗂𝗆(L, σ)
L σ

ℛ𝗌𝗂𝗆(L, σ)
ℛ𝗌𝗂𝗆(L, σ) r

L r σ
r

ℛ𝗌𝗂𝗆(L, σ)

54
Ref: Replicated Data Types: Specification, Verification and Optimality. Burckhardt et al.

Examples of ℛ𝗌𝗂𝗆

• For the state-based Counter RDT:

ℛ𝗌𝗂𝗆(L, σ) ⇔ |L . E | = Σr∈ℝσ(r)

55

• (assume is the
set of replicas)

•

• At replica ,

•

•

•

Σ = ℝ → ℕ ℝ

O = {inc, rd}
r

do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
receive(σr, σm) = λr . max(σr(r), σm(r))

State-based Counter

Examples of ℛ𝗌𝗂𝗆

• For the state-based LWW Register:

ℛ𝗌𝗂𝗆(L, (v, t)) ⇔ ∃e ∈ L . E . oper(e) = set(v)

∧ (∀f ∈ L . E . time(f) ≤ time(e))

56

• (assume is the value
set)

•

•

•

•

•

Σ = V × T V

O = {set(v) | v ∈ V} ∪ {get}

do((v′￼, t′￼), set(v), t) = {(v, t) if t > t′￼

(v′￼, t′￼) otherwise

ret((v, t), get) = v
send(σ) = σ
receive((vr, tr), (vm, tm)) = {(vr, tr) if tr > tm

(vm, tm) otherwise

State-based CounterState-based LWW Register

Verification using : Step-1ℛ𝗌𝗂𝗆

57

We show that holds inductively at every step in every executionℛ𝗌𝗂𝗆

1. Verifying Operations

L

σ

ℛ𝗌𝗂𝗆

Creates a new operation context by
adding a new event for the operation (o, t)2. Verifying Merge

⟹
merge#(Lr, Lm)

merge(σr, σm)

ℛ𝗌𝗂𝗆

Lr

σr

ℛ𝗌𝗂𝗆

Lm

σm

ℛ𝗌𝗂𝗆∧⟹
do#(L, o, t)

do(σ, o, t)

ℛ𝗌𝗂𝗆

Creates a new operation context by taking
a union of the contexts and Lr Lm

58

Verification using : Step-2ℛ𝗌𝗂𝗆

3. Verifying RDT specification

L

σ

ℛ𝗌𝗂𝗆 ⟹ ℱ𝒟(L, q) = ret(σ, q)

Bonus Step: Verifying convergence

Semi-automated approach: programmer needs to provide the simulation relation

L

σ1

ℛ𝗌𝗂𝗆

L

σ2

ℛ𝗌𝗂𝗆

⟹ σ1 = σ2

∧

Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

59

Replication aware Linearizability
• Inspired by linearizability in shared-memory concurrent library implementations.

• Basic idea: Each replica ’s state should always be a linearisation of the updates

performed at the replica, i.e. .

• The linearisation order between update events should obey following properties

• between two updates should remain the same at all replicas throughout the
execution.

•

• In addition, for concurrent update events, a light-weight specification can be provided to

always order them in a specific way.

• Expressed as a relation () over non-commutative operations.

• E.g. for add-wins set,

•

r
𝒞(r)

lo
lo

hb ⊆ lo

rc
rc = {(Rem(v), Add(v)) |v ∈ V}

rc ⊆ lo

60
Ref: Replication aware linearizability. Enea et al.

Example : RA Linearizability for Add-wins Set

61

merge(σ1, σ2)
r1

r2
merge(σ2, σ1)

σ

σ

Add(v)

Rem(v)

send(σ1)

send(σ2)

merge(σ1, σ2) = merge(σ2, σ1) = Add(v) ⋅ Rem(v) ⋅ σ

Shorthand for do(σ, Rem(v), _)

Verifying RA Linearizability using algebraic properties of
merge

• Commutativity, associativity and idempotence of are not sufficient.

• We require commutativity of and :

•

• In general, .

• Applicable when or and commute with each other.

• We develop an inductive approach called Bottom-up linearisation to

automatically prove such algebraic properties.

merge
merge do

merge(Add(v) ⋅ σ1, Rem(v) ⋅ σ2) = Add(v) ⋅ merge(σ1, Rem(v) ⋅ σ2)
merge(e1 ⋅ σ1, e2 ⋅ σ2) = e1 ⋅ merge(σ1, e2 ⋅ σ2)

(e2, e1) ∈ rc e1 e2

62

More details in our paper: Automatically Verifying Replication-aware Linearizability. OOPSLA 2025

Conclusion
• RDTs provide an elegant solution to an inherent inability of distributed systems to

provide strong consistency as captured by the CAP theorem.

• Even though strong consistency cannot be achieved, RDTs nevertheless guarantee

some strong correctness properties.

• Strong Eventual Consistency

• Declarative RDT specifications

• Replication-aware linearizability

• Reasoning about correctness of RDTs is quite non-trivial due to infinite state-space
+ message-passing based semantics.

• Still an unsolved problem as existing approaches are either not fully automated,

or not complete and often fail while encountering new RDT implementations.

• Not much is known about the decidability/complexity of the verification

problem.

63

64

Thank you!

Questions?

