Replicated Data Types

Tutorial, ATVA 2025

Kartik Nagar
nagark@cse.iitm.ac.in
IIT Madras, India

mailto:nagark@cse.iitm.ac.in

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

Reliability at massive scale is one of the biggest challenges we

face at Amazon.com, one of the largest e-commerce operations in * Solution: Rep”Cati()n and ObJeCt

the world; even the slightest outage has significant financial Versi()ning_
consequences and i1mpacts customer trust. The Amazon.com

* Synchronous replica co-ordination
required for strong consistency

is implemented on top of an infrastructure of tens of thousands of ° PFOVidiﬂg the illusion of a centralized
servers and network components located in many datacenters data store.

around the world. At this scale, small and large components fail

continuously and the way persistent state is managed in the face Does not work under failure scenarios
of these failures drives the reliability and scalability of the T w L

software systems. (“Network Partitions”).

Strong Consistency, Availability and Tolerance against Network Partitions
cannot be simultaneously achieved.

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com

| ——

is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state 1s managed in the face
of these failures drives the reliability and scalability of the
software systems.

S

CAP Theorem:

cannot be simultaneously achieved.

Strong Consistency, Availability and Tolera

SOSP 2007

Optimistic Replication

Every update at a replica generates a
new version.

* Writes are instantaneous and need no
synchronization.

Reads also return instantaneously.

* May not return the most recently
updated value.

Replicas periodically merge their
Versions.

Eventual Consistency Rl

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com
A SOSP 2007

- -
AddtoCart (Butter e y ——

~_
/vl \I/\
| o
~_
~_

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels

Amazon.com

~—— — .
ST r
/
N2 u_ N— R
Nl R N L7
\\\ //J
Sl _——
v

Merging V1 and V2

Classical conflict resolution
strategy: Last writer wins

Amazon’s requirement: “Add
to cart” operation can never
be forgotten or rejected.

Need for an customized
merge operation which can
cater to application
requirements.

Genesis for the “Add-wins’
Set replicated data type.

Fast forward to today...

Replicated Data Types have been widely adopted by the industry, studied in
academia and have found use-case in a number of collaborative applications

Industry Applications

» g Airtable

New RDT Paradigms

o State-based, Op-based, w>
Delta-state ‘M w rl q k

Space and time-efficient RDT cassandra

designs aWsS
New datatypes
 JSON, Rich textual format, DynamoDB

Augmented Reality

Automated Verification and
Analysis

Redles

0

6verleqf

Part A: RDT Basics

RDT Basics

* Abstract Data Type interface for clients
* A set of operations for each data type
* Register: {wr(v), rd}
 Counter: {inc, dec, rd}
¢ Set: {add(e), rem(e), lookup(e)}
e List: {addAfter(a,b), remove(a), rd}
 Each operation is either a query or an update.

e The state is maintained at n different replicas or nodes.

RDT Basics

Each replica is initialized to the same state.

Client issues an operation at any replica, which is
immediately executed at that replica.

Periodically, a replica broadcasts a message to
every other replica.

 The contents of the message and the period
depends on the RDT paradigm.

When a replica receives a message, it updates its
state.

Different RDT paradigms also have different
requirements on the network behavior, e.g.
whether the messages can get lost, duplicated, re-
ordered, etc.

9

Happens-before Order

* A replicated system is a distributed system where replicas send messages
to each other to communicate updates.

* To define the concurrency semantics, two relations play a crucial role.

* An event e¢; happens-before e, (denoted by ¢, < ¢,) if one of the following
conditions hold:

» ¢, occurs before e, on the same replica
e ¢, sends a message m, and ¢, is the receive event corresponding to m
» There exists another event ¢ such that ¢; < e and ¢ < e¢,.

* An update event i, happens-before u, it u; has already been applied on
the replica where 1, is applied.

10

Arbitration Order

Arbitration order is a total order among update events.

Should subsume happens-before order between update events.
Useful to define last-writer-wins semantics.

Can be implemented using Lamport time-stamps.

11

Formalism: Client Interaction

« We fix a data-type U. Let 2 be the set of states maintained by .

e Let 0. .. be the Initial state.

init

 Let O be the set of operations supported by <.

« O can be partitioned into O, and OC] containing update and query operations
respectively.

» O defines a function do : X X O, X Timestamp — 2

 When a client issues an update operation o at a replica r with state o:
e do(o,o0,t1) is installed at 7.
e timestamp f is supplied by the replica.

o) also defines ret : X X 06] — V, which is called when a client issues a query
operation.

12

Example: Increment-only Counter

e 2 =N
* Cjpir = U
e O = {inc,rd}
e O, = {inc}
- O, = {rd}
e do(o,inc,t) = o+ 1

e ret(o,rd) = o

Formalism: Messaging between replicas

» Let M be the set of messages used by &
» I defines a function send : > - M

 Periodically, a replica with state ¢ will broadcast send(o) to all other
replicas.

o & defines a function receive : 2 X M — 2

 When a replica r with state o receives message m, the state
receive(o, m) will be installed at 7.

14

Two major paradigms in RDT Design

* The paradigms differ in what and when messages are sent.

e State-based CRDTs
* The entire state is sent as a message.

o Formally, M = 2, send(o) = o
» Messages can be sent at any time.

e recelve . 2 X 2 — X, also known as merge.

 Op-based CRDTs
e A function (also known as an effector) is sent as a message.

e Formally, M = 2 — %, typically send(do(o, o, t)) = Ao’ . do(o’, o, 1)
A message is sent after every update operation is performed.

» receive(o, F) = F(o)

15

Network Assumptions

o State-based CRDTs require minimal constraints on the underlying network.
v Messages can be lost, duplicated, or re-ordered.

- They cannot be forged, i.e. any message received must have been sent
by some replica.

 Op-based CRDTs require more stringent constraints on the network.
v Messages can be lost.
- Messages cannot be duplicated.
- Messages cannot be forged.
- Re-ordering is allowed to a limited extent: more on this later.

16

Op-based Increment-only Counter

e 2 =N

e O = {inc, rd}

e do(o,inc,t) =0+ 1

e ret(o,rd) = o

» send(do(o,0,t)) = Ao’ .do(o’, 0, 1)
e receve(o, ') = F(o)

. Ref: A comprehensive study of CRDTs, Shapiro et al.

An execution of the Op-based Counter

" Q a

do(n,inc,t;)) =n+ 1 recvin+ l,inc) =n+ 2
~_ " ~—
~— send(inc) N’
send(inc)
It -_— > 7 2
. . do(n,inc,t,) =n+ 1 recvin+ l,inc) =n+2 . .

18

Strong Eventual Consistency

We associate an abstract state (o) with each state o which collects the update
operations applied directly or indirectly to get o.

For the initial RDT state o;,,.,, €(6;,,) = Q.

On performing do(o, 0, t), €(do(o,0,t)) = € U {(0, 1)}
For state-based RDTs:

e On performing receive(o,, c,), €(receive(o,,6,)) = €(c,) U €(0,,)
For op-based RDTs:

» On performing receive(o,, F), if (0, t) was the generator of F, then

G (receive(o,, (0,1))) = 6(o,) U {(0,1)}

19

An execution of the Op-based Counter

" Q a

do(n,inc,t;)) =n+ 1 recvin+ l,inc) =n+ 2
~_ " ~—
~— send(inc) N’
send(inc)
It -_— > 7 2
. . do(n,inc,t,) =n+ 1 recvin+ l,inc) =n+2 . .

20

State-based increment-only Counter

e 2= A% — N (assume £ is the set of replicas)
e O = {inc,rd}

» Atreplicar, do(o,inc,t) = olr — o(r) + 1]

e ret(o,rd) = 2, po(r)

e send(o) = o

. receive(o,,o,) = Ar. max(c(r), o, (r))

- Ref: A comprehensive study of CRDTs, Shapiro et al.

An execution of the state-based Counter

do(o,inc,t)) = o 7‘€CV(61, 02) — O3
o —_— e, 104
N—’ send(o,) N—’
send(o,)
-0 _ -_— 6‘3 ,
~ - do(o,inc, t,) = o, 7’66‘\/(62, 61) = 03
g 0] 0, 03

State-based LWW Register

e 2. = V X T (assume V is the value set)
e O = {set(v) | ve V}uU{get}

do((v, 1), set(v), 1) = {(V,) ifr> 1

(v, t") otherwise
e ret((v,1), get) = v

e send(o) = o

, receive((v,,t,),(v,, 1)) = {

(v.,t,) ift. >t

(v,,t,.) otherwise

- Ref: A comprehensive study of CRDTs, Shapiro et al.

Designing an Op-based Set RDT
A :

Add(e) Rem(e)

:S;_/ send(Ada’(—_—
send(Rem
Sute]

5

~ Rem(e) Add(e)
7'2 a rz

do(o,Add(e),t) = o U {e}
do(o, Rem(e),t) = o\{e}

Violation of Strong Eventual Consistency

24

Designing an Op-based Set RDT

Unigueness of Timestamps

] dO(S’ Add(e)’ t) - (Ado.o\{(e,1)|(e,f) € S}) (SU {(e,1)}) 4!
SU {(e,n)} =50 {(en) | S
vj send(Ao .o U{(e, t})) &
send(Ao.o\{(e,)| (e,t) € SP S'U_
=S — > ()
~— do(S, Rem(e), t) = (lo.oU {(e,t})) S’ N’
) S\{(e,t)|(e,t) € S})

amazon

25 §'=S\{(e,1)|(e, 1) € §}

Op-based Add-wins Set

« 2 =P(VXT)

e O ={Add(v)|v € V} U {Rem(v)|v € V} U {lookup(v)|v € V}
e do(o,Add(v),t) =ocU {(v,1)}

e do(o, Rem(v),t) = o\{(v,t)|(v,1) € o}

e ret(o, lookup(v)) = dt. (v,t) €E o

e send(do(o,Add(v),t)) = Ao’.0’U {(v, 1)}

 send(do(o, Rem(v),t)) = Ac’.o'\{(e, 1)) | (e, V) € o}

e receve(o, ') = F(o)

- Ref: A comprehensive study of CRDTs, Shapiro et al.

Does this always work?

Unfortunately not!
Needs stronger network assumptions

A diverging execution of the Add-wins Set

Add(v,t)

I o
—

Violation of Strong Eventual Consistency

08 S'=S\{,)| (v,t) € S}

A diverging execution of the Add-wins Set

Add(v,t)
M S — — 5§
N — M —
g —— % AN
—_ M ——
8
3 EEEEEE—— —
=S ot}

Need a stronger network guarantee: Causal consistency

If send(m;) happens-before send(m,), then m; must be

received before m, at each replica
29 §'= S\)|, 1) € 5}

A execution of the Add-wins Set under Causal
Consistency

S N
N—
Rem(v

g ———— S

Add(v,t)

7’1 :g—
S—

3 TS
e

S S
S —
Need a stronger network guarantee: Causal consistency

If send(m;) happens-before send(m,), then m; must be

received before m, at each replica
3% §'= S\)|, 1) € 5}

Other RDTs

Multi-value register

State-based PN Counter
Remove-wins set

List (Replicated Growable Array)
Update-wins/Remove-wins Map
Graphs

JSON (Automerge)

31

Other RDT Paradigms: MRDT

 Mergeable Replicated Data Types (MRDT)
* A variant of state-based RDTs

 Uses a 3-way merge function to update the state on receipt of a
message.

» merge(o,.,, 01, 0,): 0; is the state at the receiving replica, o, is the state
of the sending replica, and o, is the lowest common ancestor state of
0, and o,.

 Can lead to very efficient RDT implementations.

e Inspired by distributed version control systems such as Git.

32

Increment-only Counter MRDT

e 2 =N
e O = {inc,rd}
» At replicar, do(o,inc,t) = o+ 1

o ret((f, I”d) =0 Best of both worlds

e send(o) = o

» merge(o;,0,,0,) =0+ (6,— o) + (6, — 0))

XNo extra meta-data (space and time complexity same as the Op-based Counter)

XWorks under more relaxed network assumptions: duplication, arbitrary re-
ordering of messages

33

An execution of the Counter MRDT

do(o,inc, 1)) =0+ 1 merge(o,0+ 1,0+ 1)

A
0
M —

0]
V wc send(c + D
o+ 1 o+ 1
send(c + 1)
- _- e E—
~ - do(o,inc,t,) = o+ 1 merge(o,o0 + 1,0 + 1)
o+ 2 &)

merge(c,o0+ l,o+1)=0c+0+1—-0)+(c+1—-0)=0+2

34

Another execution of the Counter MRDT

merge (Ica,vy,v,) =lca+ (v —lca) + (v, —lca)

5
7\
inc Inc
1 6 |

v
\' 6 V2 j ——
N——’
INC
7 7
Inc merge(5,6,6) merge(6,7,7)

35

Other RDT Paradigms: Delta-state CRDTs

 Sending the entire state as a message could get expensive and may be
unnecessary.

* E.Q.In state-based Counter CRDT, an increment operation only updates
a small part of the overall state.

e Delta-state CRDTs send delta-mutators as messages, which encodes all
the changes that have been made at a replica since its last
communication.

36

/
INTERyIISSION

After the break, Specification and Verification of RDTs...

37

Part B: Specification and
Verification of RD1s

Different forms of Specifications

-> e Strong Eventual Consistency (also known as convergence)
e Declarative RDT Specification
* Replication-aware Linearizability

39

Recall: Strong Eventual Consistency

» We associate an abstract state (o) with each state o which collects the update
operations applied directly or indirectly to get o.

» For the initial RDT state 6., € (0;,) = &.

» On performing do(o, o, t), 6 (do(o,0,t)) = € U {(0,1)}
 For state-based RDTs:

e On performing receive(o,, c,), €(receive(o,,6,)) = €(c,) U €(0,,)
 For op-based RDIs:

» On performing receive(o,, F), if (0, t) was the generator of F, then

G (receive(o,, (0,1))) = 6(o,) U {(0,1)}

40

Strong Eventual Consistency for state-based
CRDTs

Concepts from Lattice Theory can be used to verify convergence of state-
based CRDTs.

The first thing we need is for 2. to be a join semi-lattice.

Let D be asetand < C D X D be a partial order on D.
Forany x,y € D, x LI y is the least upper bound of x and y, i.e.
e X< xUy,y<xUyand

e Foranyz&€ Dsuchthatx <z y<zxuUly<z

Forany x,y € D, if x Ll y exists, it must be unique.

(D, <,) is ajoin semi-lattice if x LI y exists for all elements x,y € D.

41

Strong Eventual Consistency for state-based
CRDTs

» The first thing we need is for 2. to be a join semi-lattice.
e merge . 2 X 2 — 2 will be the lattice join function (Ll).
 The < ordering can be induced from the join function:

e 06 <0 & merge(o,0') =0
o < will be a partial order only if

o merge is idempotent, commutative and associative.

(2, < ,merge) is a join semi-lattice if merge is idempotent, commutative and
associative.

42

Strong Eventual Consistency for state-based
CRDTs

» Afunctionf: D — D is monotonicif Vx,y € D,x <y = f(x) < f(y).

» We say that all update functions of a CRDT & are monotonic, if for every

update operation 0 € O, for all timestamps ¢, do(o,t) : X — 2is
monotonic.

A state-based CRDT & is convergent if
¢ 2 is ajoin semi-lattice with merge being the join function.

» Every update operation of & is monotonic.
* Intuitively, the uniqueness of join guarantees convergence.

43 Ref: A comprehensive study of CRDTs, Shapiro et al.

State-based increment-only Counter

« 2= R — N (assume R is the set of replicas) merge is idempotent, commutative and
e O = {inc, rd} associative

» At replicar, do(o, inc,t) = o|lr — o(r) + 1]
e ret(o,rd) = 2, ro(r)

o, L0, VreR. o) Lo,(r)

e send(o) = o
. merge(c.,0,) = Ar. max(c(r), 6, (r)) 2., < ,merge) is a join semi-lattice

do(inc, t) is a monotonic function

44

Strong Eventual Consistency for Op-based CRDTs

Concurrently generated effectors

(Add(e))*" (Rem(e))°f

Effectors can be applied in either order, hence they

must commute.

(Add(e))* o (Rem(e))*" = (Rem(e))* o (Add(e))°"

(Rem(e))°" (Add(e))™"

)

Not always though!

Causal consistency ensures that some
effectors are always applied in the same order

Such effectors need not commute with each
other

Causally dependent effectors

ff

By 0°"", we mean applying the effector of 0

Strong Eventual Consistency for Op-based CRDTs

. which are IS enough to
ensure convergence of Op-based RDTs.

o Commutativity modulo consistency policy

 The behavior of an effector depends on the

* For the Op-based Add wins Set,

send(do(o, Rem(v), 1)) = lo’.o'\{(e, 1) |(e,t’) € o}

Rem(v)e"

= Effectively an infinite set of effectors

= We need to show commutativity for every pair of such concurrently
generated effectors

Ref: Automated Parameterized Verification of CRDTs. Nagar and Jagannathan.
46

Verifying commutativity modulo consistency

» . policy
1 2
O O .
12 4 * The behaviour of an
! 0, . effector depends on
— — Inductive Check: the state of the
if o2 and oS commute, | generating replica.
— — tcr;em”rgi tea”d 0y also |, Byt the state of the
Oinit Oinit generating replica
itself is obtained by
New Effectors off off applying a sequence

Non-interference to commutativity of effectors.
* We can use

induction on this

seqguence.

Both Base case and

iInductive case encoded
using SMT

Quite effective in practice

47 Ref: Automated Parameterized Verification of CRDTs, Nagar and Jagannathan.

Different forms of Specifications

= « Declarative RDT Specification
* Replication-aware Linearizability

Declarative Sequential Specifications

o Specification over sequences of update operations.

Constrains the return value of a query operation occurring after a
sequence of update operations.

. Formally, ', : O X O, =V

 Examples:
» For &Y = counter, & g(x, rd) = | m| where 7 is a sequence of inc
operations.

» For & = register, &'g,(7 - set(v), get) = v

» For I = set, &g (x, lookup(v)) = True < x contains an add(v)
operation not followed by a rem(v) operation.

49

Declarative RDT Specification

* Instead of using a sequence of update operations, RDT specifications are
over an operation context (£, oper, time, hb)

« [is a set of events

« oper . E — O,

e time : E — Timestamp

« hb C E X E is an acyclic relation.

« RDT Specification # (%) is defined as a function which takes as input an
operation context L and a query operation and returns a value.

« L. FE isthe abstract state € (r) of the replica r at which the query
operation is performed.

Ref: Replicated Data Types: Specification, Verification and Optimality. Burckhardt et al.
50

Operation Context: Examples

INC recv(oy,0,) = 03 £ _ :
é send(oy) | rlC | n.C
€1 €
em(v eff
@ AW (Remv) Add(v) Rem(v)
e N\ Cm
28T :
N——’ (Add(v)) i looku p(V)

An execution of the op-based Set

51

Declarative RDT Specification: Examples

» For & = counter, (L, rd) = |L.E]|.

. For @ = LWW register, Z o,(L, get) = S,(L . E'™®, get) where L . E'™®

is the sequence obtained by ordering operations in £ in increasing order of
their timestamps.

» For Y = Add-wins set,
F (L, lookup(v)) = True & de € L. E . oper(e) = Add(v)

A —(3df. oper(f) = Rem(v) AL.hb(e,f))

52

Correctness using Declarative RDT Specifications

A RDT implementation & is correct if for every execution E and every query

operation ¢ in £, the return value of g matches & (L, g) where L is the
operation context of g

Add(v) (Rem(v))*"f

(Add(v)T A\

(Add(v))®

V))eff

(Add(v))*" lookup(V)
returns False

I ‘
-

N\ D)

(Rem()™ |ookup(V)
returns True

X

Actually prohibited by Causal Consistency

Verifying Declarative RDT Specifications for state-
based RDTs

» A Replication-aware Simulation &£, (L, o) relation relates an operation

context L. with the concrete state o.

» Verification using £ (L, 6) is carried in two steps:

1. We show that £ (L,) holds inductively at all replicas r in any

execution where L is the operation context at r and o is the concrete
state at r.

2. We show that £ (L, o) is sufficient to discharge the RDT
specification.

Ref: Replicated Data Types: Specification, Verification and Optimality. Burckhardt et al.
54

Examples of %

e« 2. =R — N (assume R is the
set of replicas)
e O = {inc,rd}

* For the state-based Counter RDT: . At replica r
Rim(L,0) & |L.E| =2, po(r) do(o,inc,t) = o|lr — o(r) + 1]
» ret(o,rd) = 2, po(r)

e send(o) = o

e receive(o,,o,) = Ar. max(c(r),o, (1))

55

Examples of &£ _.

SIM

e 2. = V X T (assume V is the value
set)

e O = {set(v) | v € V} U {get}
 do((V, 1), set(v).) = {0’») ite> 1

(v, t") otherwise

* For the state-based LWW Register:
R (L,(v,1)) & de € L.E. oper(e) = set(v)
A(VFE L.E. time(f) < time(e)) * ret((v,1), get) = v
e send(o) = o

o receive((v,t,),(v, 1t)) = {

(v,t) ift.,>t,

(v,,t,) otherwise

56

Step-1

We show that & . holds inductively at every step in every execution

Verification using &£

Creates a new operation context by

1. Verifying Operations el n s e oee -2 dernfying Merge

L, L,
L #
do™(L, o, t)
% SIM /\ % SIM
%sim ; R
Creates a new operation context by taking ; % sim

a union of the contexts L. and L

57 merge(o,, o,)

Verification using &£, : Step-2

3. Veritying RDT specification Bonus Step: Verifying convergence

: F (L, q) = ret(o, q)

Semi-automated approach: programmer needs to provide the simulation relation

58

Different forms of Specifications

= « Replication-aware Linearizability

Replication aware Linearizability

Inspired by linearizability in shared-memory concurrent library implementations.

Basic idea: Each replica r’s state should always be a linearisation of the updates
performed at the replica, i.e. E(r).

The linearisation order [o between update events should obey following properties

» [0 between two updates should remain the same at all replicas throughout the
execution.

« hb C lo

In addition, for concurrent update events, a light-weight specification can be provided to
always order them in a specific way.

 EXpressed as a relation (rc¢) over non-commutative operations.
e E.qg. for add-wins set, rc = {(Rem(v), Add(v))|v € V}
e rc Clo

Ref: Replication aware linearizability. Enea et al.
60

Example : RA Linearizability for Add-wins Set

A
Add(v) merge(oc,, 6,)
o~ _ merselono)
—_— send(o)
5 send(oy)
e’ Rem(v) merge(02, 01)
)

merge(o,, 0,) = merge(o,,c,) = Add(v) - Rem(v) - ¢

o1

Verifying RA Linearizability using algebraic properties of
merge

o Commutativity, associativity and idempotence of merge are not sufficient.

» We require commutativity of merge and do:
« merge(Add(v) - o, Rem(v) - 6,) = Add(v) - merge(c,, Rem(v) - 6,)
* In general, merge(e, - 6y, e, - 0,) = e, - merge(oy, e, - 0,).
» Applicable when (e,, €,) € rc or e; and e, commute with each other.

 We develop an inductive approach called Bottom-up linearisation to
automatically prove such algebraic properties.

More details in our paper: Automatically Verifying Replication-aware Linearizability. OOPSLA 2025

62

Conclusion

 RDTs provide an elegant solution to an inherent inability of distributed systems to
provide strong consistency as captured by the CAP theorem.

* Even though strong consistency cannot be achieved, RDTs nevertheless guarantee
some strong correctness properties.

o Strong Eventual Consistency
 Declarative RDT specifications

* Replication-aware linearizability

 Reasoning about correctness of RDTs is quite non-trivial due to infinite state-space
+ message-passing based semantics.

e Still an unsolved problem as existing approaches are either not fully automated,
or not complete and often fail while encountering new RDT implementations.

 Not much is known about the decidability/complexity of the verification
problem.

03

[(
\\

|

[(
\\

|

Thank you!

—_—

—_—)
Questions?

o4

