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SOSP 2007

• Solution: Replication and Object 
versioning.


• Synchronous replica co-ordination 
required for strong consistency

• Providing the illusion of a centralized 

data store.

• Does not work under failure scenarios 

(“Network Partitions”).
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Strong Consistency, Availability and Tolerance against Network Partitions 
cannot be simultaneously achieved.

CAP Theorem:



SOSP 2007
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Strong Consistency, Availability and Tolerance against Network Partitions 
cannot be simultaneously achieved.

CAP Theorem:

• Optimistic Replication

• Every update at a replica generates a 

new version.

• Writes are instantaneous and need no 

synchronization.

• Reads also return instantaneously.


• May not return the most recently 
updated value.


• Replicas periodically merge their 
versions.

Eventual Consistency



SOSP 2007

AddtoC
art(Br

ead) 
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AddtoCart(Butter) 



SOSP 2007

Bread 
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Butter • Classical conflict resolution 
strategy: Last writer wins


• Amazon’s requirement: “Add 
to cart” operation can never 
be forgotten or rejected.


• Need for an customized 
merge operation which can 
cater to application 
requirements.


• Genesis for the “Add-wins” 
Set replicated data type.

V1 

V2 

Merging V1 and V2



Fast forward to today…
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Replicated Data Types have been widely adopted by the industry, studied in 
academia and have found use-case in a number of collaborative applications 

Academia

• New RDT Paradigms

• State-based, Op-based, 

Delta-state 

• Space and time-efficient RDT 

designs

• New datatypes

• JSON, Rich textual format, 

Augmented Reality

• Automated Verification and 

Analysis 

Industry Applications



Part A: RDT Basics
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RDT Basics

• Abstract Data Type interface for clients

• A set of operations for each data type

• Register: {wr(v), rd}

• Counter: {inc, dec, rd}

• Set: {add(e), rem(e), lookup(e)}

• List: {addAfter(a,b), remove(a), rd}


• Each operation is either a query or an update.


• The state is maintained at  different replicas or nodes.n

8



RDT Basics
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• Each replica is initialized to the same state.

• Client issues an operation at any replica, which is 

immediately executed at that replica.

• Periodically, a replica broadcasts a message to 

every other replica.

• The contents of the message and the period 

depends on the RDT paradigm.

• When a replica receives a message, it updates its 

state.

• Different RDT paradigms also have different 

requirements on the network behavior, e.g. 
whether the messages can get lost, duplicated, re-
ordered, etc.



Happens-before Order
• A replicated system is a distributed system where replicas send messages 

to each other to communicate updates.

• To define the concurrency semantics, two relations play a crucial role.


• An event  happens-before  (denoted by ) if one of the following 
conditions hold:


•  occurs before  on the same replica


•  sends a message , and  is the receive event corresponding to  


• There exists another event  such that  and .


• An update event  happens-before  if  has already been applied on 
the replica where  is applied.

e1 e2 e1 ≺ e2

e1 e2

e1 m e2 m
e e1 ≺ e e ≺ e2

u1 u2 u1
u2
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Arbitration Order

• Arbitration order is a total order among update events.

• Should subsume happens-before order between update events.

• Useful to define last-writer-wins semantics.

• Can be implemented using Lamport time-stamps.

11



Formalism: Client Interaction
• We fix a data-type . Let  be the set of states maintained by .


• Let  be the initial state. 


• Let  be the set of operations supported by .


•  can be partitioned into  and  containing update and query operations 
respectively.


•  defines a function 


• When a client issues an update operation  at a replica  with state :


•  is installed at .


• timestamp  is supplied by the replica.


•  also defines , which is called when a client issues a query 
operation.

𝒟 Σ 𝒟
σinit

O 𝒟
O Ou Oq

𝒟 do : Σ × Ou × 𝖳𝗂𝗆𝖾𝗌𝗍𝖺𝗆𝗉 → Σ
o r σ

do(σ, o, t) r
t

𝒟 ret : Σ × Oq → V

12



Example: Increment-only Counter
• 


• 


• 


• 


• 


• 


•

Σ = ℕ
σinit = 0
O = {inc, rd}

Ou = {inc}
Oq = {rd}

do(σ, inc, t) = σ + 1
ret(σ, rd) = σ

13



Formalism: Messaging between replicas

• Let  be the set of messages used by 


•  defines a function 


• Periodically, a replica with state  will broadcast  to all other 
replicas.


•  defines a function 


• When a replica  with state  receives message , the state 
 will be installed at .

M 𝒟
𝒟 send : Σ → M

σ send(σ)

𝒟 receive : Σ × M → Σ
r σ m

receive(σ, m) r

14



Two major paradigms in RDT Design
• The paradigms differ in what and when messages are sent.

• State-based CRDTs

• The entire state is sent as a message.


• Formally, ,  

• Messages can be sent at any time.


• , also known as .

• Op-based CRDTs

• A function (also known as an effector) is sent as a message.


• Formally, , typically 

• A message is sent after every update operation is performed.


•

M = Σ send(σ) = σ

receive : Σ × Σ → Σ merge

M = Σ → Σ send(do(σ, o, t)) = λσ′￼. do(σ′￼, o, t)

receive(σ, F) = F(σ)

15



Network Assumptions

• State-based CRDTs require minimal constraints on the underlying network.

✓Messages can be lost, duplicated, or re-ordered.

- They cannot be forged, i.e. any message received must have been sent 

by some replica.

• Op-based CRDTs require more stringent constraints on the network.

✓Messages can be lost.

- Messages cannot be duplicated.

- Messages cannot be forged.

- Re-ordering is allowed to a limited extent: more on this later.

16



Op-based Increment-only Counter
• 


• 


• 


• 


• 


•

Σ = ℕ
O = {inc, rd}
do(σ, inc, t) = σ + 1
ret(σ, rd) = σ
send(do(σ, o, t)) = λσ′￼. do(σ′￼, o, t)
receive(σ, F) = F(σ)

17 Ref: A comprehensive study of CRDTs, Shapiro et al.



An execution of the Op-based Counter
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do(n, inc, t1) = n + 1

send(inc)

send(inc)

n

n
do(n, inc, t2) = n + 1

recv(n + 1,inc) = n + 2

recv(n + 1,inc) = n + 2

n + 2

n + 2

r1

r2

r1

r2

✴Commutativity of increment and decrement simplifies the design.

✴Note that “no duplication of messages” network assumption is critical.



Strong Eventual Consistency
• We associate an abstract state  with each state  which collects the update 

operations applied directly or indirectly to get .


• For the initial RDT state , .


• On performing , 

• For state-based RDTs:


• On performing , 

• For op-based RDTs:


• On performing , if  was the generator of , then 

𝒞(σ) σ
σ

σ𝗂𝗇𝗂𝗍 𝒞(σ𝗂𝗇𝗂𝗍) = ∅
do(σ, o, t) 𝒞(do(σ, o, t)) = 𝒞 ∪ {(o, t)}

receive(σr, σm) 𝒞(receive(σr, σm)) = 𝒞(σr) ∪ 𝒞(σm)

receive(σr, F) (o, t) F
𝒞(receive(σr, (o, t))) = 𝒞(σr) ∪ {(o, t)}

19

A RDT  is strong eventually consistent if for any two states  and  
present at any two replicas,  
𝒟 σ1 σ2

𝒞(σ1) = 𝒞(σ2) ⟹ σ1 = σ2



An execution of the Op-based Counter

20

send(inc)

send(inc)

n

n

recv(n + 1,inc) = n + 2

recv(n + 1,inc) = n + 2

n + 2

n + 2

𝒞(n + 2) = 𝒞(n) ∪ {inc1, inc2}

r1

r2

r1

r2

do(n, inc, t1) = n + 1

do(n, inc, t2) = n + 1



State-based increment-only Counter

•  (assume  is the set of replicas)


• 


• At replica , 


• 


• 


•

Σ = ℛ → ℕ ℛ
O = {inc, rd}

r do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
receive(σr, σm) = λr . max(σr(r), σm(r))

21

✴Extra meta-data as compared to Op-based counter

✴Works under more relaxed network assumptions: duplication, arbitrary re-

ordering of messages
Ref: A comprehensive study of CRDTs, Shapiro et al.



An execution of the state-based Counter
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σ
r1 ↦ n
r2 ↦ n

σ1
r1 ↦ n + 1

r2 ↦ n
r1 ↦ n

r2 ↦ n + 1

σ2 σ3
r1 ↦ n + 1
r2 ↦ n + 1

r1

σ3

r2

σ3

do(σ, inc, t1) = σ1

send(σ1)

send(σ2)

do(σ, inc, t2) = σ2

recv(σ1, σ2) = σ3

r1

r2

recv(σ2, σ1) = σ3

σ

σ



State-based LWW Register
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•  (assume  is the value set)


• 


• 


• 


• 


•

Σ = V × T V
O = {set(v) | v ∈ V} ∪ {get}

do((v′￼, t′￼), set(v), t) = {(v, t) if t > t′￼

(v′￼, t′￼) otherwise
ret((v, t), get) = v
send(σ) = σ

receive((vr, tr), (vm, tm)) = {(vr, tr) if tr > tm
(vm, tm) otherwise

Ref: A comprehensive study of CRDTs, Shapiro et al.



Designing an Op-based Set RDT
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Add(e)
S

S

send(Add(e))

send(Rem(e))

Rem(e)

Rem(e)
r1

r2

S ∪ {e}

r2
Add(e)

r1

S∖{e}

Violation of Strong Eventual Consistencydo(σ, Add(e), t) = σ ∪ {e}
do(σ, Rem(e), t) = σ∖{e}



Designing an Op-based Set RDT
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S

S

r1

r2

do(S, Add(e), t) =
S ∪ {(e, t)}

do(S, Rem(e), t) =
S∖{(e, t′￼) | (e, t′￼) ∈ S}

send(λσ . σ∖{(e, t′￼) | (e, t′￼) ∈ S})

send(λσ . σ ∪ {(e, t}))

(λσ . σ ∪ {(e, t})) S′￼

r1

S′￼∪
{(e, t)}

r2

S′￼∪
{(e, t)}

S′￼ = S∖{(e, t′￼) | (e, t′￼) ∈ S}

😁Add-wins Set

Uniqueness of Timestamps

(λσ . σ∖{(e, t′￼) | (e, t′￼) ∈ S}) (S ∪ {(e, t)})
= S′￼∪ {(e, t)}



Op-based Add-wins Set
• 


• 


• 


• 


• 


• 


• 


•

Σ = ℙ(V × T)
O = {Add(v) |v ∈ V} ∪ {Rem(v) |v ∈ V} ∪ {lookup(v) |v ∈ V}
do(σ, Add(v), t) = σ ∪ {(v, t)}
do(σ, Rem(v), t) = σ∖{(v, t′￼) | (v, t′￼) ∈ σ}
ret(σ, lookup(v)) = ∃t . (v, t) ∈ σ
send(do(σ, Add(v), t)) = λσ′￼. σ′￼∪ {(v, t)}
send(do(σ, Rem(v), t)) = λσ′￼. σ′￼∖{(e, t′￼) | (e, t′￼) ∈ σ}
receive(σ, F) = F(σ)

26

✴Note that the  effector is slightly different from the  function of .

✴However, the  function is an application of the effector on the source replica  

Rem do Rem
do

Ref: A comprehensive study of CRDTs, Shapiro et al.



Op-based Add-wins Set
• 


• 


• 


• 


• 


• 


• 


•

Σ = ℙ(V × T)
O = {Add(v) |v ∈ V} ∪ {Rem(v) |v ∈ V} ∪ {lookup(v) |v ∈ V}
do(σ, Add(v), t) = σ ∪ {(v, t)}
do(σ, Rem(v), t) = σ∖{(v, t′￼   ￼ 
ret(σ, lookup(v)) = ∃t . (v, t) ∈ σ
send(do(σ, Add(v), t)) = λσ′￼ ￼ 
send(do(σ, Rem(v), t)) = λσ′￼ ￼ ￼   ￼ 
receive(σ, F) = F(σ)

27

✴The functions sent as messages are also known as eff
✴Note the do function is also an application of the eff

Does this always work? 
Unfortunately not! 

Needs stronger network assumptions



A diverging execution of the Add-wins Set
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Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

S′￼

∪ {(v, t)}

Violation of Strong Eventual Consistency



A diverging execution of the Add-wins Set
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Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

S′￼

∪ {(v, t)}
Need a stronger network guarantee: Causal consistency

If  happens-before , then  must be 

received before  at each replica
send(m1) send(m2) m1

m2

Standard requirement for Op-based RDTs



A execution of the Add-wins Set under Causal 
Consistency

30 S′￼ = S∖{(v, t′￼) | (v, t′￼) ∈ S}

Sr1

Sr2

Sr3

.

Add(v,t)
.

.

Rem(v)

.

.

. S′￼

S′￼

S′￼

Need a stronger network guarantee: Causal consistency

If  happens-before , then  must be 

received before  at each replica
send(m1) send(m2) m1

m2



Other RDTs

• Multi-value register

• State-based PN Counter

• Remove-wins set

• List (Replicated Growable Array)

• Update-wins/Remove-wins Map

• Graphs

• JSON (Automerge)

• …

31



Other RDT Paradigms: MRDT
• Mergeable Replicated Data Types (MRDT)

• A variant of state-based RDTs

• Uses a 3-way merge function to update the state on receipt of a 

message.


• :  is the state at the receiving replica,  is the state 
of the sending replica, and  is the lowest common ancestor state of 

 and .

• Can lead to very efficient RDT implementations.

• Inspired by distributed version control systems such as Git.

merge(σlca, σ1, σ2) σ1 σ2
σlca

σ1 σ2

32



Increment-only Counter MRDT
• 


• 


• At replica , 


• 


• 


•

Σ = ℕ
O = {inc, rd}

r do(σ, inc, t) = σ + 1
ret(σ, rd) = σ
send(σ) = σ
merge(σl, σr, σm) = σl + (σr − σl) + (σm − σl)

33

✴No extra meta-data (space and time complexity same as the Op-based Counter)

✴Works under more relaxed network assumptions: duplication, arbitrary re-

ordering of messages

Best of both worlds 



An execution of the Counter MRDT
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do(σ, inc, t1) = σ + 1

do(σ, inc, t2) = σ + 1

merge(σ, σ + 1,σ + 1)

r1

r2

σ

σ

send(σ + 1)

send(σ + 1)

merge(σ, σ + 1,σ + 1)

σ

σ + 1 σ + 1

merge(σ, σ + 1,σ + 1) = σ + (σ + 1 − σ) + (σ + 1 − σ) = σ + 2

σ + 2

Version Graph



Another execution of the Counter MRDT

35

5

5

inc

inc merge(5,6,6)

inc

merge(6,7,7)
= 7 = 8



Other RDT Paradigms: Delta-state CRDTs

• Sending the entire state as a message could get expensive and may be 
unnecessary.

• E.g. in state-based Counter CRDT, an increment operation only updates 

a small part of the overall state.

• Delta-state CRDTs send delta-mutators as messages, which encodes all 

the changes that have been made at a replica since its last 
communication.

36
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After the break, Specification and Verification of RDTs…



Part B: Specification and 
Verification of RDTs

38



Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

39



Recall: Strong Eventual Consistency
• We associate an abstract state  with each state  which collects the update 

operations applied directly or indirectly to get .


• For the initial RDT state , .


• On performing , 

• For state-based RDTs:


• On performing , 

• For op-based RDTs:


• On performing , if  was the generator of , then 

𝒞(σ) σ
σ

σ𝗂𝗇𝗂𝗍 𝒞(σ𝗂𝗇𝗂𝗍) = ∅
do(σ, o, t) 𝒞(do(σ, o, t)) = 𝒞 ∪ {(o, t)}

receive(σr, σm) 𝒞(receive(σr, σm)) = 𝒞(σr) ∪ 𝒞(σm)

receive(σr, F) (o, t) F
𝒞(receive(σr, (o, t))) = 𝒞(σr) ∪ {(o, t)}

40

A RDT  is strong eventually consistent if for any two states  and  
present at any two replicas,  
𝒟 σ1 σ2

𝒞(σ1) = 𝒞(σ2) ⟹ σ1 = σ2



Strong Eventual Consistency for state-based 
CRDTs

• Concepts from Lattice Theory can be used to verify convergence of state-
based CRDTs.


• The first thing we need is for  to be a join semi-lattice.


• Let  be a set and  be a partial order on .


• For any ,  is the least upper bound of  and , i.e.


• ,  and


• For any  such that , .


• For any , if  exists, it must be unique.


•  is a join semi-lattice if  exists for all elements .

Σ
D ≤ ⊆ D × D D

x, y ∈ D x ⊔ y x y
x ≤ x ⊔ y y ≤ x ⊔ y

z ∈ D x ≤ z, y ≤ z x ⊔ y ≤ z
x, y ∈ D x ⊔ y

(D, ≤ , ⊔ ) x ⊔ y x, y ∈ D

41



Strong Eventual Consistency for state-based 
CRDTs

• The first thing we need is for  to be a join semi-lattice.


•  will be the lattice join function ( ).


• The  ordering can be induced from the join function:


• 


•  will be a partial order only if 


•  is idempotent, commutative and associative.

Σ
merge : Σ × Σ → Σ ⊔

≤
σ ≤ σ′￼ ⇔ merge(σ, σ′￼) = σ′￼

≤
merge

42

 is a join semi-lattice if  is idempotent, commutative and 
associative.

(Σ, ≤ , merge) merge



Strong Eventual Consistency for state-based 
CRDTs

• A function  is monotonic if .


• We say that all update functions of a CRDT  are monotonic, if for every 
update operation , for all timestamps ,  is 
monotonic.


• A state-based CRDT  is convergent if 


•  is a join semi-lattice with  being the join function.


• Every update operation of  is monotonic.

• Intuitively, the uniqueness of join guarantees convergence.

f : D → D ∀x, y ∈ D, x ≤ y ⟹ f(x) ≤ f(y)
𝒟

o ∈ Ou t do(o, t) : Σ → Σ

𝒟
Σ merge

𝒟

43 Ref: A comprehensive study of CRDTs, Shapiro et al.



State-based increment-only Counter
•  (assume  is the set of replicas)


• 


• At replica , 


• 


• 


•

Σ = ℝ → ℕ ℝ
O = {inc, rd}

r do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
merge(σr, σm) = λr . max(σr(r), σm(r))

44

σ1 ≤ σ2 ⇔ ∀r ∈ ℝ . σ1(r) ≤ σ2(r)

 is idempotent, commutative and 
associative

merge

 is a join semi-lattice (Σ, ≤ , merge)

 is a monotonic functiondo(inc, t)



Strong Eventual Consistency for Op-based CRDTs

45

(Add(e))𝖾𝖿𝖿

S

S
(Rem(e))𝖾𝖿𝖿

(Rem(e))𝖾𝖿𝖿
r1

r2 r2
(Add(e))𝖾𝖿𝖿

r1

S′￼∪
{(e, t)}

send((Add(e))𝖾𝖿𝖿)

send((Rem(e))𝖾𝖿𝖿)

By , we mean applying the effector of o𝖾𝖿𝖿 o

Effectors can be applied in either order, hence they 
must commute. 

Sr1

Sr2

Sr3

.

.

..

.

. S′￼

S′￼

S′￼

(Add(e))𝖾𝖿𝖿

(Rem(e))𝖾𝖿𝖿

Not always though!

S′￼∪
{(e, t)}

Causal consistency ensures that some 
effectors are always applied in the same order

Such effectors need not commute with each 
other

Concurrently generated effectors

Causally dependent effectors

(Add(e))𝖾𝖿𝖿 ∘ (Rem(e))𝖾𝖿𝖿 = (Rem(e))𝖾𝖿𝖿 ∘ (Add(e))𝖾𝖿𝖿



Strong Eventual Consistency for Op-based CRDTs

• Commutativity of effectors which are concurrently generated is enough to 
ensure convergence of Op-based RDTs.

• Commutativity modulo consistency policy


• The behavior of an effector depends on the state of the generating replica.

• For the Op-based Add wins Set, 

send(do(σ, Rem(v), t)) = λσ′￼. σ′￼∖{(e, t′￼) | (e, t′￼) ∈ σ}

46

Rem(v)𝖾𝖿𝖿

➡Effectively an infinite set of effectors

➡ We need to show commutativity for every pair of such concurrently 
generated effectors 

Ref: Automated Parameterized Verification of CRDTs. Nagar and Jagannathan.



Verifying commutativity modulo consistency 
policy

• The behaviour of an 
effector depends on 
the state of the 
generating replica.


• But the state of the 
generating replica 
itself is obtained by 
applying a sequence 
of effectors.

• We can use 

induction on this 
sequence.

47

. . .

σinit

. . .

σinit

σ1 σ2

o𝖾𝖿𝖿
1

o1

o𝖾𝖿𝖿
2

o2

. . .

σinit

. . .

σinit

σ′￼1 σ′￼2

o𝖾𝖿𝖿′￼

1
o1

o𝖾𝖿𝖿′￼

2
o2

New Effectors

Inductive Check:


If  and  commute, 
then  and  also 
commute.

o𝖾𝖿𝖿
1 o𝖾𝖿𝖿

2
o𝖾𝖿𝖿′￼

1 o𝖾𝖿𝖿′￼

2

Non-interference to commutativity

Quite effective in practice

Fully Automated Approach

Both Base case and 
inductive case encoded 

using SMT
Ref: Automated Parameterized Verification of CRDTs, Nagar and Jagannathan.



Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

48



Declarative Sequential Specifications
• Specification over sequences of update operations.

• Constrains the return value of a query operation occurring after a 

sequence of update operations.


• Formally, 


• Examples:


• For counter,  where  is a sequence of  
operations.


• For register, 


• For set,  contains an  
operation not followed by a  operation.

𝒮𝒟 : O*u × Oq → V

𝒟 = 𝒮𝒟(π, rd) = |π | π inc

𝒟 = 𝒮𝒟(π ⋅ set(v), get) = v
𝒟 = 𝒮𝒟(π, lookup(v)) = True ⇔ π add(v)

rem(v)

49



Declarative RDT Specification
• Instead of using a sequence of update operations, RDT specifications are 

over an operation context 


•  is a set of events


• 


• 


•  is an acyclic relation.


• RDT Specification  is defined as a function which takes as input an 
operation context  and a query operation and returns a value.


•  is the abstract state  of the replica  at which the query 
operation is performed.

(E, oper, time, hb)
E
oper : E → Ou

time : E → 𝖳𝗂𝗆𝖾𝗌𝗍𝖺𝗆𝗉
hb ⊆ E × E

ℱ(𝒟)
L

L . E 𝒞(r) r

50
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Operation Context: Examples

51

recv(σ1, σ2) = σ3

r1

r2
recv(σ2, σ1) = σ3

σ

σ

inc

inc

send(σ1)

send(σ2)

rd

e1 e2

inc inc

An execution of the state-based Counter

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)
lookup(v)

e1 e2

Add(v) Rem(v)

hb

An execution of the op-based Set



Declarative RDT Specification: Examples

• For counter, .


• For LWW register,  where  
is the sequence obtained by ordering operations in  in increasing order of 
their timestamps.


• For Add-wins set,


𝒟 = ℱ𝒟(L, rd) = |L . E |
𝒟 = ℱ𝒟(L, get) = 𝒮𝒟(L . E𝗍𝗂𝗆𝖾, get) L . E𝗍𝗂𝗆𝖾

E

𝒟 =
ℱ𝒟(L, lookup(v)) = True ⇔ ∃e ∈ L . E . oper(e) = Add(v)

∧ ¬(∃f . oper( f ) = Rem(v) ∧ L . hb(e, f ))
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Correctness using Declarative RDT Specifications

53

A RDT implementation  is correct if for every execution  and every query 
operation  in , the return value of  matches  where  is the 

operation context of 

𝒟 E
q E q ℱ𝒟(L, q) L

q

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)

lookup(v)Sr3 ..

returns True

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿

A correct execution of the op-based Add-wins Set

Sr1

Sr2 .

.

.

.

(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿Add(v)

Rem(v)

lookup(v)Sr3 ..

returns False
(Add(v))𝖾𝖿𝖿

(Rem(v))𝖾𝖿𝖿

A incorrect execution of the op-based Add-wins Set

Actually prohibited by Causal Consistency
e1 e2

Add(v) Rem(v)

hb

Operation context of lookup(v)



Verifying Declarative RDT Specifications for state-
based RDTs

• A Replication-aware Simulation  relation relates an operation 
context  with the concrete state .


• Verification using  is carried in two steps:

1. We show that  holds inductively at all replicas  in any 

execution where  is the operation context at  and  is the concrete 
state at .


2. We show that  is sufficient to discharge the RDT 
specification.

ℛ𝗌𝗂𝗆(L, σ)
L σ

ℛ𝗌𝗂𝗆(L, σ)
ℛ𝗌𝗂𝗆(L, σ) r

L r σ
r

ℛ𝗌𝗂𝗆(L, σ)
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Examples of ℛ𝗌𝗂𝗆

• For the state-based Counter RDT:

ℛ𝗌𝗂𝗆(L, σ) ⇔ |L . E | = Σr∈ℝσ(r)

55

•  (assume  is the 
set of replicas)


• 


• At replica , 



• 


• 

•

Σ = ℝ → ℕ ℝ

O = {inc, rd}
r

do(σ, inc, t) = σ[r ↦ σ(r) + 1]
ret(σ, rd) = Σr∈ℝσ(r)
send(σ) = σ
receive(σr, σm) = λr . max(σr(r), σm(r))

State-based Counter



Examples of ℛ𝗌𝗂𝗆

• For the state-based LWW Register:

ℛ𝗌𝗂𝗆(L, (v, t)) ⇔ ∃e ∈ L . E . oper(e) = set(v)

∧ (∀f ∈ L . E . time( f ) ≤ time(e))

56

•  (assume  is the value 
set)


• 


• 


• 


• 


•

Σ = V × T V

O = {set(v) | v ∈ V} ∪ {get}

do((v′￼, t′￼), set(v), t) = {(v, t) if t > t′￼

(v′￼, t′￼) otherwise

ret((v, t), get) = v
send(σ) = σ
receive((vr, tr), (vm, tm)) = {(vr, tr) if tr > tm

(vm, tm) otherwise

State-based CounterState-based LWW Register



Verification using : Step-1ℛ𝗌𝗂𝗆

57

We show that  holds inductively at every step in every executionℛ𝗌𝗂𝗆

1. Verifying Operations

L

σ

ℛ𝗌𝗂𝗆

Creates a new operation context by 
adding a new event for the operation  (o, t)2. Verifying Merge

⟹
merge#(Lr, Lm)

merge(σr, σm)

ℛ𝗌𝗂𝗆

Lr

σr

ℛ𝗌𝗂𝗆

Lm

σm

ℛ𝗌𝗂𝗆∧⟹
do#(L, o, t)

do(σ, o, t)

ℛ𝗌𝗂𝗆

Creates a new operation context by taking 
a union of the contexts  and Lr Lm
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Verification using : Step-2ℛ𝗌𝗂𝗆

3. Verifying RDT specification

L

σ

ℛ𝗌𝗂𝗆 ⟹ ℱ𝒟(L, q) = ret(σ, q)

Bonus Step: Verifying convergence

Semi-automated approach: programmer needs to provide the simulation relation

L

σ1

ℛ𝗌𝗂𝗆

L

σ2

ℛ𝗌𝗂𝗆

⟹ σ1 = σ2

∧



Different forms of Specifications

• Strong Eventual Consistency (also known as convergence)

• Declarative RDT Specification

• Replication-aware Linearizability

59



Replication aware Linearizability
• Inspired by linearizability in shared-memory concurrent library implementations.

• Basic idea: Each replica ’s state should always be a linearisation of the updates 

performed at the replica, i.e. .


• The linearisation order  between update events should obey following properties


•  between two updates should remain the same at all replicas throughout the 
execution.


• 

• In addition, for concurrent update events, a light-weight specification can be provided to 

always order them in a specific way.

• Expressed as a relation ( ) over non-commutative operations.


• E.g. for add-wins set, 


•

r
𝒞(r)

lo
lo

hb ⊆ lo

rc
rc = {(Rem(v), Add(v)) |v ∈ V}

rc ⊆ lo

60
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Example : RA Linearizability for Add-wins Set
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merge(σ1, σ2)
r1

r2
merge(σ2, σ1)

σ

σ

Add(v)

Rem(v)

send(σ1)

send(σ2)

merge(σ1, σ2) = merge(σ2, σ1) = Add(v) ⋅ Rem(v) ⋅ σ

Shorthand for do(σ, Rem(v), _)



Verifying RA Linearizability using algebraic properties of 
merge

• Commutativity, associativity and idempotence of  are not sufficient.


• We require commutativity of  and :


• 


• In general, .


• Applicable when  or  and  commute with each other.

• We develop an inductive approach called Bottom-up linearisation to 

automatically prove such algebraic properties.

merge
merge do

merge(Add(v) ⋅ σ1, Rem(v) ⋅ σ2) = Add(v) ⋅ merge(σ1, Rem(v) ⋅ σ2)
merge(e1 ⋅ σ1, e2 ⋅ σ2) = e1 ⋅ merge(σ1, e2 ⋅ σ2)

(e2, e1) ∈ rc e1 e2
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Conclusion
• RDTs provide an elegant solution to an inherent inability of distributed systems to 

provide strong consistency as captured by the CAP theorem.

• Even though strong consistency cannot be achieved, RDTs nevertheless guarantee 

some strong correctness properties.

• Strong Eventual Consistency

• Declarative RDT specifications

• Replication-aware linearizability


• Reasoning about correctness of RDTs is quite non-trivial due to infinite state-space 
+ message-passing based semantics.

• Still an unsolved problem as existing approaches are either not fully automated, 

or not complete and often fail while encountering new RDT implementations.

• Not much is known about the decidability/complexity of the verification 

problem.
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Thank you!

Questions?


