
CS3300 - Compiler Design
Introduction

Kartik Nagar

IIT Madras



Compilers: What?

What is a compiler?

a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?

a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.

Usually from a high-level language to machine language
What is an interpreter?

a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?

a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?

a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?
a program that reads an executable program and produces the
results of running that program

usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.

A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Compilers: What?

What is a compiler?
a program that translates an executable program in one language
into an executable program in another language.
Usually from a high-level language to machine language

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers. Many of the same issues
also arise in interpreters.
A common statement – XYZ is an interpreted (or compiled)
language.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 2 / 38



Examples

“Low level” languages are typically compiled.

C, C++, Go, Rust
“High level” languages are typically interpreted.

Python, Ruby

Some languages are both compiled and interpreted

Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.

Python, Ruby

Some languages are both compiled and interpreted

Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.

Python, Ruby
Some languages are both compiled and interpreted

Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.
Python, Ruby

Some languages are both compiled and interpreted

Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.
Python, Ruby

Some languages are both compiled and interpreted

Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Examples

“Low level” languages are typically compiled.
C, C++, Go, Rust

“High level” languages are typically interpreted.
Python, Ruby

Some languages are both compiled and interpreted
Java, Javascript - Interpreter + Just in Time (JIT) Compiler

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 3 / 38



Compilers: When?

In 1954, IBM developed the 704, “the first mass-produced
computer with floating-point arithmetic hardware” [Wikipedia].

Unfortunately, software costs would exceed hardware costs, since
all programming was done in assembly.

John Backus developed the FORTRAN I language (1957) for
writing high-level code, and also a compiler for translating it to
assembly.

Development time halved, with performance being close to the
hand-written assembly!
Modern compilers preserve the outline of the FORTRAN I compiler

Independently, in the 1950s, Grace Hopper developed the
COBOL language and a compiler for it.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 4 / 38



Compilers: When?

In 1954, IBM developed the 704, “the first mass-produced
computer with floating-point arithmetic hardware” [Wikipedia].

Unfortunately, software costs would exceed hardware costs, since
all programming was done in assembly.

John Backus developed the FORTRAN I language (1957) for
writing high-level code, and also a compiler for translating it to
assembly.

Development time halved, with performance being close to the
hand-written assembly!
Modern compilers preserve the outline of the FORTRAN I compiler

Independently, in the 1950s, Grace Hopper developed the
COBOL language and a compiler for it.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 4 / 38



Compilers: When?

In 1954, IBM developed the 704, “the first mass-produced
computer with floating-point arithmetic hardware” [Wikipedia].

Unfortunately, software costs would exceed hardware costs, since
all programming was done in assembly.

John Backus developed the FORTRAN I language (1957) for
writing high-level code, and also a compiler for translating it to
assembly.

Development time halved, with performance being close to the
hand-written assembly!
Modern compilers preserve the outline of the FORTRAN I compiler

Independently, in the 1950s, Grace Hopper developed the
COBOL language and a compiler for it.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 4 / 38



Images of the day

Figure: Turing Award Winners, Grace Hopper and John Backus

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 5 / 38



Compilers: Why?

Isn’t it a solved problem?

“Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers

Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems

changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness

old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Compilers: Why?

Isn’t it a solved problem? “Optimization for scalar machines was solved
years ago”

Machines have changed drastically in the last 20 years

Changes in architecture ) changes in compilers
Major unsolved problem: Design of a programming language and its
compiler which optimises the use of modern multi core and many core
machines.

new features pose new problems
changing concerns lead to new challenges: Security, correctness
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 6 / 38



Interest

Compiler construction is a microcosm of computer science
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 7 / 38



Intrinsic Merit

Compiler Design is challenging and fun
interesting problems
primary responsibility (read:blame) for performance
new architectures ) new challenges
real results
extremely complex interactions

Compilers have a major impact on how computers are used

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 8 / 38



Requirements

What qualities are important in a compiler?

1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code

2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast

3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast

4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size

5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors

6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger

7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies

8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Requirements

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Good diagnostics for syntax errors
6 Works well with the debugger
7 Good diagnostics for flow anomalies
8 Consistent, predictable optimization

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 9 / 38



Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 10 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).

front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR

back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine

simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting

allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends

multiple passes ) better code
A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).

Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).

Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes ) better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 11 / 38



Administrivia

Lecture Timings
Slot B: Monday 9 AM, Wednesday 1 PM, Friday 11 AM
Online on Google Meet

Course Webpage: https://kartiknagar.github.io/courses/compiler/
Course Moodle page: TBD

Lecture slides, links to video lectures, etc. will be uploaded here.

Course Google group: CS3300-Aug-Nov-2021
Instructor e-mail address: nagark@cse.iitm.ac.in

Instructor Office Hours: None.
Feel free to e-mail me if you want to meet. TA Office hours will be
announced soon.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 12 / 38



Grading Policy (tentative)

Theory: 60%, Lab: 40%
Theory

Quiz 1: 14%, Quiz 2: 14%, Endsem: 30%
Class Participation: 2%.
Class Participation will be monitored throughout the semester. You
can participate by asking/answering questions during the lectures
and/or in the Google group forum.

Lab: 5 Assignments. More details will be announced by the end of
the week.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 13 / 38



Course outline

Overview of Compilers
Lexical Analysis and Parsing
Type checking
Intermediate Code Generation
Register Allocation
Code Generation
Overview of advanced topics.

Goal of the course: At the end of the course, students will have a fair
understanding of some standard passes in a general purpose
compiler. Students will have hands on experience on implementing a
compiler for a subset of Java.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 14 / 38



Course outline

Overview of Compilers
Lexical Analysis and Parsing
Type checking
Intermediate Code Generation
Register Allocation
Code Generation
Overview of advanced topics.

Goal of the course: At the end of the course, students will have a fair
understanding of some standard passes in a general purpose
compiler. Students will have hands on experience on implementing a
compiler for a subset of Java.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 14 / 38



Course Textbooks

Compilers: Principles, Techniques, and Tools, Alfred Aho, Monica
Lam, Ravi Sethi, Jeffrey D. Ullman. Addison-Wesley, 2007 [The
Dragon Book].
Modern compiler implementation in Java, Second Edition, Andrew
W. Appel, Jens Palsberg. Cambridge University Press, 2002.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 15 / 38



Your friends: Languages and Tools

Start exploring
C and Java - familiarity a must - Use of a SDE like Eclipse is
recommended.
Flex, Bison, JavaCC, JTB – tools you will learn to use.
Make / Ant / Scripts – recommended toolkit.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 16 / 38



Acknowledgement

These slides are heavily adapted from the slides prepared by Prof. V
Krishna Nandivada @ IIT Madras. Liberal portions of text are also
taken verbatim from Antony L. Hosking @ Purdue, Jens Palsberg @
UCLA, Alex Aiken @ MIT and the Dragon book.

Copyright c�2021 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

Kartik Nagar (IIT Madras) CS3300 - Aug 2021 17 / 38


