
Formal Methods in Computer-Aided Design 2023

Automating Cutoff-based Verification of Distributed
Protocols

Shreesha G. Bhat and Kartik Nagar
Department of CSE, IIT Madras

Chennai, India
shreeshagbhat@gmail.com, nagark@cse.iitm.ac.in

Abstract—Distributed protocols are generally parametric and
are expected to work correctly on systems containing any number
of nodes. Therefore, proving their correctness becomes an infinite
state verification problem. The usual approach for verifying
distributed protocols is to provide an inductive invariant that
is strong enough to imply the safety property. But inductive
invariants for even simple distributed protocols can be intricate
and synthesizing them in an automated manner is a hard
problem. In this work, we investigate an orthogonal cutoff-based
technique for verifying distributed protocols. In a cutoff-based
approach, one provides a finite-sized instance of the system which
encompasses all possible modes of violation of the safety property.
Analyzing such a cutoff instance for safety violations suffices
to prove the correctness of the protocol for all instances. In
this work, we formalize a simulation-based approach to check
whether a given instance is a cutoff instance for protocols written
in a general modelling language (RML) by identifying sufficient
conditions which can be efficiently encoded in SMT. We propose
simple static analyses to automatically synthesize the cutoff
instance, simulation relation and other proof components, thus
leading to a fully automated verification procedure. Finally we
apply our technique on a number of protocols ranging from
simple leader election and mutual exclusion protocols to complex
quorum-based consensus protocols.

I. INTRODUCTION

Distributed protocols allow disparate nodes to work together
towards completing a task, and form the backbone of today’s
distributed systems. These protocols are typically specified in
a parametric fashion, which means they can be instantiated
on a system with any number of nodes. The nodes commu-
nicate with each other through message passing, and these
messages can be arbitrarily delayed or even lost. However,
the distributed protocol is expected to work correctly under
all such conditions. Here, correctness is typically defined in
terms of a safety property which must be obeyed by every
node at every step of the protocol. For example, the safety
property of a distributed mutual exclusion protocol would say
that two nodes should not be in their critical section at the
same time. Since the protocols need to consider every possible
network behavior, they are quite complex in nature. Verifying
the correctness of distributed protocols then becomes highly
important, but this problem is significantly complicated by the
parametric nature of the protocol and the asynchronous, non-
deterministic nature of the underlying network. Essentially,
every possible instantiation of the protocol needs to be proven
correct, and each such instantiation itself needs to consider a

large number of network behaviors. Further, there could be an
infinite number of instantiations of the protocol.

Recent approaches ([1]–[6]) to verifying distributed proto-
cols typically aim to find an inductive invariant, which is a
property of the protocol state satisfied at every step of any
protocol instance, which is inductive in nature and is stronger
than the safety property. However, finding an inductive in-
variant is very hard, as conceptually, it should encompass all
the complex logic that the protocol employs to maintain the
safety property under any abnormal network behavior in any
instantiation. In this work, we consider an alternative cutoff-
based approach to protocol verification that cleanly separates
the two problems of dealing with arbitrary instantiations and
arbitrary network behavior. This approach requires a cutoff
instance with a fixed, finite number of nodes whose correctness
implies the correctness of any arbitrary protocol instance.
Then, we only need to consider how the protocol maintains the
safety property under arbitrary network behavior in the cutoff
instance. Further, since the cutoff instance will have a constant,
finite number of nodes, verifying its correctness becomes a
finite state verification problem, which can be solved in an
automated fashion.

In this paper, we focus on the problem of finding such a
cutoff instance, and automatically showing that it is indeed a
cutoff. The definition of a cutoff instance gives us the follow-
ing characterization: if there exists a violation of the safety
property in any arbitrary protocol instance, then there should
also exist a violation in the cutoff instance. We automatically
construct a cutoff instance which can simulate any violation
of the safety property in any arbitrary protocol instance. While
this seems like a tall order, we hypothesize that this problem
is simpler due to two reasons: (i) a violation of the safety
property typically involves only a small number of nodes (for
example, a violation of the mutual exclusion property would
only require two nodes to be in their critical section together),
and further, the participation of other nodes of the system is
either not required, or can be simulated by the violating nodes
themselves, and (ii) most of the complex logic in the protocol
implementation which ensures the absence of a violation can
be side-stepped, since we are actually interested in simulating
the presence of a violation.

While previous works have also attempted to use cutoff
based approaches for verification ([7]–[10]), they have mostly
been limited to either a restricted class of protocols [8] with

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_15
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_15
https://creativecommons.org/licenses/by/4.0/

strong assumptions on the underlying network or a restricted
class of specifications [9]. In this work, we consider a variety
of protocols targeting different goals (consensus, mutual exclu-
sion, key-value store, etc.) and do not make any assumptions
about the underlying network. Our approach takes as input
the protocol description written in the Relational Modeling
Language (RML). We first develop a formalization of the
cutoff approach which defines sufficient conditions for proving
that a given protocol instance is a cutoff instance, which can be
encoded using SMT. We then use our hypothesis concerning
the simplicity of the cutoff instance to develop a static analysis
based approach which directly synthesizes the cutoff instance
from a violation of the safety property. Beginning from a
state which violates the safety property, our analysis moves
backwards to identify the necessary protocol actions and state
components that could be involved in a violation. We then
use the output of the static analysis to create a cutoff instance
which faithfully simulates all the protocol actions and state
components which could be involved in a violation. Finally,
we apply our SMT encoding to check the correctness of
the synthesized cutoff instance. We have implemented the
proposed approach and applied it on 8 different distributed
protocols, providing a fully automated cutoff-based proof of
correctness for all of them.

To summarize, we make the following contributions:
1) We formalize the cutoff approach for distributed proto-

cols written in the RML language, and identify suffi-
cient conditions for proving the correctness of a cutoff
instance.

2) We propose a simple static analysis-based approach to
automatically synthesize from the protocol description,
a cutoff instance and a simulation relation for proving
the correctness of the cutoff.

3) We have implemented the approach in a prototype tool
and have successfully verified 8 challenging protocols.

The rest of the paper is organized as follows: In §2, we
illustrate the cutoff-based approach to protocol verification
and our synthesis algorithm using an example. We formalize
the cutoff approach for protocols written in RML in §3 and
§4. Details of our synthesis algorithm are presented in §5.
Experimental results are given in §6, followed by a discussion
on related works and conclusion in §7.

II. MOTIVATING EXAMPLE: THE SHARDED KEY-VALUE
STORE

A. Protocol Description

As a motivating example to demonstrate our technique, we
consider the sharded key-value store protocol described in [1].
The protocol maintains key-value pairs distributed across a set
of nodes. It implements a mechanism for nodes to reshard
key-value pairs amongst one another in the presence of an
unreliable network while maintaining the safety property that
no two nodes should ever own a key simultaneously. A detailed
pseudocode description of the protocol in the RML language
[11] is provided below in Fig. 1.

Algorithm 1 The Sharded Key Value Store Protocol

1: type key, value, node, seqnum

2: relation table : node, key, value

3: relation transfer msg : node, node, key, value, seqnum
4: relation ack msg : node, node, seqnum

5: relation seqnum sent : node, seqnum
6: relation unacked : node, node, key, value, seqnum

7: relation seqnum recvd : node, node, seqnum

8: init ∀n1, n2, k, v1. table(n1, k, v1) ∧ table(n2, k, v2) =⇒ n1 =

n2 ∧ v1 = v2 ▷ All other relations are empty
9: action Reshard(n old : node,n new : node, k : key, v : value, s :

seqnum)
10: require table(n old , k, v) ∧ ¬seqnum sent(s)

11: seqnum sent(s)← true

12: table(n old , k, v)← false
13: transfer msg(n old ,n new , k, v, s)← true

14: unacked(n old ,n new , k, v, s)← true

15: action DropTransferMsg(src : node, dst : node, k : key, v :
value, s : seqnum)

16: require transfer msg(src, dst, k, v, s)
17: transfer msg(src, dst, k, v, s)← false

18: action Retransmit(src : node, dst : node, k : key, v : value, s :

seqnum)
19: require unacked(src, dst, k, v, s)

20: transfer msg(src, dst, k, v, s)← true

21: action RecvTransferMsg(src : node, dst : node, k : key, v :
value, s : seqnum)

22: require transfer msg(src, dst, k, v, s) ∧ ¬seqnum recvd(s)

23: seqnum recvd(s)← true
24: table(dst, k, v)← true

25: action SendAck(src : node, dst : node, k : key, v : value, s :
seqnum)

26: require transfer msg(src, dst, k, v, s) ∧ seqnum recvd(s)

27: ack msg(s)← true
28: action DropAckMsg(src : node, dst : node, k : key, v : value, s :

seqnum)

29: require ack msg(s)
30: ack msg(s)← false

31: action RecvAckMsg(src : node, dst : node, k : key, v : value, s :

seqnum)
32: require ack msg(s)

33: unacked(src, dst, k, v, s)← false

34: action Put(n : node, k : key, v : value)
35: require ∃v′. table(n, k, v′)
36: table(n, k, ∗)← false
37: table(n, k, v)← true

38: safety ∀k, n1, n2, v1, v2, k. table(n1, k, v1) ∧ table(n2, k, v2) =⇒
n1 = n2 ∧ v1 = v2

The protocol is described using a set of types, relations
and actions. A type (or sort in RML terminology) is defined
for nodes, keys, values and sequence numbers. The relations
describe the state of the protocol and are defined over these
sorts. In a step of the execution, any action can be fired
provided that its guard (specified by the require keyword)
is satisfied.

The relation table(n, k, v) indicates that the node n holds
the key k with the value v. A Reshard action generates a
transfer msg from the key’s current owner to its new owner.
Transfer messages can be arbitrarily dropped (through the
DropTransferMsg action), and hence the protocol employs

76

an acknowledgment mechanism, whereby the new owner
needs to send an acknowledgment message upon receiving a
transfer msg , and the current owner will keep re-transmitting
(through the Retransmit action) until it receives an acknowl-
edgment. The acknowledgement message itself can be dropped
and might require re-transmission. Since each transfer msg
message is tagged with a unique sequence number, the re-
ceiving node can ignore duplicate transfer msg’s that arise
from the re-transmission mechanism by marking the sequence
number as received in line 24; the absence of which is
used as a guard by RecvTransferMsg action. This prevents
safety violations that can occur due to older transfer messages
entering their out-of-date key value pair into the table of the
destination node after it has already been re-sharded to some
other node, or subsequent Put actions have occurred thereby
altering the associated value.

B. Cutoff based Verification

The safety property for this protocol says that in all runs,
we cannot have two different table entries for the same key.
Intuitively, this is maintained at all times, because either
a single node contains the key in its table, or the key is
in-transit. The unique sequence number associated with a
transfer msg ensures that re-transmissions do not break the
safety property. Prior works [1], [11] construct a complex
inductive invariant which leverages the above observation to
show the uniqueness of a number of state components, and
ultimately implies the safety property. In this work, we take
an orthogonal approach where we assume the existence of
a hypothetical violation and focus on (1) identifying the key
state components and actions of the protocol that contribute to
this violation, and (2) simulating this violation by maintaining
these state components in a fixed, small protocol instance. If
the cutoff instance can be shown to simulate any violation
of the safety property, proving the safety of the cutoff in-
stance is sufficient to establish correctness for all instances
of the protocol. This essentially formalizes the ‘small model’
property that has been empirically established by many prior
works for bugs in concurrent and distributed systems. Note
that while synthesizing the cutoff instance, we can completely
ignore how the protocol blocks out potential scenarios where
a violation can occur, which is one of the classical hurdles in
crafting inductive invariants. For the sharded key-value store
protocol, we show that a cutoff instance with 2 nodes can
simulate all possible violations in arbitrary sized instances of
the protocol (note that size refers to number of nodes).

C. Static Analysis

We employ a static analysis based approach on the protocol
description to find out the relevant state components and
actions that are necessary for simulating violations of the
safety property. Consider a violation in an arbitrary size system
L where we have two distinct nodes AL, BL and key K
such that table(AL,K, V1) and table(BL,K, V2) hold. We
are interested in collecting the relevant state components and
actions that are responsible for this violating state of L. At

a very high level, our static analysis starts from the state
components directly involved in the violation, and then finds
actions which can set these state components. However, for
these actions to be enabled, their guards will also need to be
maintained. So the state components in the guards also now
become relevant, and the above process continues until no new
relevant actions or state components are found.

For the sharded key value store protocol, we start with the
state components that are involved in the violation of the
safety property as the initial set of relevant state components,
S = {table(AL,K, V1), table(BL,K, V2)}. Consider the
actions that set the clauses table(AL⟨BL⟩,K, V1⟨V2⟩) (we use
entries in brackets ⟨⟩ to succinctly represent both the clauses).
We find that any action of the type Put(AL⟨BL⟩),K, V1⟨V2⟩)
and RecvTransferMsg(∗, AL⟨BL⟩,K, V1⟨V2⟩), ∗) can set
these table entries, where ∗ represents any value. These
are added to the set of relevant actions (denoted by
A). Now we consider the components in the guards
of these actions. For the RecvTransferMsg actions,
the guard contains the clauses ¬seqnum recvd(∗) and
transfer msg(∗, AL⟨BL⟩,K, V1⟨V2⟩, ∗). For the Put actions,
we have ∃v. table(AL⟨BL⟩,K, v) as the guard clause. For
the existential quantifier, we include table(AL⟨BL⟩,K, ∗)
where the value entry is not restricted and therefore all such
table entries are tracked as relevant. These entries are added
to the set S.

In this way, we keep on collecting relevant actions and
clauses, terminating in a fixed point after a few iterations.
We also simplify the sets by noting that ∗ entries subsume
other entries that contain specific values in that field. For
example, if the S set contains an entry table(AL,K, V1) and
also an entry table(AL,K, ∗), the latter subsumes the former.
On performing such reductions, we get the following fixed
point sets S and A

S = {table(∗,K, ∗), transfer msg(∗, ∗,K, ∗, ∗),
¬seqnum recvd(∗),¬seqnum sent(∗),
unacked(∗, ∗,K, ∗, ∗)}

A = {Put(∗,K, ∗),RecvTransferMsg(∗, ∗,K, ∗, ∗),
Reshard(∗, ∗,K, ∗, ∗),Retransmit(∗, ∗,K, ∗, ∗)}

Notice that though the protocol has 8 actions in total,
the action set obtained from static analysis shows that only
4 of these actions are actually relevant in a violation. In
particular, actions such as DropTransferMsg and SendAck
are not required to simulate a violation. Intuitively, this is
because these actions are not necessary to actually transfer
a key from one node to another, which is needed for realizing
a potential violation. Secondly, although the correctness of
the protocol (that is, avoiding a violation) depends on a
complex invariant involving uniqueness of a number of state
components, we do not require any of that complexity to
simulate a violation. The static analysis essentially ignores
how exactly a violating state might have been obtained, but
instead tries to trace the state components and actions that
are essential for recreating the violation. For example, it is

77

possible that a transfer message may have been dropped by
the network in a violating execution, and hence would need to
be re-transmitted. However, the cutoff system need not drop
the message in the first place (re-transmission is still required).
Intuitively, if a violation occurs in L, by maintaining the state
components in S and performing only the relevant actions in
A, we can recreate the violation in the cutoff system C.

D. Simulation Relation & Lockstep

While the static analysis gives us the relevant state com-
ponents and actions that need to be maintained in a cutoff
system, we still need to prove that any violation in any protocol
instance can be simulated by the cutoff instance. To show this,
we establish a simulation between any arbitrary instance L and
a cutoff instance C. The simulation is primarily governed by
a lockstep which describes the action(s) taken by the cutoff
instance C for every action in L. An action in L is simulated
as zero or more actions in C. We also establish a simulation
relation that holds inductively on the states of both L and
C as they progress according to the lockstep. The simulation
relation will be strong enough to show that at any step, a
violation of the safety property in L will imply a violation in
the state of C as well.

The main ingredients of the simulation relation and lockstep
have already been identified via the static analysis, i.e. the
relevant state components and corresponding actions required
to reach a violating state. What remains is to map the relevant
state components and actions of L to corresponding compo-
nents of C. Such a mapping can be obtained by mapping nodes
of L to their corresponding simulating node in C. Denoting the
node mapping as sim : DL → DC (where Dx represents the
set of nodes in the instance x), the simulation relation main-
tains that relevant state components from the set S obtained
from static analysis corresponding to any node n ∈ DL in
L match the corresponding state component of sim(n) in C.
The simulation relation does not say anything about the state
components which are not relevant for the violation. Similarly,
the lockstep ensures that whenever any action from A occurs
in L, the corresponding action is triggered in C. The rest of
the actions of L are ignored as they are not relevant to simulate
the violation.

Specifically, for the sharded key value store protocol, let us
denote the two nodes in the cutoff instance as AC and BC .
Recall that AL and BL were nodes of the larger instance L
which were involved in the violation. We have sim(AL) = AC

and sim(BL) = BC . We map the rest of the nodes to one of
AC or BC , say BC i.e. ∀N ∈ DL. (N ̸= A)∧ (N ̸= B) =⇒
sim(N) = BC . Intuitively, a node NC ∈ DC maintains the
state and performs the actions for all the nodes NL ∈ DL such
that sim(NL) = NC .

Applying the sim mapping on the relevant state components

S we get the following 5 clauses in the simulation relation:

(1) tableL(n,K, v) =⇒ tableC(sim(n),K, v)

(2) unackedL(n1, n2,K, v, s) =⇒
unackedC(sim(n1), sim(n2),K, v, s)

(3) ¬seqnum sentL(s) =⇒ ¬seqnum sentC(s)

(4) ¬seqnum recvdL(s) =⇒ ¬seqnum recvdC(s)

(5) transfer msgL(n1, n2,K, v, s) =⇒
transfer msgC(sim(n1), sim(n2),K, v, s)

Here, we use relL and relC to denote the relation rel of the
protocol for the instances L and C respectively and assume
universal quantifiers over all lower-cased variables for each
clause. Notice that the simulation relation ensures that any
violation of safety property in the protocol state of the larger
system (say tableL(AL,K, V1) and tableL(BL,K, V2)) will
result in a violation of the cutoff system. The lockstep defines
the actions fired in the cutoff instance for actions of the larger
instance, and ensures that the above simulation relation is
maintained for every step of every execution. For actions not
in the lockstep, no action is fired in the cutoff instance. Again,
the sim mapping and the relevant actions A give the following
lockstep:

(1) PutL(n,K, c) is simulated as PutC(sim(N),K, V)

(2) ReshardL(n1, n2,K, v, s) is simulated as
ReshardC(sim(n1), sim(n2),K, v, s)

(3) RetransmitL(n1, n2,K, v, s) is simulated as
RetransmitC(sim(n1), sim(n2),K, v, s)

(4) RecvTransferMsgL(n1, n2,K, v, s) is simulated as
RecvTransferMsgC(sim(n1), sim(n2),K, v, s)

Now, we can show that the simulation relation holds in-
ductively as the two instances L and C execute as-per the
lockstep. This ensures that for every violating execution of the
larger instance L, there exists a violating execution of C. By
independently showing that C does not exhibit any violations
(which is a much simpler problem, since it has only 2 nodes),
we can infer the correctness of the protocol.

III. SETUP

We consider distributed protocols written in the Relational
Modeling Language (RML) [11]. RML is a Turing-complete
language, and has been used in many prior works related
to distributed protocol verification. RML uses the notions of
relations and functions as used in many-sorted first order logic
to describe the state of a distributed protocol. Further, these can
be defined over arbitrary domains, as specified by the protocol
developer. Constraints on the initial state of the protocol, as
well as the safety property can then be directly encoded as
FOL formulae over the declared relations and functions.

The protocol description in RML P = ⟨D,R,F,Ψ,A,Φ⟩
consists of a set of declarations (D,R,F), axioms (Ψ), actions
(A) and a safety property (Φ). The declarations define the
vocabulary: D, R and F denote the set of domain names,

78

relation names and function names respectively (along with
the relation and function signatures). The axioms (Ψ) are FOL
formulae defined over the vocabulary which encode properties
of the domains. Φ denotes the safety property, which is another
FOL formula, while A denotes the actions of the protocol.

Given the protocol description, we construct a labeled
transition system modeling the execution of the protocol. The
transition system AP

I = (Σ,Σ0, δ) is parameterized by a
domain interpretation function I which associates a finite
domain of values with each domain name d ∈ D. For the
interpretation function I to be valid, we require the domains
in range of I to satisfy all the axioms in Ψ. Each state σ ∈ Σ
is an interpretation of function and relation names in F and R
to actual functions and relations over the domains defined by
the interpretation function I. That is, for a function signature
f : (d1 × . . .dn) → d in the protocol description, σ(f) will
be a function of the form I(d1) × . . . I(dn) → I(d). The
same holds for a relation r in the description.

The RML protocol description also consists of a set of
axioms Ψ0 constraining the functions and relations in the
initial state of the system. We define Σ0 = {σ ∈ Σ | σ |= Ψ0}
to be the set of states obeying the initialization axioms. Note
that the notation σ |= Ψ denotes the standard FOL definition
of an interpretation (σ) being the model of an FOL formula
(Ψ).

Transitions of AP
I will correspond to actions of the protocol.

An action a(v̄ : d̄) = ⟨g(v̄), u(v̄)⟩ is parameterized over a set
of (typed) variable names (v̄), and consists of two components:
(i) an FOL formula g (also called the guard) which can contain
free variables from v̄, (ii) an FOL formula u which models the
change in the protocol state, defined over unprimed and primed
versions of the functions and relations of the protocol. If the
current state of the protocol obeys the guard, then the state is
updated atomically using the update formula. The transitions
AP

I caused by the action a in the protocol are formally defined
as follows:

δa = {(σ,a(x̄), σ′) | ∃x̄ ∈ I(d̄). σ |= g[x̄/v̄] ∧ σ, σ′ |= u[x̄/v̄]}}

That is, for every valuation x̄ of the variables v̄, there are
transitions from states σ which obey the guard g to states σ′

such that σ, σ′ satisfy the update formula. The transition is
labeled by the action name along with the actual parameters,
i.e. a(x̄). The complete set of transitions is obtained by
considering the transition set of every action of the protocol:
δ = ∪a∈Aδa. Let δ∗ denote the reflexive and transitive closure
of δ.

The safety property Φ is defined as a FOL formulae using
the declared domains, functions and relations. In this work,
we assume that Φ only uses universal quantifiers. Hence, Φ
has the form : ∀(x̄ : d̄). ϕ. This assumption is consistent with
prior works related to distributed protocol verification, and is
not restrictive as almost all safety properties can be naturally
expressed using just universal quantification.

A trace of AP
I is a sequence of states and transition labels

of the form σ0a1σ1a2σ2 . . . anσn such that σ0 ∈ Σ0 and
(σi, ai+1, σi+1) ∈ δ for all i, 0 ≤ i ≤ n−1. Let T (AP

I) denote

the set of traces of AP
I . We use JAP

IK to denote the set of
reachable states of AP

I , i.e. JAP
IK = {σ′ | σ0 . . . σ

′ ∈ T (AP
L)}.

A transition system is safe if all of reachable states obey the
safety property of the protocol:

Definition 1. Given a distributed protocol P =
⟨D,R,F,Ψ,Φ,A⟩, a valid interpretation of domains I
obeying Ψ, the transition system AP

I is safe if for every
reachable state σ ∈ JAP

IK, σ |= Φ.

While AP
I will be a finite state system (because every

domain defined by I is finite), there can in general be infinite
number of domains which satisfy the axioms Ψ of the protocol.
For a distributed protocol to be safe, the transition system
corresponding to every valid domain interpretation should be
safe:

Definition 2. A distributed protocol P = ⟨D,R,F,Ψ,Φ,A⟩
is safe if for every valid domain interpretation function I
satisfying the axioms Ψ, AP

I is safe.

IV. CUTOFF BASED VERIFICATION

Each valid interpretation of the domains of a protocol can
be seen as a protocol instance. A typical example of a domain
with infinite number of valid interpretations is the domain of
nodes participating in a protocol. To prove that a protocol is
correct, we would need to show its correctness for all possible
protocol instances. In cutoff based verification, the idea is to
only show correctness for a specific protocol instance called
a cutoff instance. In the following, we now formalize cutoff
based verification in our framework.

Definition 3. Given a distributed protocol P, a cutoff instance
C is a valid interpretation of domains such that if AP

C is safe,
then for any valid interpretation L, AP

L is safe.

Theorem 1. For a distributed protocol P, if C is a cutoff
instance, and AP

C is safe, then the distributed protocol P is
safe.1

Notice that the definition of a cutoff instance implies that if
there exists a protocol instance with a violation of the safety
property, then the cutoff instance will also have a violation of
the safety property. In essence, the cutoff instance can simulate
the violation of the safety property in any protocol instance.
We use this characterization to propose three conditions which
together imply that a protocol instance is a cutoff instance.

These conditions require a simulation relation between
states of any arbitrary protocol instance and states of the
cutoff instance. Suppose C is the cutoff instance, resulting
in the cutoff transition system AP

C = (ΣC ,ΣC
0 , δC). Let L

be some arbitrary protocol instance, resulting in the system
AP

L = (ΣL,ΣL
0 , δL). To ensure that C is a cutoff instance,

any trace of AP
L which leads to a state violating the safety

property should be simulated by a trace of AP
C also leading

to a state violating the safety property. Consider a relation

1The proofs for the theorems are provided in the full version of our paper
at https://github.com/shreesha00/FMCAD.git

79

γL ⊆ ΣC × ΣL. We formalize below the conditions which
will ensure that C is a cutoff instance.

φinit(γL) ≜ ∀σL ∈ Σ
L
0 . ∃σC ∈ Σ

C
0 . (σL, σC) ∈ γL

φstep(γL) ≜ ∀σL, σ
′
L ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ (σL, a, σ

′
L) ∈ δL

⇒ ∃σ
′
C ∈ ΣC. (σC, σ

′
C) ∈ δ

∗
C ∧ γL(σ

′
L, σ

′
C)

φsafety(γL) ≜ ∀σL ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ σL |= ¬Φ

⇒ σC |= ¬Φ

The init condition φinit ensures that every initial state ofAP
L

is related by γL to some initial state of AP
C . The step condition

φstep ensures that if states of the protocol instance L and cutoff
instance C are related by γL, then after a transition in AP

L, the
new state of instance L will continue to be related to a state
of C obtained after 0 or more transitions in AP

C . Finally, the
safety condition φsafety ensures that if a state in AP

L violates
the safety property (Φ), then its simulating state in AP

C also
violates the safety property. Together, these conditions ensure
that any violating trace of any arbitrary protocol instance can
be simulated by a violating trace of the cutoff instance.

Theorem 2. Given a distributed protocol P and a valid
interpretation C, if for any valid interpretation L, there exists a
simulation relation γL such that (φinit∧φstep∧φsafety)(γL),
then C is a cutoff instance of P.

While the above conditions ensure that if the cutoff instance
is safe, then any arbitrary protocol instance is also safe, we
can further refine them based on the following observation:
we only need to simulate till the first violation of the safety
property, and hence, we can assume that the safety property
holds in all states while simulating till the first violation. The
refined step condition φfirst

step is defined as follows:

φ
first
step (γL) ≜ ∀σL, σ

′
L ∈ ΣL. ∀σC ∈ ΣC. γL(σL, σC) ∧ (σL, a, σ

′
L) ∈ δL∧

Φ(σL) ⇒ ∃σ
′
C ∈ ΣC. (σC, σ

′
C) ∈ δ

∗
C ∧ γL(σ

′
L, σ

′
C)

Lemma 3. Given a distributed protocol P and a valid inter-
pretation C, if for any arbitrary valid interpretation L, there
exists a simulation relation γL such that (φinit ∧ φfirst

step ∧
φsafety)(γL), then C is a cutoff instance of P.

If the protocol is not safe, then we can consider the first
violation of the safety property in any arbitrary instance of
the protocol. Since the cutoff instance can simulate this first
violation, this would imply that the cutoff instance would also
not be safe, thus proving the above lemma. We have found
in our experiments that the refined conditions are often more
effective in proving cutoff-ness of a protocol instance.

V. SYNTHESIZING THE CUTOFF INSTANCE

In this section, we describe our technique to synthesize the
cutoff instance and the simulation relation from the protocol
description.

Metadata component Contents

a ∈ P.actions a.named arguments : list⟨string⟩
a.guard atoms : set⟨(x, l, o)⟩
a.body : set⟨(x, l, o)⟩
where x ∈ functions ∪ relations
l ∈ list⟨named arguments ∪ {∗}⟩
o ∈ x.out ∪ {∗}

s ∈ P.sorts string that corresponds to a type
defined by the protocol

r ∈ P.relations r.args : list⟨sorts⟩
r.out = B

f ∈ P.functions f.args : list⟨sorts⟩
f.out ∈ sorts

TABLE I: The protocol metadata structure P

A. Pre-processing & Notation

The protocol description in RML is statically pre-processed
to obtain a metadata structure P which has actions, rela-
tions, sorts and functions denoted by P.actions, P.sorts,
P.relations, P.functions. Refer to Table I for a formal
description of the protocol metadata structure P and its
components. Each action has a set of named arguments, guard
atoms and a body. The guard atoms and the function body
contain sets of triplets where each triplet contains: the function
or relation under consideration, the named arguments of the
action (or *) which are its arguments, an output value (or *).
The output value indicates constraints that are expected on the
relation/function in case of guard atoms; and the updated value
of the relation/function entry in case of the body. In all cases, a
* represents that the corresponding entry cannot be determined
statically and can therefore be unconstrained. As an example,
the guard clause table(n old, k, v) for the Reshard action
would be converted to the triple (table, [n old, k, v], true) and
the update seqnum sent(s)← true is converted to the triple
(seqnum sent , [s], true).

An instantiation of an action a is a map from the named
arguments of the action to values. A value of ∗ represents
that the corresponding named argument can take any value.
An action invocation is defined as a tuple (a, I) where a ∈
P.actions and I is an instantiation of a. We define a clause
as a triple (x, L, o) where x ∈ P.relations∪P.functions, L
is a list of values (some of which can be ∗) conforming to the
types in x.args and o is either a constant of type x.out or ∗.

Referring back to our motivating example, an instantiation
of the named arguments of the Reshard action would be

I = [n old : ∗,n new : aL, k : K, v : ∗, s : ∗]

and correspondingly, an action invocation would be the tuple
(Reshard, I). Similarly, a clause on the table relation would
be (table, [aL,K, ∗], true).

B. Static Analysis

Algorithm 4 contains our static analysis algorithm, which
takes as input the protocol metadata structure P and an initial
set of clauses Sinit. Sinit will be derived from the safety
property of the protocol; more details are provided in §5.3.
Sinit contains the initial set of clauses relevant for preserving
any violation of the safety property. We maintain two sets

80

S and A where S contains a set of clauses and A a set of
action invocations. In each iteration, we consider all the new
clauses added to the set S in the previous iteration (line 8). For
each clause c, in line 9, we invoke ACTIONSTHATSET(P, c) to
obtain all the action invocations that potentially set the clause
c. We then add the guards for all these action invocations to
the set S in line 11. The while loop at line 5 terminates when
no new clauses have been added in the previous iteration, thus
indicating that we have reached a fixed point.

The function ACTIONSTHATSET(P, c) takes as input the
program P and a clause c to return a set of action invocations
A which potentially set the clause c. The algorithm works
by pattern matching. We iterate over actions and for each
atomic update in the body of the action, we check if the atomic
update tuple matches the tuple in the clause with respect to
the function/relation it updates in line 5. The if condition in
line 6 fails only if both the atomic update output and the clause
output can be determined statically and they do not match each
other.

As an example, assume that the if condition in line 5 passes
i.e. both the atomic update and the clause refer to the same
function/relation x i.e. c.x = at update.x = x. If the clause
output c.o = ∗ and at update.o = true then this means that
we are interested in actions that potentially affect x(c.L) in
any way, and this atomic update therefore satisfies that re-
quirement. Similarly, if c.o = true and at update.o = ∗, this
means that we are interested in actions that set x(c.L) = true,
but the value that the atomic update alters x(at update.l)
cannot be determined statically. Therefore, conservatively, we
assume that the atomic update could potentially alter it as
required. But, if c.o = true and at update.o = false, then
the if condition fails as the outputs can be determined statically
but do not match.

In line 7 we create an instantiation of a.named arguments
initialized to *. The PATTERNMATCH function considers
the arguments of the update atom and the clause atom
at update.l, c.L and checks for inconsistencies. For example,
at update.l = (a, b, a) and c.L = (1, 2, ∗) would pass the
check whereas at update.l = (a, b, a) and c.L = (1, 2, 3)
would fail the check. If the pattern match succeeds, the for
loop instantiaties the named arguments in at update.l based
on c.L. The tuple (a, I) now forms the action invocation
which is added to the set of action invocations returned by
the algorithm. The GUARDSFOR function returns the set of
clauses involved in the guard for an action invocation. We
iterate through all the guard atoms of the action in line 3.
The for loop in lines 5-6 assigns concrete values to the named
arguments in g.l using the instantiation I provided in the action
invocation. Then a clause tuple is created in line 7 and added
to the list of clauses returned by the algorithm.

As an example of how these methods work, we refer
back to sharded key value store example considered in §2.
If ACTIONSTHATSET(P, (unacked, [∗, aL,K, ∗, ∗], true)) is
invoked, then one of the actions returned by it would be the
Reshard action, with the action invocation (Reshard, [n old :
∗,n new : aL, k : K, v : ∗, s : ∗]) (this is because Reshard

sets unacked to true in Line-14, Algorithm 1). Similarly, if
GUARDSFOR(Reshard, [n old : ∗,n new : aL, k : K, v :
∗, s : ∗]) is invoked, the following set G is returned.

G = {(seqnum sent , [∗], false), (table, [∗,K, ∗], true)}

C. Synthesizing the Cutoff Instance, Simulation Relation &
Lockstep

Cutoff Instance. We start with the safety property Φ in the
RML description. As described in §3, the safety property only
contains universal quantifiers and hence is a formula of the
form ∀(x̄ : d̄). ϕ. The size of the cutoff system is taken to
be the number of universally quantified nodes in the safety
property.
Obtaining Sinit. Consider any arbitrary size instance L with
DL denoting the set of nodes. To begin with the static analysis,
we need to provide an initial set of clauses Sinit as input
along with the pre-processed protocol metadata structure P . To
obtain Sinit, we first negate the safety property and instantiate
all the existentially quantified variables. We define Dv

L ⊆ DL

the set of instantiated nodes or violating nodes. We then
process the resulting FOL formula ¬ϕ to obtain the set of
clauses involved in the formula.

As an example, consider the safety property for the Sharded
Key Value store protocol from §2. We have

∀N1, N2,K, V1, V2. table(N1,K, V1) ∧ table(N2,K, V2)

=⇒ N1 = N2 ∧ V1 = V2

As there are 2 quantifiers on nodes, the cutoff for the protocol
is 2. Negating and instantiating N1 = aL, N2 = bL,K =
k, V1 = v1 and V2 = v2, we get

table(aL, k, v1) ∧ table(bL, k, v2) ∧ (n1 ̸= n2 ∨ v1 ̸= v2)

giving us the following set of clauses after processing

{(table, [aL, k, v1], true), (table, [bL, k, v2], true))}

Synthesizing the Simulation Relation and
Lockstep. Having obtained Sinit, we can now invoke
STATICANALYSIS(P, Sinit) to get the set of clauses S and
set of action invocations A. We also have the cutoff instance C
with its set of nodes DC . To define the lockstep and simulation
relation, we map the nodes of the violating instance to nodes
of the cutoff system. Such a mapping sim : DL → DC is
defined as follows. Firstly, by construction, |Dv

L| = |DC | i.e.,
the number of nodes involved in the violation is the same as
the number of nodes in the cutoff system. Consequently, we
perform a one-to-one mapping of nodes from Dv

L to DC . For
the rest of the nodes DL \ Dv

L in the system L, we make the
following observations:

• If S and A obtained from the static analysis do not have
any components containing ∗ in any field of the node
type, this implies that only actions and state components
of the violating nodes are sufficient to simulate the
violation. In such a case, there is no need to map nodes

81

Algorithm 2 ACTIONSTHATSET

Arguments: P the program, and a clause c
Returns: A a set of action invocations

1: procedure ACTIONSTHATSET(P, c)
2: A = ∅
3: for a ∈ P.actions do
4: for at update = (x, l, o) in a.body do
5: if at update.x == c.x then
6: if ¬ (c.o ̸= ∗ and at update.o ̸= ∗ and c.o ̸= at update.o) then
7: Create an instantiation I of a.named arguments , initialized to ∗;
8: if PATTERNMATCH(at update.l, c.L) then
9: for i ∈ 1, len(at update.l) if at update.l[i] ̸= ∗ do

10: I[at update.l[i]]← c.L[i]

11: r ← (a, I)
12: A← A ∪ {r}
13: return A

Algorithm 3 GUARDSFOR

Arguments: P the program, an action invocation act
Returns: G a set of clauses

1: procedure GUARDSFOR(P, act)
2: G = ∅
3: for g = (x, l, o) ∈ a.guards do
4: Create a list L of length g.l, initialized to ∗
5: for i ∈ 1, len(g.l) if g.l[i] ̸= ∗ do
6: L[i]← act.I[g.l[i]]

7: G← G ∪ {(g.x, L, g.o)}
8: return G

Algorithm 4 STATICANALYSIS

Arguments: P the program, Sinit a set of clauses
Returns: S a set of clauses, A a set of action invocations

1: procedure STATICANALYSIS(P, Sinit)
2: S ← Sinit

3: Sprev ← ∅
4: A← ∅
5: while S ̸= Sprev do
6: Sd ← S \ Sprev

7: Sprev ← S
8: for each clause c in Sd do ▷ For each new clause
9: At ← ACTIONSTHATSET(P, c)

10: for each action invocation act in At do
11: S ← S ∪ GUARDSFOR(P, act)

12: A← A ∪At

13: return S,A

from DL \Dv
L as they will never appear in the simulation

relation or lockstep.
• If S or A obtained from the static analysis has compo-

nents containing ∗ in any field of the node type, we map
all the nodes from DL \ Dv

L to one of the nodes in DC .

Intuitively, the simulation relation states that for all the clauses
that are relevant to the violation (as obtained by the static

analysis procedure) in the larger system L, the same state
components are maintained in the cutoff system but in the state
component of the simulating nodes (as per the sim mapping).
Similarly, the lockstep states that the relevant actions are
performed in the cutoff system, but by the simulating nodes.

Given S,A and sim, we obtain the simulation relation and
lockstep using the procedure SIMANDLOCKSTEP(S,A, sim)
in Algorithm 5. The procedure returns the simulation relation
γ as a FOL formula and the lockstep τ as an abstract map from
action invocations of the larger system to action invocations
of the cutoff system. The main idea is to simply perform the
relevant actions of A in the cutoff system, whenever they are
performed in the larger system, synthesizing the appropriate
mapping of the action arguments, and thus maintaining a
simulation relation for the relevant state components in S.
Cutoff Verification. To prove that the synthesized cutoff
instance is actually a cutoff for the protocol, we generate FOL
formulae for each of the 3 properties φinit(γL), φstep(γL) and
φsafety(γL) mentioned in §3, using the simulation relation γ
synthesized by Algorithm 5. Furthermore, for φstep(γL), we
remove the existential quantifier over the state σ

′

C after the
transition by providing a candidate transition in the system C
as per the lockstep τ .

D. Synthesis for Consensus Protocols

We now describe how the above technique can be adapted to
work for quorum-based consensus protocols. Such protocols
are used to achieve consensus amongst the nodes on some
decision such as proposing a value or choosing a leader, with
the safety property being the uniqueness of the decision taken
i.e. no two nodes learn of two different decisions.

Quorum-based consensus protocols define a notion of a quo-
rum which refers to a set of nodes and a quorum-set which is a
set of such quorums. Additionally, the quorum-set satisfies the
quorum-intersection property i.e. any two quorums belonging
to a quorum-set intersect. These protocols also involve a voting
phase were nodes cast their unique votes for values, and values

82

Algorithm 5 Function to obtain simulation relation and lockstep
Arguments: Set of clauses S, action invocations A and mapping sim : DL → DC

Returns: FOL formula γ representing the simulation relation and lockstep τ as a map from actions of the larger system to actions of the
cutoff system
1: procedure SIMANDLOCKSTEP(S,A, sim)
2: γ ← true
3: for each clause c = (x, L, o) ∈ S do
4: For each ∗ entry in L, replace it with a unique variable name from v̄, and add those variables to L to get Largs;
5: Replace each node variable n in Largs with sim(n) to get Cargs;
6: if o == ∗ then
7: ▷ In this case, we assert that the function/relation entries are equal in the larger system and cutoff system
8: γ ← γ

⋀︁
(∀v̄. x(Largs) = x(Cargs));

9: else
10: ▷ In this case, we assert that if the relation/function entry takes the value o in L, it also does so in C
11: if x.out is of node type then
12: γ ← γ

⋀︁
(∀v̄. (x(Largs) = o) =⇒ (x(Cargs) = sim(o)));

13: else
14: γ ← γ

⋀︁
(∀v̄. (x(Largs) = o) =⇒ (x(Cargs) = o));

15: Initialize an empty map τ
16: for each action invocation act ∈ A do
17: For each ∗ value in act.I , replace it with a unique variable name from v̄, to get actL.I;
18: Replace each node value n in actL.I with sim(n) to get actC .I;
19: Define actL = (act.a, actL.I) and actC = (act.a, actC .I);
20: ∀v̄. τ(actL)← actI ;
21: return γ, τ

which receive a quorum of votes are considered as decided.
The core safety argument for such protocols typically relies on
the quorum-intersection property and the uniqueness of votes
i.e. if two values were decided, they both must have received
a quorum of votes but since any two quorum-sets intersect,
there must be a node that has voted twice which is disallowed
by the protocol. Most protocols for achieving consensus such
as Raft [12], Paxos [13] and Two-phase commit are designed
around these core principles. However, obtaining an inductive
invariant for formal verification of these protocols is still a
challenging task.

For such protocols, we assume a sort quorum for quorums
and a fixed relation member : node, quorum which governs
the membership of nodes to quorums. In our pre-processing,
for guard atoms in quorum-based consensus protocols, we
also track state components on which a quorum-agreement
is required.

At a high-level, similar to the non-consensus case, we
collect the actions and the state components responsible for a
violation through a similar static analysis procedure. However,
simulating the violation in the cutoff system by maintaining
these states now requires a more complicated lockstep. In
particular, the cutoff system tries to maintain the quorum
agreement on state components required to reach the violation
through staggered actions i.e. the cutoff system waits for a
quorum agreement on some necessary state component and
then performs the set of actions required to reach quorum
agreement in the cutoff system all at once thereby ensuring
that a quorum agreement on a state component in the larger

system is maintained in the cutoff system.2

VI. EXPERIMENTAL RESULTS

We have applied the proposed strategy on a variety of
different distributed protocols3,4 given in Table II. Our tech-
nique works in two parts, where we first attempt to auto-
matically synthesize the cutoff instance, and then attempt
to prove its correctness. For proving correctness of a cut-
off instance, we generate a FOL encoding of the 3 condi-
tions φinit(γL), φstep(γL, τL) and φsafety(γL). We reduce
the problem of checking correctness to satisfiability of the
generated FOL formulae. For example, for checking the
φstep(γL, τL) condition which is a condition of the type
p =⇒ q to be correct, we check whether p ∧ ¬q is
unsatisfiable. We use Z3 [14] as our backend SMT solver.
The experiments were run on a system with a 12-core Apple
M2 Pro processor and 16GB RAM. Table II summarizes
our experimental results. Notice that the time taken for each
protocol is in the order of few milliseconds except for the
Consensus protocol which takes significantly longer due to
the larger number of quantifiers used in the encoding.

VII. RELATED WORK AND CONCLUSION

In the recent past, there has been a lot of interest in
automated and mechanised verification of distributed protocols

2We provide an example of our technique for consensus protocols
on the Toy Consensus protocol in the full version of our paper at
https://github.com/shreesha00/FMCAD.git

3The RML descriptions and the SMT encoding of the simulation relation
and cutoff protocol for each protocol can be found at the following link:
https://github.com/shreesha00/FMCAD.git

4We provide detailed descriptions of each protocol and its cutoff instance
in the full version of our paper at https://github.com/shreesha00/FMCAD.git

83

Protocol Cutoff Time Taken(s) |γ|
Sharded Key-Value Store[15] 2 0.02 5
Leader Election in a Ring[16] 2 0.03 4
Centralized Lock Server[17] 2 0.02 5
Lock Server Sync[18] 2 0.01 2
Ricart Agrawala[19] 2 0.01 6
Two Phase Commit[20] 2 0.02 9
Toy Consensus ForAll[18] 1 0.07 5
Consensus[18] 2 29.7 11

TABLE II: γ is a FOL formula of the type
⋀︁|γ|

i=1(p =⇒
q) therefore |γ| represents the number of clauses of the type
p =⇒ q in the simulation relation. Time taken refers to the
total time taken by our synthesis+verification procedure.

([1]–[6]). Ironfleet [15] and Verdi [17] are some of the earliest
works which are more focused towards verifying real-world
implementations of distributed protocols, and typically assume
that an abstract model of the protocol works correctly. Many
of the recent approaches towards protocol verification rely
on constructing and proving some form of inductive invari-
ant. Padon et. al. [11] introduced the Ivy framework along
with the RML language which allows a protocol developer
to interactively generate an inductive invariant for verifying
safety. Other approaches ([1], [2], [5]) have continued along
this line of work, by attempting to automate the process of
deriving the inductive invariant using techniques like IC3/PDR
or data-driven approaches. While these approaches have been
successful to some extent, we note that the problem of deriving
inductive invariants is a fundamentally hard problem, and our
work allows us to sidestep it. In fact, it could be useful to
apply these techniques to the comparatively simpler problem
of finding and proving a cutoff instance.

While previous works have also attempted to use cutoff-
based approaches for verification ([7]–[10]), they have mostly
been limited to either a restricted class of protocols or a
restricted class of specifications. We note that none of these
works actually mechanize and automate the proof that a
protocol instance is actually a cutoff instance. To our best
knowledge, ours is the first work that enables automated cutoff
based verification.

In this work, we investigated the applicability of cutoff
based verification for a variety of distributed protocols. We
observe that cutoff based verification allows us to naturally
sidestep the harder problem of finding inductive invariants. We
identify sufficient conditions which can be used to verify that
a protocol instance is indeed a cutoff instance and which can
be encoded using SMT. We develop a simple static analysis-
based approach to automatically synthesize the cutoff instance
for many protocols.

We note that our approach has limitations. In particular,
it can fail in one of two ways. Firstly, the cutoff value itself
could be higher than the one chosen by our analysis. Secondly,
it is possible that the simulation relation and the lockstep
synthesized by our analysis may not work (i.e. they may not
satisfy the φstep or φsafety constraints). In either case, our
analysis will not succeed in verifying the protocol. Intuitively,

this could happen because the nodes in our synthesized cutoff
instance cannot simulate a violation of the safety property,
in which case, either of the φ constraints will not hold.
One can construct an artificial example to demonstrate this;
however, we note that we have not encountered this issue in
our experiments. It is a well-established empirical result that
most bugs in real-world protocol implementations and designs
can be discovered within a small scope of parameter values.
Our work takes a step towards generalizing and formalizing
this result by providing a generic simulation-based strategy to
synthesize cutoff instances and cutoff proofs.

To conclude, our cutoff-based verification approach demon-
strates how a combination of static analysis, SMT-based ver-
ification, and model checking can simplify the hard problem
of protocol verification. Our experimental results indicate that
cutoff results are ubiquitous and applicable for different types
of protocols. Our vision is that this work can pave the way
for more investigations into automating cutoff results for more
complex protocols.

REFERENCES

[1] Y. M. Y. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in CAV (2), ser. Lecture
Notes in Computer Science, vol. 11562. Springer, 2019, pp. 405–425.

[2] H. Ma, A. Goel, J. Jeannin, M. Kapritsos, B. Kasikci, and K. A. Sakallah,
“I4: incremental inference of inductive invariants for verification of
distributed protocols,” in SOSP. ACM, 2019, pp. 370–384.

[3] K. L. McMillan and O. Padon, “Ivy: A multi-modal verification tool
for distributed algorithms,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12225. Springer, 2020, pp. 190–202.

[4] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made EPR:
decidable reasoning about distributed protocols,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, pp. 108:1–108:31, 2017.

[5] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “Distai: Data-driven
automated invariant learning for distributed protocols,” in 15th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2021, July 14-16, 2021, A. D. Brown and J. R. Lorch, Eds. USENIX
Association, 2021, pp. 405–421.

[6] A. Damian, C. Dragoi, A. Militaru, and J. Widder, “Communication-
closed asynchronous protocols,” in Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-
18, 2019, Proceedings, Part II, ser. Lecture Notes in Computer Science,
I. Dillig and S. Tasiran, Eds., vol. 11562. Springer, 2019, pp. 344–363.
[Online]. Available: https://doi.org/10.1007/978-3-030-25543-5 20

[7] E. A. Emerson and K. S. Namjoshi, “Reasoning about rings,” in POPL.
ACM Press, 1995, pp. 85–94.

[8] N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta, “Pa-
rameterized verification of systems with global synchronization and
guards,” in CAV (1), ser. Lecture Notes in Computer Science, vol. 12224.
Springer, 2020, pp. 299–323.

[9] O. Maric, C. Sprenger, and D. A. Basin, “Cutoff bounds for consensus
algorithms,” in CAV (2), ser. Lecture Notes in Computer Science, vol.
10427. Springer, 2017, pp. 217–237.

[10] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith,
and J. Widder, Decidability of Parameterized Verification, ser. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[11] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in PLDI. ACM, 2016,
pp. 614–630.

[12] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp. 305–
319.

[13] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, p. 133–169, may 1998.

84

https://doi.org/10.1007/978-3-030-25543-5_20

[14] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, vol. 4963. Springer,
2008, pp. 337–340.

[15] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “Ironfleet: proving practical dis-
tributed systems correct,” in SOSP. ACM, 2015, pp. 1–17.

[16] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,” Commun. ACM,
vol. 22, no. 5, p. 281–283, may 1979.

[17] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. E. Anderson, “Verdi: a framework for implementing and formally
verifying distributed systems,” in PLDI. ACM, 2015, pp. 357–368.

[18] J. Yao, R. Tao, R. Gu, and J. Nieh, “DuoAI: Fast, automated inference of
inductive invariants for verifying distributed protocols,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), Carlsbad, CA, Jul. 2022, pp. 485–501.

[19] G. Ricart and A. K. Agrawala, “An optimal algorithm for mutual
exclusion in computer networks,” Commun. ACM, vol. 24, no. 1, p.
9–17, jan 1981.

[20] J. N. Gray, Notes on data base operating systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1978, pp. 393–481.

[21] K. S. Namjoshi, “Symmetry and completeness in the analysis of param-
eterized systems,” in VMCAI, ser. Lecture Notes in Computer Science,
vol. 4349. Springer, 2007, pp. 299–313.

[22] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham,
J. R. Wilcox, and D. Woos, “Modularity for decidability of deductive
verification with applications to distributed systems,” in PLDI. ACM,
2018, pp. 662–677.

[23] S. Chand, Y. A. Liu, and S. D. Stoller, “Formal verification of multi-
paxos for distributed consensus,” in International Symposium on Formal
Methods. Springer, 2016, pp. 119–136.

[24] V. Rahli, D. Guaspari, M. Bickford, and R. L. Constable, “Formal
specification, verification, and implementation of fault-tolerant systems
using eventml,” Electron. Commun. Eur. Assoc. Softw. Sci. Technol.,
vol. 72, 2015. [Online]. Available: https://api.semanticscholar.org/
CorpusID:46662559

[25] S. Paul, G. A. Agha, S. Patterson, and C. A. Varela, “Verification of
eventual consensus in synod using a failure-aware actor model,” in NASA
Formal Methods Symposium. Springer, 2021, pp. 249–267.

[26] P. Küfner, U. Nestmann, and C. Rickmann, “Formal verification of
distributed algorithms,” in Theoretical Computer Science, J. C. M.
Baeten, T. Ball, and F. S. de Boer, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 209–224.

[27] B. Charron-Bost and A. Schiper, “Schiper, a.: The heard-of model: com-
puting in distributed systems with benign faults. distributed computing
22(1), 49-71,” Distributed Computing, vol. 22, 04 2009.

[28] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the tla + proof system,” in Automated Reasoning, J. Giesl
and R. Hähnle, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 142–148.

85

https://api.semanticscholar.org/CorpusID:46662559
https://api.semanticscholar.org/CorpusID:46662559

	Introduction
	Motivating Example: The Sharded Key-Value Store
	Protocol Description
	Cutoff based Verification
	Static Analysis
	Simulation Relation & Lockstep

	Setup
	cutoff based Verification
	Synthesizing the Cutoff Instance
	Pre-processing & Notation
	Static Analysis
	Synthesizing the Cutoff Instance, Simulation Relation & Lockstep
	Synthesis for Consensus Protocols

	Experimental Results
	Related Work and Conclusion
	References

