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Abstract

The OCaml programming language finds application across diverse domains,
including systems programming, web development, scientific computing, formal
verification, and symbolic mathematics. OCaml is a memory-safe programming
language that uses a garbage collector (GC) to free unreachable memory. It
features a low-latency, high-performance GC, tuned for functional programming.
The GC has two generations – a minor heap collected using a copying collector and
a major heap collected using an incremental mark-and-sweep collector. Alongside
the intricacies of an efficient GC design, OCaml compiler uses efficient object
representations for some object classes, such as interior pointers for supporting
mutually recursive functions, which further complicates the GC design. The GC is
a critical component of the OCaml runtime system, and its correctness is essential
for the safety of OCaml programs.
In this paper, we propose a strategy for crafting a correct, proof-oriented GC
from scratch, designed to evolve over time with additional language features.
Our approach neatly separates abstract GC correctness from OCaml-specific
GC correctness, offering the ability to integrate further GC optimizations, while
preserving core abstract GC correctness. As an initial step to demonstrate the
viability of our approach, we have developed a verified stop-the-world mark-and-
sweep GC for OCaml. The approach is fully mechanized in F* and its low-level
subset Low*. We use the KaRaMel compiler to compile Low* to C, and integrate
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the verified GC with the OCaml runtime. Our GC is evaluated against off-the-shelf
OCaml GC and Boehm-Demers-Weiser conservative GC, and the experimental
results show that verified OCaml GC is competitive with the standard OCaml GC.

Keywords: formal verification, mark and sweep garbage collection, F*, Low*,
mechanized formal proofs, graph traversal proofs

1 Introduction

Many contemporary programming languages, including OCaml, utilize a garbage col-
lector (GC) to manage memory automatically. This reliance on automatic memory
management ensures memory safety, effectively preventing the occurrence of many
security vulnerabilities [1, 2]. However, it is worth noting that the GC itself is often
implemented in a language like C, which lacks inherent memory safety guarantees.
Additionally, memory managers for modern languages often feature complex function-
alities such as multiple generations, diverse memory layout for supporting different
language features, incremental collection, and concurrency. These complexities make it
challenging to ascertain the correctness of GC implementations, often resulting in the
introduction of memory safety bugs.

The GC used in OCaml version 4 is generational and features two heap generations:
the minor and major heaps. The minor heap employs copying collection, while the
major heap utilizes an incremental mark and sweep GC to automatically reclaim
memory. Both the minor and the major GC is implemented in C. Given that the
memory safety of OCaml depends on the correctness of the GC, we wondered whether
we could formally verify the correctness of the OCaml GC. Some previous works [3, 4]
have verified the correctness of abstract GC models, which risk missing out on subtle
bugs due to the air gap between the abstract model and the GC implementation. Our
goal in this work is to develop a verified GC for OCaml, through a proof-oriented
approach, such that executable code compatible with the OCaml compiler can be
extracted directly from the verification artifact.

Rather than undertake the daunting task of verifying the full functional correctness
of the existing OCaml GC in C, we have chosen to develop the verified GC from scratch
in a proof-oriented language. We start from a feature complete GC that can run OCaml
programs, but one which lacks the optimizations and features of the existing OCaml
GC, and aim to incrementally enhance this GC with more features. To support this
evolution, we have structured our verification approach such that the core correctness
conditions for the GC need minimal changes throughout the enhancements.

At its core, garbage collection relies on accurately identifying objects designated
as garbage, regardless of the specific GC algorithm employed. In a tracing garbage
collector, the allocated objects and their interconnections form a graph, transforming
the task of identifying garbage objects into a graph traversal problem. Starting from
the root sets of program variables (stack, heap, and globals), solving the graph traversal
problem essentially involves identifying all objects transitively reachable from the root
set. These reachable objects are termed as live objects. In terms of garbage collection,
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it is imperative that a garbage collector does not free any live objects, a requirement
known as the safety or soundness property of a garbage collector. Allocated objects
which are unreachable are considered as garbage objects, and it is the responsibility of
the GC to free them. This aspect is referred to as the liveness or completeness property
of the GC.

In light of these observations, our GC correctness specifications are founded on
abstract graph reachability, enabling us to specify the GC correctness without including
the specifics of the GC implementation. This ensures that the GC can evolve to
provide additional optimizations and incorporate more features without necessitating
alterations to the core correctness specifications. There is a clear distinction between
abstract GC correctness and OCaml-specific GC correctness, where the requirements
can be managed in separate layers. Setting aside the functional aspects of the GC, it is
crucial to ensure that the C implementation of the GC itself does not introduce any
memory safety bugs. This mandates a third layer of separation focusing exclusively on
the memory safety of the GC implementation, all the while maintaining the functional
properties of the GC.

To manage the verification demands of each layer and to generate the C code
corresponding to the verified GC implementation, our preferred tool is F* [5, 6]. F* is
a proof-oriented, solver-assisted programming language, along with its low-level subset
Low* [7]. F* enables the co-development of programs and their proofs of correctness
with the help of a rich type system and offering facilities for type refinements. Low*
streamlines the verification of low-level code by providing libraries that support machine
integers, heap and stack allocated arrays, and the C memory model.

In summary, we have three distinct layers, each addressing a specific aspect essential
for ensuring the overall correctness of the GC implementation as follows:

1. An abstract graph interface and a formally verified depth-first search layer (DFS)
in F*, wherein the correctness of DFS is specified through inductively defined
graph reachability.

2. A system-specific layer in F* that addresses the intricacies of the OCaml GC
algorithm, such as the tricolor invariant [8], utilized for reasoning about the cor-
rectness of mark-and-sweep GCs. This functional GC layer serves to bridge the
gap between the abstract graph-based specification and its practical implemen-
tation in C. In this layer, the GC is implemented to operate on OCaml-style
object layout, which is crucial to integrate the GC with the rest of the OCaml
runtime. Within this layer, we have illustrated the progression of a practical GC
by commencing with a basic GC implementation and systematically integrating
diverse memory layouts supporting different OCaml features.

3. A low-level layer in Low* responsible for verifying memory safety of the GC
implementation. The GC code within this layer is extracted to C using a compiler
known as KaRaMel [7].

To the best of our knowledge, ours is the first work to formally verify a complete
end-to-end mark-and-sweep GC extractable to C for a full-fledged industrial-strength
programming language. We have integrated the verified GC with the OCaml 4.14.1
compiler and the integrated GC is capable of running non-trivial OCaml programs.
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Our experimental results demonstrate that the verified GC is competitive with the
existing OCaml GC in terms of performance.

Table 1: Comparison with the related work

Author Mode Algo Spec Code Heap Layout

Hawblitzel et al. [9] stw mark & sweep algo. specific assembly C#
Hawblitzel et al. [9] stw copying algo. specific assembly C#
Ericsson et al. [10] generational copying reachability assembly CakeML
McCreight [11] incremental copying reachability assembly -
Gammie et al.[3] concurrent mark & sweep reachability model only -
Zakowski et al.[4] concurrent mark & sweep reachability model only -
Our work stw mark & sweep reachability C OCaml

While numerous previous works [12–18] have addressed the problem of GC verifica-
tion, most have tended to focus exclusively on verifying abstract models of GC, instead
of actual implementations. A comparison with the related works that are verified prac-
tical GC implementations or close to practical GC implementations are summarized in
Table 1.

A notable example of a stop-the-world (STW) mark-and-sweep GC verification is
the work of Hawblitzel et al. [9], who verify an assembly-level x86 implementation.
However, their work lacks the portability offered by a C implementation, and it cannot
address the intricacies emerging due to the OCaml memory layout and integration with
the OCaml runtime system. Moreover, their specification is based on the invariants of
the GC algorithm, whereas our specification is based on abstract graph reachability.
As mentioned earlier, the specifications based on abstract reachability gives us more
flexibility to extend the GC correctness conditions to other GC algorithms. The verified
copying collector by Ericsson et al. [10], tied to the CakeML compiler, is another notable
work due to their integration of the verified GC with the rest of the CakeML runtime.
However, mark-and-sweep GCs require a completely different form of reasoning as
compared to copying collectors. One of the main highlights of our work is that it deals
with the verification of a mark and sweep GC operating on OCaml-style objects, as
the alignment with OCaml object layout is an essential factor for integrating the GC
with the rest of the OCaml runtime. McCreight et al.[11] verify incremental copying
collectors implemented in MIPS-like assembly language. The verification is through
a common framework based on ADTs, which are later refined by various collectors.
Gammie et al.[3] and Zakowski et al.[4] verify a concurrent mark-and-sweep GC over a
detailed execution model, but they do not generate a verified executable code which
can be integrated with the rest of the runtime. A more detailed discussion of the related
work is presented in Section 9. While our work utilizes many of the ideas proposed in
previous works, this is the first end to end verified and portable GC implementation
integrated with the OCaml runtime environment. We view this work as a significant
milestone in the journey towards establishing a highly performant, verified, robust GC
for OCaml.
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The rest of the paper is structured as follows. Section 2 offers an overview of
OCaml memory management, tricolor mark and sweep garbage collection, and provides
an introduction to F* and Low*. Section 3 outlines the abstract GC correctness
specifications, and Section 4 describes the path towards a verified OCaml GC. Section
5 is dedicated to OCaml-specific GC correctness specifications. Section 6 elaborates on
the layered design of our specification framework and the proof strategies employed in
each layer. The benchmarks and experimental evaluation are presented in Section 7. In
Section 8, we discuss how our approach can be extended for copying and incremental
collection, thus laying a roadmap towards extensions of our verified GC. Section 9
examines related work, while Section 10 summarizes the conclusions drawn from our
work and outlines potential future research directions.

2 Background

In this section, we present some background information on the OCaml object layout
and memory manager, and the F* and Low* programming languages. The memory
manager that we describe corresponds to the GC in OCaml version 4.14.1. OCaml 5
has introduced a concurrent and a parallel GC [19], the details of which we omit as it
is not in the scope of the current work.

The OCaml uses a uniform memory representation for OCaml values. A value is a
single memory word that either represents an immediate integer or a pointer to some
other memory. The OCaml runtime, written in C, manages the OCaml heap. The heap
is a collection of memory regions obtained from the operating system in which OCaml
objects reside. OCaml uses a generational GC with a small, fixed-size minor heap into
which new objects are allocated. When the minor heap becomes full, it is evacuated
with a copying collector to a large major heap. The major heap is collected with an
incremental mark-and-sweep GC.

Directly verifying the correctness of the existing OCaml GC would be a difficult
task due to the complexities of the existing codebase. Our aim is to develop a correct-
by-construction GC from scratch that would act as an alternate GC for OCaml. For
that, we need to develop a verified GC that operates on a heap compatible with the
OCaml object layout. We have adopted an incremental approach in the development of
the GC, starting from a bare-bones stop-the-world mark and sweep GC that operates
on OCaml style objects, and then incrementally adding enough features to be able to
run OCaml programs. We now describe the OCaml object layout.

2.1 OCaml object layout

Every object in OCaml has a word-sized header in which meta-data about the object is
stored [20]. A typical OCaml object is represented as a block in the OCaml heap, which
has a header followed by variable number of fields. Figure 1 shows the layout of an
OCaml object. The header includes an 8-bit tag, 2 bits for the object color (encoding
the four colors blue, white, grey, and black), with the rest of the most significant bits
representing the object size in words. Every field of the object is also word-sized, which
ensures that the pointers to objects are always word-aligned. Immediate values such as
integers and booleans are also word-sized. Immediate values are encoded with their
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Fig. 1: Layout of an OCaml object. The header and each field of an OCaml object
occupy one word.

least significant bit (LSB) to be 1, with the rest of the bits encoding the value of the
data type. Thus, OCaml integers are 31-bits and 63-bits long on 32-bit and 64-bit
platforms. Pointers are always guaranteed to be word-aligned and have 0 as their LSB.
While the representation is not compact, it simplifies the GC; by examining the LSB,
the GC can decide whether the value is a pointer or an immediate.

Many OCaml language constructs are represented as objects in the heap. For
example, variants with parameters, records, arrays, polymorphic variants, closures,
floating-point numbers, etc. are all represented as objects in the heap. The tag bits in
the header of an OCaml object is used, among other things, to determine whether the
fields of the objects may contain pointers. In particular, for objects with tag greater
or equal to No scan tag (251), the fields are all opaque bytes, and are not scanned by
the GC. For example, OCaml strings have a tag of String tag (252) and contain opaque
bytes and never contain pointers.

If an object’s tag is less than No scan tag (251), then the fields of the objects may
be pointers. Among these, apart from Closure tag (247) and Infix tag (249) objects, the
GC scans each field of the object to determine if it is a pointer or an immediate value
and takes appropriate action.

A closure for a function or a set of mutually-recursive functions is a heap block
with the following structure:

closure ::= entrypoint (infix-header entrypoint)* value*
entrypoint ::= code-pointer closure-info // (with arity = 1)

| code-pointer closure-info code-pointer // (with arity > 1)

closure-info ::= arity (8 bits) . start-of-environment (wordsize - 9 bits) . 1

The values are the environment of the closure, which are the values of the free
variables. Each entrypoint is either a 2- or 3- word record with the code pointer, closure
information and, in the case of a closure with arity > 1, another code pointer. The
closure information contains the arity of the closure. Importantly, the start of the
environment information encodes the offset to the environment from the start of the
closure. As an example, a closure with arity 2 and an environment of size 2 would have
the following layout shown in Figure 2. The start of environment information says that
the environment starts from the field index 3 in the closure object. The GC only needs
to scan the environment and uses the start of environment information to locate the
environment in the closure.
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free var 1{arity = 2; 
start-env = 3}

code 
pointer 1

code 
pointer 2header

5 Closure_tag (247)

size color tag

free var 2

Fig. 2: The layout of a closure object with arity 2 and environment size 2.

free 
var 
1

{arity = 2; 
startenv = 6}

code 
pointer 

1

code 
pointer 

2
header

8 Closure_tag 
(247)

size color tag

free 
var 
2

header
code 

pointer 
3

{arity = 1; 
startenv = 2}

4 Infix_tag 
(249)

size color tag

Fig. 3: The layout of a mutually-recursive closure object layout with arities 2 and 1
and environment size 2.

Mutually recursive functions are represented as a closure object with one or more
infix objects within the closure. Importantly, all the mutually recursive functions share
the same environment. As an example, Figure 3 shows a closure object with two
mutually recursive functions of arities 2 and 1 and an environment of size 2. There are
a few interesting things to note in this layout. First, the size of the closure object is 8,
and it includes the infix object. While objects may point to the infix object, the infix
object color is not used by the GC. Instead, the GC marks the parent closure object.
The size of the infix object is 4, and it represents the offset (in words) of this object to
the parent closure object. The GC uses this offset to locate the parent closure object.

2.2 Tricolor mark and sweep GC

We now describe the details of a tricolor stop-the-world mark and sweep GC algorithm.
As mentioned previously, our verified GC is based on this algorithm. Figure 4 shows a
run of the mark and sweep GC. The GC runs in two phases – mark and sweep. The
mark phase performs a depth-first traversal of the object graph reachable from the root
set of pointers – globals, stack and registers. At the start of the mark phase, all objects
directly pointed from the root set are colored grey and are added to the mark stack
(Figure 4a).The mark phase uses a mark stack to store the objects that are discovered,
but not yet fully explored. Objects which are free in the heap are colored blue and are
maintained in a free list, a linked-list of free objects. Every other object is white. We
have the invariant that all objects in the mark stack are grey and every live object is
reachable from a grey object transitively through a sequence of white objects.
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(a) Start of mark
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D

C

B
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F

root_set
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(b) After mark

A

D

C

B

root_set

Whites = {A, B, C, D}

Greys = {}

Blacks = {}

E F… …

free_list

(c) After sweep

Fig. 4: Tricolor marking. Initially the objects that are directly pointed by the root
pointers are grey in the heap. The stack is populated with such objects first.

The mark phase proceeds by popping a grey object from the mark stack. All of
the white successors of the popped object are marked grey and pushed onto the mark
stack. Finally, the popped object is marked black. Thus, we also have the invariant
that a black object never points to a white object. When the mark stack is empty, the
mark phase ends (Figure 4b). We are guaranteed that all the reachable objects are
marked black, all unreachable objects remain white and there are no grey objects.

The sweep phase performs a linear traversal of the heap from the low address to
the high address and examines each object. If the object is black, it is live. Sweep
changes its color to white. If the object is white, it is dead. Sweep changes its color to
blue and adds it to the free list. During sweep, we have the invariant that an object
whose address is less than the traversal pointer is either white (live) or blue (free) and
is on the free list. After sweep (Figure 4c), we are guaranteed that all live objects are
white and all unreachable objects are in the free list with color blue.

2.3 F* and Low*

Our correct-by-construction GC is implemented and verified in F* and its low-level
subset Low*. F* is a general-purpose proof-oriented programming language, that
supports both purely functional and effectful programs. In F*, the expressive power
of dependent types is combined with proof automation based on SMT solving and
tactic-based interactive theorem proving. After verification, F* programs are usually
extracted to OCaml or F#. The keyword val is used to define a function signature,
whereas functions are defined using the keyword let (let rec for recursive functions). A
variable x is declared in the form x:t, which means x has type t. F* provides support for
refinement types, which helps to express more properties on the type of the variable.
For instance, the type of non-negative integers, nat, is defined as n:int {n ≥ 0}.

Low* [7] is a subset of F* with restricted features that allows a programmer to
write verified low-level code that can be extracted to C. In Low*, the full expressiveness
of F* can be used in proofs and specifications, while also exposing low-level details
such as the memory layout which facilitates the development of verified, low-level code.
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module HA = FStar.HyperStack.All

module ST = FStar.HyperStack.ST

module B = LowStar.Buffer

let swap (r0 r1 : B.buffer UInt8.t)

: HA.Stack (unit)

(* PRE-CONDITIONS *)

(* B.live predicate ensures that buffers must be allocated before

their use *)

(λ m -> B.live m r0 ∧ B.live m r1 ∧
(* Unit length buffers *)

B.length r0 == 1 ∧ B.length r1 == 1 ∧
(* Buffer memory locations are not aliased *)

B.loc_disjoint (B.loc_buffer r0) (B.loc_buffer r1))

(* POST-CONDITIONS *)

(λ m0 _ m1 -> B.live m0 r0 ∧ B.live m1 r1 ∧
(* Explicitly specify which memory locations is modified *)

(B.modifies (B.loc_union (B.loc_buffer r0)

(B.loc_buffer r1)) m0 m1) ∧
(* Encode functional correctness *)

Seq.index (B.as_seq m1 r0) 0 == Seq.index (B.as_seq m0 r1) 0 ∧
Seq.index (B.as_seq m1 r1) 0 == Seq.index (B.as_seq m0 r0) 0) =

(* Initial memory m0 *)

let m0 = ST.get() in

(* Initial values in the single length buffers r0 and r1 *)

let r0_val = !*r0 in

let r1_val = !*r1 in

(* Asserts that, if we convert the buffer to its funtional seq

data type counter part, the value at index 0 is r0_val and

similarly r1_val *)

assert (Seq.index (B.as_seq m0 r0) 0 == r0_val);

assert (Seq.index (B.as_seq m0 r1) 0 == r1_val);

(* Updates r0 at index 0 as r1_val and r1 at index 0 as r0_val *)

r0.(0ul) <- r1_val;

r1.(0ul) <- r0_val;

(* Get the new memory state after the swap *)

let m1 = ST.get() in

(* Asserts that the values are swapped *)

assert (Seq.index (B.as_seq m1 r1) 0 == r0_val);

assert (Seq.index (B.as_seq m1 r0) 0 == r1_val);

(* Return type is unit, equivalent to C void *)

()

Fig. 5: A Low* code to swap the contents of two memory locations r0 and r1.
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void swap(uint8_t *r0, uint8_t *r1)

{

uint8_t r0_val = *r0;

uint8_t r1_val = *r1;

r0[0U] = r1_val;

r1[0U] = r0_val;

}

Fig. 6: Extracted C code from the Low* code in Figure 5

The C code that is extracted from Low* after verification is free from low-level memory
errors such as buffer overflows, use-after-free, etc. as these properties are formally
verified as part of Low* pre-conditions and post-conditions.

To illustrate some of the features of Low* that we will use later in the paper, a
sample Low* code to swap the contents of two memory locations r0 and r1 is shown in
Figure 5, along with its specification in the form of pre and post-conditions. We explain
much of the Low* syntax through comments in the code. Low* operates on a C-like
memory model with explicit heap and stack memory management, which is captured in
the module FStar.HyperStack. FStar.HyperStack.ST.get() is used to obtain the contents of
the heap memory at any program point. In Low*, C arrays are modeled using buffers,
whose interface is defined in LowStar.Buffer module. Additionally, Low* provides support
for machine integers of type 8, 32 or 64 bits. UInt8.t is the type of 8 bit machine integers.

The swap program takes as input, the buffers r0 and r1 of length 1, with the pre-
conditions asserting that these buffers have been allocated space in memory and they
are not aliases. Notice that the pre-condition takes as input the initial heap state as the
argument m. The post-condition is specified over both the initial heap state m0 and the
final heap state m1. For specifying functional correctness in the post-condition, we use
the function LowStar.Buffer.as seq which converts the buffer to its sequence counterpart
(a sequence is just a functional list). We use the function Seq.index to obtain the element
of a sequence at a given index. The post-condition asserts that the value stored at
index 0 in the location r1 in the final heap is the value stored at index 0 in location r0

in the initial heap, and vice versa. The extracted C code from the Low* code is shown
in Figure 6.

3 Abstract GC Correctness

From the discussion in Section 2.2, it is evident that mark and sweep GC is primarily
a graph algorithm. In particular, mark is a depth first traversal on the heap. Therefore,
the correctness specification of garbage collection is most naturally expressed using
graph theoretic terminology, rather than relying on the GC implementation details.
The prime consideration for any GC is soundness – that is it only collects unreachable
objects. A GC is said to be complete if it collects all the unreachable objects. We
first formally define GC correctness in graph theoretic terms without any reference to
the underlying implementation. We first define the construction of the object graph
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abstractly, without appealing to the details of the GC implementation. Later, we will
instantiate these definitions for our verified OCaml GC.

Let h denote the heap and |h| represents the length of the heap in bytes. Let objs(h)

to be the set of all objects in the heap identified by their unique ids. The id of an
object depends on the implementation. For example, in OCaml, the id of an object is
the address of the first field. Let allocs(h) denote the set of allocated (not free) objects
represented by their ids in h. Let ptrs(x,h) be the set of ids of the objects pointed to by
x. Let data(x,h) be the set of non-pointer, opaque data fields of x.

Definition 1 (Well-formed heap). A heap h is said to be well-formed, denoted by
ω(h) iff (∀ x, y. x ∈ allocs(h) ∧ y ∈ ptrs(x,h) =⇒ y ∈ allocs(h))

Definition 2 (Object Graph). An object graph G(h) = (V,E) is constructed
from a well-formed heap h as follows: the vertex set V = allocs(h), and edge set
E = {(x,y) | x ∈ V ∧ y ∈ ptrs(x,h)}. The object graph is represented as G(h).

Definition 3 (Accessibility Relation). Given x, y ∈ allocs(h), x and y are related
through the accessibility relation (denoted as x  y) if and only if either (1) x = y or
(2) ∃ z. z ∈ allocs(h) ∧ x  z ∧ y ∈ ptrs(z,h).

Definition 4 (Reachable Sub-graph). The reachable sub-graph RG(h,r) =
(VRG, ERG) is formed from a well-formed heap h and a root-set r. Let G(h) = (V,E) be
the graph constructed out of the heap h. Then,

• (∀ x. x ∈ VRG ⇐⇒ x ∈ V ∧ (∃ y. y ∈ r ∧ y  x))
• (∀ x y. (x,y) ∈ ERG ⇐⇒ x ∈ VRG ∧ (x,y) ∈ E)

That is, RG(h,r) only contains the accessible objects from r in h as vertices and the
edges between accessible objects in h are preserved in RG(h,r).

Definition 5 (GC Correctness). Let h0 be the initial state of the heap on which the
GC operates, such that ω(h0) holds, and let r be the set of roots, which are pointers to
objects into h0. Let h1 be the heap after the GC terminates and let V be the vertex set
of G(h1). Then, the GC is said to be correct if:

1. ω(h1) holds.
2. G(h1) = RG(h0,r)

3. (∀ x. x ∈ V =⇒ data(x,h0) = data(x,h1))

The GC correctness definition says that, after the GC, the heap remains well-formed.
The object graph after the GC is equal to the sub-graph of accessible objects from r in
h0. This ensures that only the accessible objects are part of the object graph after the
GC terminates, thereby ensuring completeness. Soundness is ensured as RG(h0,r) retains
all the reachable objects and their interconnections. Additionally, the third correctness
property ensures that the non-pointer fields of accessible objects remain the same.

We note that this definition of GC correctness is generic and applicable across
different types of GCs. For example, in a copying collector, while the data fields and
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void mark_and_sweep_GC (uint8_t *hp, uint64_t *st, uint64_t *tp,

uint64_t *r, uint64_t r_len, uint64_t *sw,

uint64_t *fp) {

// GC initialization phase starts with pushing of roots

// into the mark stack

darken_roots (hp, st, tp, r, r_len);

// GC mark phase is dfs that operates on different OCaml objects

mark (hp, st, tp);

// GC sweep phase frees unreachable objects and updates the free list

sweep (hp, sw, fp);

}

Fig. 7: Extract C code for the top-level stop-the-world mark-and-sweep GC function.

the object graph remains the same, the object themselves are moved. The generic GC
correctness definition is able to accommodate this since it does not claim to preserve
value of the pointer fields across the GC. We note that the main correctness theorem
of [10], which is a verified copying collector for CakeML also captures GC correctness
similar to Definition 5. In Section 8, we present the abstract correctness specifications
for a copying collector as well as an incremental mark and sweep GC that uses a
snapshot-at-the-beginning deletion barrier [21].

With the generic GC correctness specification in place, let us now move on to the
implementation of an actual mark and sweep GC for OCaml in the next section. With
the help of the implementation, we show how the generic specifications are adapted
specifically for OCaml and the mark and sweep GC (Section 5).

4 Towards a verified OCaml GC

In this section, we present our approach to verify a practical garbage collector for
OCaml. As mentioned in Section 2, OCaml uses a generational and incremental garbage
collector, aimed at supporting high allocation rates and low latency. Given that verifying
such a GC implementation is a challenging task, we develop a verified stop-the-world
mark-and-sweep GC in a proof-oriented manner. We show in Section 8 how this GC
may be extended to support copying and incremental mark-and-sweep collection.

Our task involves connecting the abstract graph reachability specification defined
in the previous section with performant C code, that involves low-level operations
such as pointer arithmetic and bitwise operations. Since our aim is to integrate the
verified GC with the rest of the OCaml compiler, our verified GC must be made aware
of the different object layouts used by the compiler. We adopt a layered approach for
verification similar to [10, 22]. The layered approach allows us to cleanly separate the
abstract graph-based correctness from the low-level operations and language-specific
features. We present the evolution of a proof-oriented practical GC for OCaml, by
starting with a base GC model and then progressively adding essential features until it
is sufficient to integrate the GC with the rest of the OCaml compiler.
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As we mentioned in Section 1, the verified GC code written in Low* can be extracted
to C. Figure 7 shows the top-level GC function extracted from the verified GC code
on a 64-bit platform. No change has been made apart from renaming the functions for
readability. Our heap hp is a single, contiguous, fixed-size byte buffer of size heap size.
The GC takes as inputs an array of roots r of length r len, a mark stack array st with
a stack top pointer tp that indexes into the stack, a sweep pointer sw and a free list
pointer fp. Note that tp, sw and fp are singleton buffers containing the stack top pointer,
sweep pointer and free list pointer respectively. The free list is a singly linked list of
free objects in the heap, which is implicitly stored through the fields of the objects.
Recall that free objects are colored blue. Like OCaml, we assume that zero length
objects are not on the heap. This implies that each object has at least one field, which
we use to store the next pointer for the free list. Initially, st is empty, tp points to the
stack base address, sw points to the start of the heap (i.e. hp), while fp points to the
first blue object. The GC first calls darken roots to grey all the roots in r and pushes
them onto the mark stack st and suitably updates the stack top pointer tp.

Next is the mark function. We start with a base implementation first (Figure 8),
where there is no distinction between different types of objects. The implementation
here is to enable us to establish the base invariants necessary to do the verification.
Then we extend the base implementation to handle objects with No scan tag (Figure 9)
and finally closure and infix objects (Figure 10).

Let us first discuss the base version of the mark function as shown in Figure 8. The
mark function repeatedly calls mark body until the stack is empty. mark body pops the
object x from the top of the stack and finds its header address h x using the function
hd address. Then the color bits of the value pointed by h x are made black through
colorHeader. wosize returns the object size in words stored at h x and after which darken

iterates through all the fields of x, calling darken body on the fields. darken body darkens
the white objects (i.e. turning them grey) and pushes the field pointers onto the mark
stack as necessary.

The code snippets in Figure 8 hints at the verification challenge in front of us. Given
that we are in C, we have to ensure the accesses are memory safe, i.e., all memory
accesses are to valid memory. Observe that implementation works by coloring the
header words with bitwise operations. Hence, we need to reason about the correctness
of bitwise arithmetic, also ensuring that the change in color bits does not affect wosize

and tag of the object, which are also stored in the same header word.
The version of mark function as shown in Figure 9, incorporates the usage of the

tag bits which are part of the OCaml object layout. Here, tag is used to determine
whether the newly popped out object from mark stack needs to be scanned by the GC.
Recall from Section 2.1 that any object with a tag greater than or equal to no scan

(value 251) is not scanned by the GC. In this case, the mark skips scanning this object
and moves on to next object from the mark stack.

The third version of the mark function, shown in Figure 10, further extends the
marking process for objects with tag less than no scan. In particular, it checks whether
the object under consideration is a closure object or an infix object. mark body calls
darken wrapper instead of darken, which decides the starting address of fields of the
particular object under consideration. In the case of closure objects, as explained in
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void mark(uint8_t *hp, uint64_t *st, uint64_t *tp) {

while (*tp > (uint64_t)0U)

mark_body(hp, st, tp);

}

void mark_body(uint8_t *hp, uint64_t *st, uint64_t *tp) {

tp[0U] = *tp - (uint64_t)1U; // Decrement tp

uint64_t x = st[*tp];

uint64_t h_x = hd_address (x);

colorHeader (hp, h_x, black);

uint64_t wz = wosize (h_x, hp);

darken (hp, st, tp, h_x, (uint64_t)1U);

}

void darken (uint8_t *hp, uint64_t *st,

uint64_t *tp, uint64_t h_addr, uint64_t j) {

uint64_t wz = wosize (h_addr, hp);

for (uint32_t i = j; i < (wz + (uint64_t)1U)); i++) {

darken_body(hp, st, tp, h_addr, i);

}

}

void darken_body (uint8_t *hp, uint64_t *st, uint64_t *tp,

uint64_t h_addr, uint64_t i) {

uint64_t succ_indx = h_addr + i * mword;

uint64_t succ = load64 (hp + succ_indx);

uint64_t c = color (hd_address (succ), hp);

if (isPointer (succ_indx, hp)) {

if (c == white) {

push_to_stack(hp, st, tp, succ);

}

}

}

Fig. 8: Base version of mark and darken function

void mark_body(..omitted...) {

// Code omitted, same as before...

uint64_t tg = tag (h_x, hp);

if (tg < (uint64_t)251U) {

darken (hp, st, tp, h_x, (uint64_t)1U);

}

}

Fig. 9: Version of mark function that deals with no scan objects
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void mark_body (..omitted...) {

// Omitted....

if (tg < (uint64_t)251U) {

// Wrapper function for darken

darken_wrapper(hp, st, tp, h_x);

}

}

void darken_wrapper (..omitted...) {

// If the object is closure objs

if (tag(h_x, hp) == (uint64_t)247U) {

uint64_t x = f_address(h_x);

// Start of environment has to be extracted for closure objects

uint64_t start_env = start_env_clos_info (hp, x);

darken (hp, st, tp, h_x, start_env + (uint64_t)1U);

} else {

darken (hp, st, tp, h_x, (uint64_t)1U);

}

}

// Darken remains the same as that in base version

void darken_body(...omitted...) {

// Omitted...

if (isPointer(succ_indx, hp)) {

uint64_t h_addr_succ = hd_address(succ);

uint64_t tg = tag (h_addr_succ,hp);

// If the field points to an infix object

if (tg == (uint64_t)249U) {

// Finds the parent closure

uint64_t parent_hdr = parent (hp, h_addr, i);

darken_helper (hp, st, tp, parent_hdr);

} else {

darken_helper (hp, st, tp, h_addr_succ);

}

}

}

void darken_helper(...omitted...) {

if (color(hdr_id, hp) == white) {

push_to_stack (hp, st, tp, hdr_id);

}

}

Fig. 10: Version of mark and darken function that deals with closure and infix

objects

15



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

void sweep (uint8_t *g, uint64_t *sw, uint64_t *fp,

uint64_t limit, uint64_t mword) {

while (*sw < limit) {

uint64_t curr_obj_ptr = *sw;

uint64_t curr_header = hd_address(curr_obj_ptr);

uint64_t wz = wosize_of_block(curr_header, g);

uint64_t next_header = curr_header + (wz + 1ULL) * mword;

uint64_t next_obj_ptr = next_header + mword;

sweep_body (g, sw, fp);

sw[0U] = next_obj_ptr;

}

}

void sweep_body (uint8_t *g, uint64_t *sw, uint64_t *fp) {

uint64_t curr_obj_ptr = *sw;

uint64_t curr_header = hd_address(curr_obj_ptr);

uint64_t c = color_of_block(curr_header, g);

uint64_t wz = wosize_of_block(curr_header, g);

if (c == white || c == blue) {

colorHeader(g, curr_header, blue);

uint64_t fp_val = *fp;

uint32_t x1 = fp_val;

store64_le(g + x1, curr_obj_ptr);

fp[0U] = curr_obj_ptr;

} else {

colorHeader(g, curr_header, white);

}

}

Fig. 11: Extracted C code of sweep function implemented as an iterative function
invoking the sweep body

Section 2, the offset of the environment need to be extracted first. The details of
the extraction is not shown for brevity. Another change is in darken body, where, if a
field points to an infix object, then the parent closure object is determined. This parent
closure is the one that is darkened by the GC. We note that this goes beyond just a
simple DFS traversal, and the details of these operations are necessary to reason about
the correctness of the GC.

For simplifying the exposition of our verification process, we will use base version of
mark throughout the rest of the paper. We note that our verified GC deals with closure

and infix objects, and integrates with the rest of the OCaml compiler and the runtime.
In Section 6.5, we expand upon the changes required to verify the implementation in
Figure 10.
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noeq type graph (#a:eqtype) = {

vertices : v: vertex_set #a;

(* [vertices] are a sequence of type a with no duplicates *)

edges : e: edge_set #a {edge_ends_are_vertices vertices e}

(* [edges] are a sequence of type ( a,a ) with no duplicates *)

}
Fig. 12: The graph type

type reach: (g:graph) → (x:vertex) → (y:vertex) → Type =
(* reachability is reflexive *)

| ReachRefl : (g:graph) → (x:vertex) → (reach g x x)

(* reachability is transitive *)

| ReachTrans : (g:graph) → (x:vertex) → (z:vertex) →
(reach g x z) →
(* [edge g z y] is a type refinement which mandates

that [ ( z,y ) ] is an edge in [g] *)

(y:vertex {edge g z y}) → (reach g x y)

Fig. 13: Graph reachability as an inductive predicate reach

After mark finishes, sweep scans the objects stored in the heap, starting from sw

to the end of the heap. The extracted code for sweep is shown in Figure 11. While
scanning, sweep examines the color of the object. If the object is black, it is colored
white and if the object is white or blue, the color is changed to blue and the object is
added to the free list by making the first field of fp point to this object. Additionally,
the current object pointed by sw is made to be the new fp. sweep remains the same
across the different variants of mark.

5 OCaml GC Specification

We now instantiate the abstract GC correctness definition from Section 3 for our GC
compatible with OCaml. We express this specification in F* as is done in our artifact.

5.1 Basic Definitions

We first define the object graph in F* in Figure 12. The graph is defined as a record type
in F* with two fields and is parametric over type a. Note that the prefix # before type
a indicates that a is an implicit argument. The first field vertices has type vertex set a

and is a type alias of seq a with a type refinement that does not allow duplicates. seq

is an unbounded array like data structure available in the F* standard library. The
second field edges is defined to have type edge set a, where edge set a is a type alias for
seq (a,a) with no duplicates. The type refinement on the edges which enforces that both
the members of an edge should belong to the vertices of the graph.

In Figure 13, we define the accessibility relation (Definition 3) as an inductive
predicate reach. Note that vertex is any type a, and edge is a type alias for (vertex & vertex)
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(& is product type operator in F*). The reach g x y predicate encodes a proof of
reachability from vertex x to vertex y in graph g. There are two ways to construct this
proof: either through ReachRefl which encodes that every vertex is reachable from itself,
or through ReachTrans, which requires a proof of reachability from x to z, and an edge
in g from z to y, captured by the type refinement edge g z y.

Our basic definitions in F*, which are related to the OCaml heap, are shown in
Figure 14. We assume a 64-bit architecture. However, note that our framework is
parametric over the machine word size. mword indicates the word size in bytes. We
define heap size to be an integer n such that n is a multiple of mword. The heap has
enough space to store at least 1 object. Since the smallest object on the heap has one
word header and one field, the smallest heap size is 16 bytes. We also need an upper
bound on the heap size to prevent overflow when we perform arithmetic operations on
the heap addresses. We choose the upper bound to be 1 TiB (240 = 1099511627776
bytes), which is a pragmatic upper bound for OCaml programs.

We assume that the heap is densely packed with objects of any colour. Recall from
Section 2.1 that the OCaml object header includes two bits in the header for color.
Blue color represents a free object, whereas white, black or grey object represents an
allocated object. Objects can have arbitrary sizes, encoded in the wosize bits of its
header block. For example, a completely empty heap (devoid of any allocated objects)
may have one blue object that spans the entire heap or may have successive blue
objects that span the entire heap.

The heap type is defined as a sequence of 8-bit unsigned machine integers of length
heap size. A valid heap address hp addr is defined as a 64-bit unsigned machine integer.
The heap address is word aligned and points to a location within the heap. In OCaml,
every object is represented by the address of its first field. Therefore, obj addr represents
an object address which has an additional restriction that the valid heap address should
start from mword or greater indicated by the type refinements inside the curly brackets.
Similar refinement is applied to the type hdr addr which denotes a header address of the
object. Since the objects on the heap have at least one field, the header address should
be at least mword less than the heap size. The function hd address takes the address of
an object o and returns the header address of o.

We now describe a few definitions, which are not shown in the code. wosize t, color t

and tag t define the type of wosize, color and tag of an object, respectively. The functions
wosize h x h, color h x h and tag h x h returns the wosize, color and tag respectively of
the object x with header address h x in heap h. The value stored at a heap address x in
a heap h is read using a function r word h x. Similarly, w word h x writes to h in location
specified by x.

Unlike the OCaml runtime, in the formalisation, for convenience, we address the
fields from the header address of an object. Hence, the first field will have the offset 1.
The function valid field number (shown in Figure 14), checks whether a field number is
valid. A field number i is valid only if it lies within the range of 1 and the wosize of the
object. The function field reads the ith field of object x in h, if i is a valid field number
for the object x. We define a boolean predicate isPointer i h = U64.logand (r word h i) 1UL

= 0, which holds when the value at address i holds a pointer (the least-significant bit
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//Machine integers

module U64 = FStar.UInt64

module U8 = FStar.UInt8

let mword = 8UL

val heap_size : n:int{n `mod` U64.v mword == 0 ∧ n >=16 ∧
n < 1099511627776}

(* heap is a sequence of 8 bit unsigned machine integers *)

type heap = h:seq U8.t{length h == heap_size}

(* A valid heap address *)

type hp_addr = addr:U64.t {U64.v addr < heap_size ∧
is_multiple_of_mword addr}

(* object address *)

type obj_addr = x:hp_addr {U64.v x >= mword})

(* header address *)

type hdr_addr = x:hp_addr {U64.v x + mword < heap_size})

(* header address from object address *)

let hd_address (o:obj_addr) = U64.sub o mword

(* object address from header address *)

let f_address (h:hdr_addr) = U64.add h mword

let valid_field_number (i:U64.t) (h:heap) (x:obj_addr) =

i >= 1 ∧ i <= wosize(hd_address x, h)

let field_addr (x:obj_addr) (h:heap)

(i:U64.t{valid_field_number i h x}) =

U64.add (hd_address x) (U64.mul i mword)

(* Field reads of ith field of object x *)

let field (x:obj_addr) (h:heap)

(i:U64.t{valid_field_number i h x}) =

r_word h (field_addr x h i)

(* allocs ( h ) is the set of allocated objects in the heap *)

let well_formed_heap h =

(∀ x. seq.mem x (allocs (h)) =⇒
(∀ (i:U64.t{valid_field_number i h x}).

isPointer (field_addr x h i) h =⇒
(field x h i) ∈ allocs(h)))

Fig. 14: Basic Definitions in F*
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is 0). The predicate well formed heap is the instantiation of the abstract well-formed
heap (Definition 1) defined in Section 3.

Using the above basic definitions, we now define some auxiliary functions. Given a
heap h, objs h returns the sequence of object addresses in the heap h. It essentially scans
the heap from the beginning, using the wosize of each object to move to the next object.
allocs h returns the allocated object addresses in h (i.e. objects with a non-blue color).
h objs h is a sequence of the header addresses of all objects in h. Similarly, h allocs h

is the sequence of header addresses of allocated objects of h. Additionally we define
blacks h, whites h, greys h and blues h to represent the sequence of header addresses of
black, white, grey and blue objects respectively. The function valid hdr takes a header
address of an object and the heap and checks whether the header address is a part of
h allocs h.

5.2 Specification for GC functions

With these definitions in place, let us see how we can specify the correctness of the
GC (Definition 5) based on the correctness of the constituent functions darken roots,
mark and sweep introduced in Figure 7. Certain useful algebraic properties of these
functions as defined in F* are shown in Figure 15. The type st hp is a pair of seq obj addr

(representing the mark stack) and heap. The F* library functions fst and snd returns
the first and second member of a pair respectively. Note that the heap before and after
the GC contains only white and blue objects.

The function darken roots recursively fills the stack with all object addresses specified
in the root list r list. It maintains the invariant that all objects in the stack are colored
grey (pre-condition 3 and post-condition 4). darken roots returns the modified stack and
heap pair. In addition, the heap remains well-formed, and all fields of every object
remains the same (post-conditions 1 and 3). The mark function also ensures the above
properties, and additionally ensures that there are no grey objects after it finishes,
essentially coloring all reachable objects black. The type of the return value of sweep

is hp fp, which is a pair of heap type and free list pointer type (obj addr type). The
sweep function ensures that there are no more black objects after it completes. Note
that all these functions ensure that the heap remains well-formed, and there is no
change to the object fields, effectively ensuring properties (1) and (3) in the definition
of GC correctness (Definition 5). For proving property (2), we need to consider the
reachability of objects in the underlying object graph.

5.3 Object graph construction

The construction of object graph from the heap crucially depends on the well-formedness
of the heap (well formed heap defined in Figure 14). Well-formed heap requires that
pointers from allocated objects should only refer to other allocated objects. We assume
that the allocator and the mutator (the OCaml program) maintain this invariant.

OCaml features such as closure and infix objects also affect graph construction,
as these objects have a different layouts to regular objects and influence how the GC
scans the objects. For simplifying the presentation, the graph construction of Figure 16
ignores closure and infix objects and objects which only have opaque bytes. The details
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(* Product type *)

type st_hp = seq obj_addr & heap

type hp_fp = heap & obj_addr

val darken_roots (h:heap) (st:seq obj_addr) (r_list:seq obj_addr)

: Pure (st_hp)

(requires (* Only core conditions shown *)

(* 1 *) well_formed_heap (h) ∧
(* 2 *) (∀ x. x ∈ h_objs(h) =⇒ (x ∈ whites(h) ∨ (x ∈ blues(h)) ∧
(* 3 *) (∀ x. x ∈ st ⇐⇒ hd_address x ∈ greys(h)))

(ensures (* Only core conditions shown *)

(* 1 *) (λ res → well_formed_heap (snd res) ∧
(* 2 *) (∀ x. x ∈ r_list =⇒ x ∈ (fst res)) ∧
(* 3 *) (∀ x i. (hd_address x) ∈ h_objs(h) =⇒

field x h i = field x (snd res) i)) ∧
(* 4 *) (∀ x. x ∈ (fst res) ⇐⇒ hd_address x ∈ greys(snd res)))

val mark (h:heap) (st:seq obj_addr)

: Pure (heap)

(requires (* Only core conditions shown *)

(* 1 *) well_formed_heap (h) ∧
(* 2 *) (∀ x.x ∈ st ⇐⇒ hd_address x ∈ greys(h)))

(ensures (* Only core conditions shown *)

(* 1 *) (λ h1 → well_formed_heap (h1) ∧
(* 2 *) (∀ x i. (hd_address x) ∈ h_objs(h) =⇒

field x h i = field x h1 i) ∧
(* 3 *) (∀ x.x ∈ h_objs(h1) =⇒ (color (hd_address x h)1 6= grey)))

val sweep (h:heap) (curr_ptr:obj_addr) (fp:obj_addr)

: Pure (hp_fp)

(requires (* Only core conditions shown *)

(* 1 *) well_formed_heap (h) ∧
(* 2 *) (∀ x.x ∈ objs(h) =⇒ (color (hd_address x h) 6= grey)) ∧
(ensures (* Only core conditions shown *)

(* 1 *) (λ h1, fp1 → well_formed_heap (h1) ∧
(* 2 *) (∀ x. x ∈ blacks(h) ⇐⇒ x ∈ whites(h1)) ∧
(* 3 *) (∀ x. x ∈ whites(h) ∨ blues(h) ⇐⇒ x ∈ blues(h1)) ∧
(* 4 *) (∀ x i. (hd_address x) ∈ h_allocs(h) =⇒

field x h i = field x h1 i) ∧
(* 5 *) (∀ x. x ∈ h_objs(h1) =⇒ x ∈ whites(h1) ∨ x ∈ blues(h1)))

Fig. 15: Algebraic properties of the constituent functions of our verified GC
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module G = Spec.Graph

val edges_of_graph (s:seq obj_addr) (h:heap{well_formed_heap (h)})

: Tot (e:G.edge_set{∀ x y. mem x s =⇒ mem (x,y) e ⇐⇒
(∃ i. valid_field_number i h x ∧

isPointer (field_addr x h i) h ∧
y = field x h i)})

val graph_from_heap (h:heap)

: Pure (G.graph)

(requires well_formed_heap (h))

(ensures λ g→ g.vertices = allocs h ∧
g.edges = edges_of_graph allocs h)

Fig. 16: Constructing graph from the heap

on how to incorporate the additional features is described in Section 6.5. As shown in
Figure 16, the vertices of the graph are simply the set of allocated objects allocs h, while
the edges are constructed using a function edges of graph, that takes as inputs allocs h

and h and creates pairs (x,y) for all x in allocs h such that y is a field pointer of x in h.
Using the graph definitions, we can now specify the additional properties required for

proving property (2) in the abstract GC correctness definition. As shown in Figure 17,
the mark reachability lemma ensures that the object graph constructed from the heap
remains the same before and after mark. In addition, all the objects and only the
objects that are reachable from the root list r list in the object graph will be colored
black in the output heap after mark. Note the use of the inductive reach predicate from
Figure 13 in this specification. Notice also that the precondition (2) requires that all
objects in the stack are colored grey in the input heap, which is essentially a post-
condition of darken roots in Figure 15. The sweep correctness conditions are listed in
sweep subgraph lemma. The post-conditions of the lemma ensure that the graph formed
after sweep has only reachable objects and their interconnections, that is the reachable
sub-graph of the original graph before the GC. The fact that sweep is the last operation
of the GC ensures that the final graph after the GC is the reachable subgraph of the
graph before the GC, thus proving property (2) of Definition 5.

As evident from the specifications, there are three different dimensions of reasoning
required for verifying correctness: (i) first, we must relate the coloring logic with reach-
ability in the object graph, (ii) next, we need to ensure the algebraic properties related
to well-formedness and preservation of the object graph for the bit-wise manipulations
performed during the GC, (iii) and finally, while the above specifications talk about
a functional heap, the C implementation performs in-place mutations, and hence we
need to reason about aliasing and memory safety. This naturally points to the need for
a layered strategy for verification, which is the focus of the next section.

6 Verification Framework and Correctness Proofs

With the implementation and the specifications in place, we now deep dive into the
details of our verification framework and how we have carried out the main correctness
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val mark_reachability_lemma (h:heap) (st:seq obj_addr)

(r_list:seq obj_addr)

: Lemma

(requires

(* 1 *) well_formed_heap (h)

(* 2 *) (∀ x. x ∈ st ⇐⇒ hd_address x ∈ greys(h)) ∧
(* 3 *) well_formed_heap (mark h st))

(ensures

(* 1 *) (graph_from_heap (mark h st) = graph_from_heap h) ∧
(* 2 *) (∀ x y.y ∈ r_list ∧

reach (graph_from_heap h) y x ⇐⇒ x ∈ blacks(mark h st)))

val sweep_subgraph_lemma (h:heap) (r_list:seq obj_addr)

(curr_ptr:obj_addr) (fp:obj_addr)

: Lemma

(requires

(* 1 *) well_formed_heap (h) ∧
(* 2 *) (∀ x.x ∈ h_objs(h) =⇒ (color (hd_address x h) 6= grey)) ∧
(* 3 *) well_formed_heap (sweep h curr_ptr fp))

(ensures

(* 1 *) (∀ x. x ∈ graph_from_heap (sweep h curr_ptr fp).vertices ⇐⇒
x ∈ graph_from_heap (h).vertices ∧
(∃ y. y ∈ r_list ∧ reach (graph_from_heap h) y x)) ∧

(* 2 *) (∀ x y.

(x,y) ∈ graph_from_heap (sweep h curr_ptr fp).edges ⇐⇒
x ∈ graph_from_heap (sweep h curr_ptr fp).vertices ∧
y ∈ graph_from_heap (sweep h curr_ptr fp).vertices ∧
(x,y) ∈ graph_from_heap (h).edges))

Fig. 17: Mark reachability and reachable subgraph preserving

proofs. As mentioned earlier, the challenge here is that we need to reason about complex
graph theoretic specifications for an optimized and efficient implementation, while
ensuring memory-safe behavior of the GC implementation itself. We have designed our
layered verification methodology to cleanly separate various proof obligations involving
the graph reachability based specification, the correctness of bitwise arithmetic and the
correctness of concrete memory changes carried out by the GC. As shown in Figure 18,
the first layer deals with the verification of reachability properties of DFS, the second
layer is for proving algebraic properties related to the bitwise arithmetic operations as
well as to prove the abstract graph related properties of the GC, and the third layer
proves that the GC does not violate memory safety. The third layer also acts as the
layer from which the actual C code of the GC is extracted.
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Fig. 18: The layering approach for GC verification

6.1 Layer 1 – A verified depth first search implementation in F*

We know that mark performs a depth-first traversal of the OCaml heap, but
it takes advantage of the OCaml object layout to efficiently perform operations
such as finding successors, maintaining the visited vertices, etc. Directly proving the
mark reachability lemma would be hard, especially for F*, as inductively defined proper-
ties such as reach do not work well with SMT-based verifiers. Mixing this reasoning
with the OCaml object layout and the bit-wise arithmetic operations occurring in
mark would make the problem even harder. To simplify this proof, we instead focus on
proving the reachability properties for a bare bones dfs implementation. In the second
layer, we establish the functional equivalence between mark and dfs by proving that
mark colors all and only those objects reached by dfs.

The dfs implementation, shown in Figure 19, directly takes as input the object graph
(whose type defined in Section 5). It explicitly maintains a visited list, corresponding to
the set of vertices which have been fully explored. We design the dfs implementation to
closely resemble the mark implementation, shown in Figure 20. The dfs implementation
is functional and recursive, and in each recursive call, it removes the vertex at the top
of the stack, pushes it into the visited list, and then pushes all the unvisited successors
into the stack. At the end, dfs returns the set of all vertices reachable from the root set.

The correctness specification of dfs is defined using the reach predicate in Figure 21.
Let us first focus on the ensures clause, which is the required guarantee that we need
in terms of reachability. The forward direction says that every vertex present in the
return value of dfs must be reachable from some vertex in the root set. The backward
direction says that if a vertex is reachable from the root set, then it must be present in
the return value of dfs.

To prove the forward direction, we assert the pre-condition (F2,F3) that all vertices
in both the stack and the visited list are always reachable from some vertex in the
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(* dfs calls dfs_body until stack empty.

Inputs are graph, stack and visited set. *)

let rec dfs (g:graph) (st:seq U64.t) (vl:seq U64.t)

: Pure (seq U64.t)

(requires ...)

(ensures (λ res → ...)

(decreases (length g.vertices - length vl; length st)) =

if length st = 0 then vl

else

let st1 ,vl1 = dfs_body g st vl in

dfs g st1 vl1

let dfs_body g st vl

: Pure ...

(requires ...)

(ensures (λ res → ...) =

let x = stack_top st in

let xs = stack_rest st in

let s = successors g x in

let vl1 = set_insert x vl in

let st1 = push_unvisited s xs vl1 in

(st1, vl1)

Fig. 19: Functional dfs

root set. For the backward direction, our pre-condition B1 asserts that every vertex
reachable from the root set should either already be part of the visited list, or it should
be reachable from some vertex in the stack. However, this property by itself is not
inductive, and hence we also require that every vertex reachable from the visited list
should either already be part of the visited list, or reachable from some vertex in the
set (B2). We show that these pre-conditions are ensured by the initial call to dfs, and
they are also maintained for every recursive call.

6.2 Layer 2 – Functional mark and sweep in F*

We now consider proving the correctness of the mark and sweep implementations.
Towards this end, we first consider their functional implementations in F*, which
operate on the OCaml heap representation. Here, the input h will be a sequence of
memory words (using the seq type in F*), that contains OCaml objects following the
format of Figure 1. Since the mark and sweep implementations use various colors to
indicate different phases of an object, these functions depend heavily on a correct
implementation of the colorHeader function, which sets the color of an object. The
next section focuses on the specifications of colorHeader, which is crucial to ensure the
correctness of the GC.
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(* mark calls mark body until stack empty.

Inputs are heap and stack *)

let rec mark (h:heap) (st:seq obj_addr)

: Pure (heap)

(requires ...)

(ensures (λ res → ...)

(decreases (length allocs h - length blacks h;

length st)) =

if length st = 0 then h

else

let st1, h1 = mark_body h st in

mark h1 st1

let mark_body (h:heap) (st:seq obj_addr)

: Pure ...

(requires ...)

(ensures (λ res → ...) =

let x = stack_top st in

let xs = stack_rest st in

let h1 = colorHeader h x black in

let st1 = darken h1 xs x 1UL in

(st1, h1)

Fig. 20: mark implementation

(* r_list is the root set, stack is filled with r_list initially *)

val dfs_reachability_lemma (g:graph) (st:seq obj_addr)

(vl:seq obj_addr) (r_list:seq obj_addr)

: Lemma

(requires

(* Pre-conditions required to prove forward direction *)

(* F1 *) mutually_exclusive_sets st vl ∧
(* F2 *) (∀ y.y ∈ st =⇒ (∃ x.x ∈ r_list ∧ reach g x y) ∧
(* F3 *) (∀ y.y ∈ vl =⇒ (∃ x.x ∈ r_list ∧ reach g x y) ∧

(* Pre-conditions required to show the backward direction *)

(* B1 *) (∀ x y.x ∈ r_list ∧ reach g x y =⇒
(∃ z.z ∈ st ∧ reach g z y) ∨ y ∈ vl)

(* B2 *) (∀ x y.x ∈ vl ∧ reach g x y =⇒
(∃ z.z ∈ st ∧ reach g z y) ∨ y ∈ vl)

(ensures (∀ y.y ∈ (dfs g st vl) ⇐⇒ (∃ x.x ∈ r_list ∧ reach g x y))

Fig. 21: Correctness specification of dfs
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val makeHeader (wz:wosize_t) (c:color_t) (t:tag_t)

: Pure (U64.t)

(requires True)

(ensures (λ res →
(U64.shift_right res 10UL = wz) ∧
(U64.logand (U64.shift_right res 8) 3UL = c) ∧
(U64.logand res 255UL = t)))

val colorHeader (h:heap) (hdr:hdr_addr) (c:color_t)

: Pure (heap)

(requires (* Only core conditions shown *)

well_formed_heap (h) ∧
valid_hdr hdr h)

(ensures λ res →
well_formed_heap (res) ∧
valid_hdr hdr res ∧
objs h = objs res ∧
heap_same_except hdr h res ∧
color hdr res = c ∧
wosize hdr res = wosize hdr h ∧
tag hdr res = tag hdr h ∧
r_word res hdr =

makeHeader (wosize hdr h) (c) (tag hdr h))

Fig. 22: Specifications of colorHeader

6.2.1 Specification of colorHeader

The specifications of colorHeader are shown in Figure 22. colorHeader takes as input
the heap h, an address hdr into h (which will be the address of the object header)
and a color c that has to be updated in the color bits of the value stored at hdr. The
function returns the modified heap. makeHeader is a bit manipulation function that is
used to create a header value. The operations U64.shift right and U64.logand are 64-bit
right shift and logical AND operations available as part of the F* standard library.
The specifications ensure that, only the color bits changes when colorHeader is applied.
Especially the predicate heap same except ensures that except hdr in h, everything else
remains the same in the resultant heap res. Since hdr is a valid hdr, this ensures that,
all the fields of all objects remains the same. Using the specifications of colorHeader, we
show the proof outlines for proving the algebraic properties of the GC functions as
shown in Figure 15.

6.2.2 Proof outline for the sub-functions of the GC

The specifications are shown in Figure 15. The darken roots function pushes all the
root pointers in h list to an empty stack and then colors them as grey. Let h0 be the
initial heap before the GC and let h1 be the heap resulted after darken roots. Since
the GC starts with well formed heap h0 that contains only white and blue objects and
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val dfs_mark_equivalence_lemma (h:heap) (st:seq obj_addr)

(vl:seq obj_addr) (h_list:seq obj_addr)

: Lemma

(* Only important properties shown *)

(requires (* 1 *) mutually_exclusive_sets st vl ∧
(* 2 *) well_formed_heap(h) ∧
(* stack invariant *)

(* 3 *) (∀ x.x ∈ st ⇐⇒ (hd_address x) ∈ greys(h))

(* visited-list invariant *)

(* 4 *) (∀ x.x ∈ vl ⇐⇒ (hd_address x) ∈ blacks(h))

(ensures (∀ x. x ∈ (dfs (graph_from_heap h) st vl)⇐⇒
(hd_address x) ∈ blacks(mark h st)))

Fig. 23: Behavioral equivalence between mark and dfs

the fact that h list contents are members of allocs(h0) implies that well formed heap h1 is
preserved as the only change to heap is coloring of h list members from white to grey.
Since both white and grey are considered as allocated objects, changing the color from
white to grey still preserves the membership in allocated set. Therefore, allocs(h1) =
allocs(h0). Therefore the vertex set of both graphs constructed from h0 and h1 remains
the same. Since the specification of colorHeader ensures that except the color bits of the
address hdr in the heap, nothing else in the heap changes, the edge set of the graphs
from h0 and h1 also remains the same. Therefore, both the graphs are the same. Since
darken roots starts with an empty stack, when the objects in h list are pushed into the
stack and colored them grey in the heap, the only grey objects in the heap are the
ones that are pushed onto the stack.

Let h2 be the heap formed after mark. All the algebraic properties of mark as in
Figure 15 can be proved by using the same approach as darken roots and the fact that
mark starts with a stack that contains all the grey and only the grey objects of the
heap. When mark terminates after the stack becomes empty, there are no grey objects
in the resultant heap after mark.

Similarly the algebraic properties of sweep can also be directly proven using the
specifications of colorHeader. Recall that, sweep changes the color of white objects to
blue and black objects to white. As well as the first field of the free list pointer is
changed to point to the newly created blue block during a sweep invocation. Since the
well-formedness property only affects the allocated objects and the fact that free list
pointer points to a blue object, with the help of some extra lemmas related to the sweep

properties, F* can prove that the heap resulted after sweep remains as well-formed.

6.2.3 Proof outline for mark reachability lemma

As the direct proof of reachability of mark requires reasoning about bit-wise arith-
metic and graph reachability together, we have avoided that path due to the inherent
complexities to handle such proofs with an SMT solver. Instead, we use the reachability
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proofs of dfs for mark by proving the program equivalence between dfs and mark using
the lemma in Figure 23.

Proof outline for dfs mark equivalence lemma : Both dfs (in Figure 19) and
mark (in Figure 20) are tail-recursive functions, whose outputs are exactly same as
the outputs of the recursive calls at the end. Hence, we use the post-condition of
dfs mark equivalence lemma as a form of inductive invariant, following the classical mod-
ular verification technique for recursive functions. We also require two invariants
to be obeyed relating the input arguments to dfs and mark. The stack invariant says
that the grey objects of the input heap h can only be found in the stack st and the
visited−list invariant ensures that the black objects of the heap are only present in the
visited list vl. This way membership checks in st and vl can be avoided by replacing it
with two color bits check, which is more efficient than the membership checks in dfs.
We show that if the mark and dfs methods are called with the same input stack st which
satisfies the stack invariant, and a visited set that satisfies visited−set invariant as well
as a heap that satisfies well formed heap (h), then their outputs should be equivalent,
i.e., all objects in the output of dfs should be colored black in the output heap of mark.

Due to the tail-recursive nature of both dfs and mark, we can use the equivalence
of outputs of the recursive calls to infer the required result. Suppose h1 and st1 are
the results of one invocation of mark body and st2 and vl2 are the outputs obtained
after dfs body. These outputs are passed as inputs to the recursive calls of mark and dfs.
Then, we need to ensure that the input arguments to the recursive calls satisfy the
pre-conditions mentioned below:

• well formed heap h1

• (∀ x. x ∈ vl2 ⇐⇒ (hd address x) ∈ blacks(h1))
• (∀ x. x ∈ st1 ⇐⇒ (hd address x) ∈ greys(h1))
• st2 = st1
Since well formed heap h holds for the input heap h, the first property follows as the

color changes to the heap during one invocation of mark body only involves darkening.
That is, white objects becomes grey and grey objects become black. That means, the
allocs h and allocs h1 remains the same. Combining this property with the fact that the
fields remain unchanged due to the coloring operation, the well-formedness of h1 can
be proved. This also ensures that the graphs formed from both h and h1 remains the
same. A careful inspection of dfs body and mark body reveals that, each of the functions
removes the top of the stack and mark body colors it as black whereas dfs body adds it
to the visited list. Since the input stacks are the same, this operation ensures that the
visited−list invariant is maintained with vl2 and h1. While pushing the field pointers of
the top of the stack, mark body colors them grey, which ensures the stack invariant of
st1 with respect to h1.

For proving the last property, which is the stack equivalence between the stacks
produced by dfs body and mark body, let us understand the behavior of the two tail
recursive functions push unvisited and darken, used in dfs body and mark body to obtain
st2 and st1 respectively. A comparison between these functions are shown in Figure 24.

The push unvisited function scans through the list of successors of x (which was at
the top of the stack) in the object graph, while darken scans the fields of the object x

in the heap. Both functions starts with the same stack st and populate the stack with
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(* push_unvisited calls push_unvisited_body until successors is empty *)

let push_unvisited_body s st vl j

: Pure ...

(requires j < length s...)

(ensures (λ res → ...) =

if (not (mem (index s j) (set_union st vl))) then

let st2 = push (head s) st in

st’

(* darken calls darken_body until i = wosize + 1 *)

let darken_body h st h_addr i

: Pure ...

(requires ...)

(ensures (λ res → ...) =

let succ = r_word h (h_addr + i * mword) in

if not (isPointer succ) then (st, h)

else

let c = color h (hd_address succ) in

if not (c = white) then (st, h)

else

let h1, st1 = push_to_stack h st succ in

(st1, h1)

Fig. 24: A comparison of push unvisited body and darken body functions

unvisited (white) field pointers of x into the stack. push unvisited and darken perform
the bulk of the work by calling push unvisited body and darken body respectively.

The parameter j in push unvisited body indicates the index of the successor in s

to be examined. Similarly, the parameter i in darken body indicates the field number
of x to be scanned in h. Recall that st and vl are mutually exclusive. The function
push unvisited body decides whether an element is unvisited by checking the membership
in st and in vl. Due to the invariants on st and vl, such an object will also be colored
white in the heap. The same action is being performed by the darken body as well. But
the difficulty here is that s is already a filtered list of field pointers (i.e. successors),
while the field scan in fields by darken may encounter non-pointer fields as well. Hence,
there may not exist a direct one-to-one correspondence between the invocations of
push unvisited body and darken body. To get around this issue, we can make use of the
observation that if the field slice which starts at the ith field of x in the heap returns
the same set of field pointers as that of successor slice that starts at jth index of the
successors list in s, then the stacks produced by darken that starts at field index i of x

in h and push unvisited that starts at index j of s are the same. Formally in F* we prove
the below lemma,
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val darken_push_unvisited_produces_same_stack (h:heap) (st:seq obj_addr)

(vl:seq obj_addr)

(curr:hdr_addr)

(i:U64.t) (j:U64.t)

: Lemma

(requires mutually_exclusive_sets st vl ∧
well_formed_heap (h) ∧
successor_slice s j = field_slice h hdr_addr i)

(ensures darken h st hdr_addr i = push_unvisited s st vl j)

The above lemma is invoked with i = 1 and j = 0 to prove the stack equivalence
(i.e., st' = st1). Thus, through the maintenance of pre-conditions, the induction hypoth-
esis through the recursive invocation of the dfs mark equivalence lemma, we are able to
complete the proof of dfs mark equivalence lemma. This way, dfs reachability lemma and
dfs mark equivalence lemma is sufficient to complete the proof of mark reachability lemma

in Figure 17.

6.2.4 Proof outline for sweep subgraph lemma

Let h0 be the heap state before the GC, let h be the heap after mark that satisfies
dfs mark equivalence lemma and let h1 be the heap after sweep, and thus the heap after
the GC. Therefore, from the algebraic properties of sweep in Figure 15, if h list is the
root set, curr ptr is the sweep head and fp is the free list pointer then the following
property holds:

(∀ x y.y ∈ h_list ∧ reach (graph_from_heap h) y x ⇐⇒
(hd_address x) ∈ whites (sweep h curr_ptr fp))

Since the graph before and after darken roots and mark remains the same, this means
all the white objects that results after the sweep are the only reachable objects in h1.
Again from the algebraic properties of sweep, the only allocated objects after the sweep

are white objects. We have already shown that coloring operation and modification of
the first field of free list does not alter the contents of any allocated object fields. These
properties ensure that the objects in the graph formed from h1 contains all the reachable
and only the reachable objects in h0 and the edges between them remains the same in
h1 as that in h0. This completes the proof of sweep subgraph lemma. Thus we can see
that all the abstract GC correctness properties as mentioned in Definition 5 is fulfilled
by our functional GC. Now, all it remains is to show that an imperative implementation
of such a GC does not violate any of the functional correctness properties of the GC.
For that, in the next section, we show how to implement the imperative GC in the
third and the final layer, and how to prove its program equivalence with that of the
functional GC.

6.3 Layer 3 - Imperative mark and sweep in Low*

As discussed earlier, the verification focus of this layer is to prove that the imperative
GC implementation itself does not cause any memory safety bugs. There are a number
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of challenges to be dealt with in this layer: the heap and stack are now modeled as
fixed-length buffers, thus requiring proofs of absence of buffer overflows, the heap/stack
mutations are now in-place instead of functional, thus requiring anti-aliasing proofs.
This layer uses Low*, which allows extraction to verified C code. To understand how
Low* ensures memory safety of the C implementations, let us first see the code listing
of mark in Low* as an example as shown in Figure 25 and its pre- and post-conditions
in Figure 26. To differentiate from a functional implementation, imperative mark is
qualified with a suffix imp. The function takes as input a buffer hp to store the heap,
another buffer st to store the stack and tp to store the top pointer of st.

Each of the Low* functions takes a pre-condition (requires clause) on the initial
memory state m and a post-condition (ensures clause) about the initial and the final
memory states m0 and m1 respectively. For example, the mark imp requires the pre and
post conditions about the memory state as shown in Figure 261.

The term live m hp states that hp is a live buffer in memory state m, where the
location is specified by loc buffer hp. The condition that the buffers hp and st should
be disjoint in memory is captured in disjoint (loc hp) (loc st). In the post-condition, a
modifies clause is used which ensures that the buffers hp, st and tp got modified between
the memory states m0 and m1. The as seq function takes as input a memory state m

and a buffer and creates the functional seq equivalent of the buffer in m. We need
to reason about the stack contents upto stack top only. Therefore, we take a slice or
portion of the stack from the start of the stack upto the stack top. This is captured in
(slice seq st0 0 (index (seq tp0) 0). The final clause ensures that the functional equivalent
of buffer hp in the final memory state is equivalent to running a functional mark with
the functional equivalent of hp in the initial memory m0 and the slice of the functional
equivalent of st upto tp in m0. This clause ensures the output equivalence of functional
mark and imperative mark. This way the Low* specification ensures the memory safety
of the GC implementation as well as the functional equivalence with the functional
implementation. The inv and body functions are used to specify the loop invariants and
the body of the loop respectively.

But there is one more hurdle, because of the size limitations of concrete buffers.
The allocated stack has a fixed-size. Therefore, there is a probability that the stack
might overflow during mark. Low* rightfully captures this caveat and fails to typecheck
if no conditions are provided that prevents stack overflow. Hence, to work around this,
we set the stack size equals to the heap size and prove a lemma that states that when
there is a non-grey object in the heap, the stack top is less than the heap size. The
maximum size required to store all the objects in the heap is heap size in the worst case.
Since the stack preserves the stack invariant, existence of one non-grey object means the
stack top is less than the heap size, and thus less than the stack size. Thus, there is
room in the stack to store this non-grey object, which will be converted to grey once it
enters the stack.

Now, let us see, how we can establish the functional equivalence between the
functional GC, where all algebraic GC properties and the equivalence with a dfs traversal
is proved, and the imperative GC. In Low*, we need to prove the program equivalence
between the F* and Low* GC intrinsically, that is along with the implementation of

1Some details have been elided. The complete specification can be found in the supplemental material.
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let mark_imp hp st tp

:Stack unit

(requires λ m → ...)

(ensures λ m0 _ m1 → ...) =

let inv m = ...(*loop invariants*)

let guard (t: bool) m = inv m ∧
(t = true =⇒ B.get m tp 0) > 0) ∧
(t = false =⇒ B.get m tp 0) = 0) in

let test ()

:Stack bool

(requires λ m → inv m)

(ensures λ _ ret m1 → guard ret m1)

= (!*tp) >^ 0UL in

let body ()

: Stack unit

(requires λ m → guard true m))

(ensures λ _ _ m1 → inv m1)

= mark_heap_body_imp hp st tp in

C.Loops.while #(inv) #(guard) test body

Fig. 25: A Low* implementation of mark

requires λ m →
let loc_hp = loc_buffer hp in

let loc_st = loc_buffer st in

let loc_tp = loc_buffer tp in

live m hp ∧ live m st ∧ live m tp ∧
disjoint (loc_hp) (loc_st) ∧ disjoint (loc_st) (loc_tp) ∧
disjoint (loc_hp) (loc_tp)

ensures λ m0 _ m1 →
let union = loc_union (loc_buffer hp)

(loc_union (loc_buffer st) (loc_buffer tp))

in

let seq_st0 = as_seq m0 st in

let seq_hp0 = as_seq m0 hp in

let seq_tp0 = as_seq m0 tp in

let seq_hp1 = as_seq m1 hp in

let slice_st0 = slice seq_st0 0 (index (seq_tp0) 0) in

live m1 hp ∧ live m1 st ∧ live m1 tp ∧
(* Same disjoint clause as above *) ∧
(modifies union m0 m1) ∧
seq_hp1 = mark seq_hp0 slice_st0

Fig. 26: Pre- and post-conditions of the Low* mark implementation in Figure 25
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val mark_sweep_gc_imp hp st tp rlist rlist_len sw fp

:Stack unit

(* Similar conditions for mark...omitted *)

(requires λ m → ...)

(ensures λ m0 _ m1 →
let seq_st0 = as_seq m0 st in

let seq_hp0 = as_seq m0 hp in

let seq_r_list = as_seq m0 r_list in

let seq_tp0 = as_seq m0 tp in

let seq_rlist_len0 = as_seq m0 rlist_len in

let seq_hp1 = as_seq m1 hp in

let slice_rlist0 = slice seq_r_list0 0 (index (seq_rlist_len0) 0) in

let slice_st0 = slice seq_st0 0 (index (seq_tp0) 0) in

seq_hp1 = mark_sweep_gc seq_hp0 slice_st0 slice_rlist0 sw fp)

Fig. 27: Pre- and post-conditions of the Low* mark sweep gc implementation

the function. The specification is shown in Figure 27. As explained earlier, hp, st, tp

are buffers representing the heap, stack and the stack pointer respectively. Similarly,
rlist, rlist len, sw and fp are all buffers that carries roots, the last location of rlist up to
which the roots are stored, the sweep pointer and the free-list pointer respectively.
This specification establishes the functional correctness of the GC implementation with
that of the algebraic properties of the functional GC implementation. Note that, the
functional GC implementation acts as the middle layer of specifications, which aids in
the final verification of abstract GC correctness defined in Definition 5.

How to prove the functional equivalence between the imperative and the functional
GC? Here, we need to prove the output equivalence of each of the sub-functions that
make up the imperative GC with their functional counter parts. For functions without
loops such as darken body and colorHeader, the equivalence proof is straightforward, as
the operations in these functions are almost identical in both functional and imperative
world, with the only difference being that of the underlying data structure (sequences
as opposed to buffers). Functions with loops require a suitable inductive loop invariant.
However, since the functional mark and sweep implementation was designed to have
only tail-recursive functions, which correspond to a tight while-loop, the loop invariants
establishing equivalence are quite straightforward. They essentially capture equivalence
between an iteration of the loop in the imperative implementation and an invocation
of the tail-recursive method in the functional implementation.

6.4 End-to-end GC correctness

Our end-to-end correctness condition is captured in Figure 28. The end-to-end
correctness theorem is written using Layer 2 primitives. The specification takes in as
arguments a well-formed heap h init, a root set roots, a mark stack st that contains all
the roots with the refinement that all the roots are grey, and a free-list pointer fp. We
elide additional pre-conditions in the requires clause that relate the arguments to the
heap.
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val end_to_end_correctenss_theorem

(* Initial heap *)

(h_init:heap{well_formed_heap h_init})

(* mark stack - contains grey objects *)

(st: seq Usize.t {pre_conditions_on_stack h_init st })

(* root set *)

(roots : seq Usize.t{pre_conditions_on_root_set h_init roots})

(* free list pointer *)

(fp:hp_addr{pre_conditions_on_free_list h_init fp})

: Lemma

( requires

(* Pre-conditions elided for brevity. Important ones are:

+ The mark stack [st] contains all the [roots].

+ All the grey objects in the heap are in the mark stack [st].

*) )

( ensures

(* heap after mark *)

let h_mark = mark h_init st in

(* heap after sweep *)

let h_sweep = fst (sweep h_mark mword fp) in

(* graph at init *)

let g_init = graph_from_heap h_init in

(* graph after sweep *)

let g_sweep = graph_from_heap h_sweep in

(* GC preserves well-formedness of the heap *)

(* 1 *) well_formed_heap h_sweep ∧

(* GC preserves reachable object set *)

(* 2 *) ((∀ x. x ∈ g_sweep.vertices ⇐⇒
(∃ o. mem o roots ∧ reach g_init o x))) ∧

(* GC preserves pointers between objects *)

(* 3 *) ((∀ x. mem x (g_sweep.vertices) =⇒
(successors g_init x) ==

(successors g_sweep x))) ∧

(* The resultant heap objects are either white or blue only *)

(* 4 *) (∀ x. mem x (h_objs h_sweep) =⇒
color x h_sweep == white ∨
color x h_sweep == blue) ∧

(* No object field ( either pointer or immediate ) is modified *)

(* 5 *) field_reads_equal h_init h_sweep )

Fig. 28: Overall correctness theorem for the mark and sweep GC
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The ensures clause captures the post-conditions after the execution of mark and
sweep. The ensures clause is a conjunction of five properties. The first property states
that the final heap after sweep h sweep is well-formed. This corresponds to the first
property in abstract GC correctness definition (Definition 5). The second property
states that graph formed out of the final heap h sweep will only have those objects that
are reachable from the roots in the initial heap, and every reachable object in the initial
heap is present in the final graph. The third property states that the edges between
the reachable objects are preserved by the GC. The second and the third properties
together correspond to the second property in Definition 5. The fourth property states
that the resultant heap only has white and blue objects. The abstract GC correctness
does not refer to object colours as the notion of GC colour is an implementation detail
of the GC. However, it is an important implementation detail that ensures that the
GC leaves the heap in a consistent state for the next cycle. Finally, the fifth property
states that fields (both immediate and pointer) of the non-blue objects are unmodified
by the GC. This property is stronger than the third property in Definition 5, which
only says that the data fields remain the same. Since the mark and sweep GC does not
move objects, the pointer fields are also preserved.

One might wonder why the end to end correctness theorem is defined in layer 2
(F*) and not in layer 3 (Low*). As described in Section 6.3, our approach is to have the
proofs of the GC correctness in Layer 2 and prove the equivalence of the imperative GC
with the functional GC in Section 3 only focussing on the memory safety properties.

6.5 Extending the GC functionality

In all our previous discussions as mentioned in Section 4, we have used the base version
of mark function. But as we change the GC variant to deal with different types of
OCaml objects (i.e., closure and infix objects), both the object graph construction,
and the scanning of fields performed by mark needs to change in sync with each other.
The graph construction acts as the bridge between the abstract graph world and the
functional GC world and hence the graph construction should be carefully done to
connect the two worlds together.

In the case of the second version of mark (Figure 9), the edge set of an object with
No scan tag is made empty. For closure objects, the edge set is constructed by scanning
the fields that are stored from the start of the environment (See Section 2.1). During
the edge set construction of an object, if the field point to an infix object, then the
parent closure of that infix object is added as the successor, instead of the infix object.
Also the definitions of well-formedness have to capture the property that the return
sequence of h objs should never have an infix object, as the infix object pointers are
interior pointers. There are additional properties related to the closure info field of
closure objects such as the minimum number of fields for a closure object should be
at least 2 (See Section 2), which are also part of the well-formedness property. By
adapting the graph construction, and with the help of additional lemmas, we have
verified the third version of the mark function as mentioned in Section 4 (Figure 10). We
have also proved that the GC with the third variant of mark follows all the correctness
properties as described in Figure 28.
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Table 2: Verification effort. Development effort (Dev effort) is in person-months.

Modules #Lines #Defns #Lemmas Verif time Dev effort

Graph 4653 72 81 2m3s 3
DFS 657 1 9 2m5s 9
Functional GC 18401 65 218 120m 12
Imperative GC 2734 19 19 27m43s 3

7 Evaluation

In this section, we report on the verification effort of building a correct-by-construction
GC for OCaml, and evaluate the performance of the verified GC on a variety of
benchmarks.

7.1 Verification effort

The verification effort is summarized in Table 2. We calculate the effort in terms of
different metrics such as the lines of code, the number of definitions and lemmas, the
time required by F*/Low* to discharge the VCs, and the human development time.
The development time is in terms of number of person-months. We note that the
F*/Low* code/proofs were developed by a PhD student who was new to verification and
F*/Low*. We divide the verification effort across the different layers of our approach.
Since we co-develop programs and proofs, the total number of lines of code include
both the programs and proofs together.

The Graph module contains the mathematical graph and reachability definitions,
and several functions and lemmas on paths in the graph. These are needed to implement
and prove the correctness of the DFS module. Proving the reachability property of
DFS (Figure 21) was particularly tricky as we needed to discover complex inductive
invariants involving the reach predicate.

The Functional GC module incorporates multiple proofs that assert the correctness
of the functional mark and sweep implementation, alongside graph construction and
demonstrations of equivalence between the mark and dfs functions. This requires
development of inductive invariants to show equivalence between corresponding methods
of DFS and functional mark, as well as proving algebraic properties of the various bit
manipulation operations performed by the GC. Once the functional GC was developed,
implementing and verifying the imperative GC in Low* is more straightforward. The
various verification tasks associated with the imperative GC module include establishing
suitable loop invariants to prove equivalence between the functional and imperative GC,
proving various memory safety properties such as lack of aliasing, ensuring allocation
of memory before access, no use-after-free bugs, etc.

Throughout the layers, we also adopted an incremental approach in adding complex
GC features, such as closures and infix objects. Initially, we proved the GC correctness
over a basic version that does not distinguish between different types of OCaml objects.
Subsequently, we introduced modifications in both the implementations and proofs to
accommodate more complex GC variants.
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Note that our trusted code base now includes F*/Low* and the KaRaMel compiler
which translates Low* to C. It has to be noted that these tools also serve as the trusted
code bases for previous projects such as Everest [23] and Everparse [24], which focus
on verifying cryptographic implementations and parsers.

The verification through F*/Low* was challenging due to several reasons. F* uses
Z3 SMT solver. Our verification conditions (VCs) are not restricted to decidable logics.
While Z3 does best-effort reasoning, it may take a long time to prove some VCs or
the proof does not terminate. We had to tune the timeouts for individual lemmas to
get them to discharge. In addition, Z3 is also non-deterministic. The same VC may be
discharged in one run and not in another depending upon the solver state. F* provides
some support for dealing with proof instability, such as running in quake mode or using
proof−recovery mode to recover from proof failures. However, the fundamental issue of
non-determinism remains.

7.2 Integration with OCaml

Our goal in this work is to develop a practical verified GC for OCaml that can serve
as a replacement for the unverified GC. We have successfully extracted the verified C
code for the GC functionality from Low* using the KaRaMel compiler [7]. We have
integrated the extracted code into the OCaml 4.14.1 runtime system, replacing the
existing GC in the bytecode runtime.

Unlike OCaml 4.14.1 GC, our verified GC is stop-the-world and non-generational.
We use an unverified next-fit allocator written in Rust that allocates objects in the
verified heap. As mentioned before, our heap is a single, contiguous block of memory
(encoded as an F* buffer), into which the objects are allocated. The verification of the
allocator is orthogonal to the focus of the work. There is a recent work on StarMalloc [25]
which provides a verified, hardened memory allocator written in F*/Low*. We plan to
investigate integrating StarMalloc with our verified GC in the future. When the heap
is full, the verified GC is triggered. We use the existing root marking procedure in the
OCaml runtime to darken the roots and push them to the verified mark stack. This is
followed by the call to the verified mark and sweep function.

We made the following small modifications to the extracted code to facilitate
integration with the OCaml runtime. The first modification is in the sweep code, where
we have implemented coalescing of consecutive free blocks. This is done to reduce
fragmentation. The second modification is necessitated by the fact that infix objects
do not appear in the mark stack in the verified GC, whereas they do (during root
marking) in the OCaml runtime. Since the root marking is done by the OCaml runtime,
we have added a wrapper function that inserts the parent closure of an infix object
into the mark stack if an infix object appears as a GC root.

7.3 GC evaluation

We evaluate the performance of the verified GC on a variety of benchmark programs
from the Computer Language Benchmarks Game [26] as well as larger programs – cpdf
(an industrial-strength pdf processing tool) and yojson (JSON processing library) –
from the OCaml ecosystem. The larger programs have a deep dependency graph of
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Table 3: Benchmark characteristics. Alloc, Promote and maxRSS are in MB.

OCaml 4.14.1 Verified GC

Benchmark Alloc Promote # Minor # Major MaxRSS GCs MaxRSS

BinaryTrees 15206 7900 7647 87 516 42 515
CountChange 905 140 458 11 145 5 260
FannkuchRedux 0.03 0 0 0 2.68 0 3.5
Fasta 3171 0.03 1569 4 44 72 67
Quicksort 19 0.02 1 0 22 0 22
Nbodies 808 0.04 405 2 4.66 3819 3.63
Mandelbrot 3009 0.13 1508 9 4.3 34201 3.65
Spectralnorm 3052 0.06 1529 8 4.7 47 67
Knucleotide 140 17 52 6 57 2 67
Cpdf 512 200 254 11 140 1 517
Yojson 129 14 45 16 17 48 14

other packages from the OCaml ecosystem. The performance evaluation was performed
on a 2-socket, Intel® Xeon® Gold 5120 CPU x86-64 server, with 28 physical cores
(14 cores on each socket), and 2 hardware threads per core. Each core runs at 2.20GHz
and has 32 KB of L1 data cache, 32 KB of L1 instruction cache and 1MB of L2 cache.
The cores on a socket share a 19 MB L3 cache. The server has 64GB of main memory
and runs Ubuntu 20.04 LTS.

The benchmark characteristics are given in Table 3. Alloc, Promote and maxRSS
indicate the allocated memory, memory promoted from minor to major heap and the
maximum resident set size in MB. Since the running times for OCaml programs are a
function of the heap size, for a fair comparison, we have chosen the heap size of the
verified GC such that the maximum resident set sizes in both the cases are similar,
except in cases where the verified GC runs out of memory with small heap sizes. The
exceptional case occurs since the verified GC can waste space due to fragmentation.
From the table, we can see that the verified GC is able to run fairly large programs
using similar maxRSS. Some of the programs also allocate a lot of memory, triggering
many GCs.

Figure 29 shows the running time of the benchmarks run using different GCs
normalized against the default OCaml 4.14.1 GC. The comparison also includes OCaml
equipped with Boehm-Demers-Weiser (BDW) GC [27]. BDW GC is widely-known,
pragmatic GC for uncooperative environments. This means that unlike the other GCs
used in the comparison, BDW GC does not have access to precise root set information.
It operates in a conservative fashion, and may over-approximate the actual set of
accessible objects. On many programs, the verified GC performs on par with the
baseline GC and never worse than the BDW GC. On benchmarks where the verified GC
and BDW GC are slower, we can attribute the slowdown to the lack of a generational
collector. For example, on the Nbodies benchmark, the verified GC is almost 6× slower
than the baseline. We can see in Table 3 that almost none of the memory is promoted to
the major heap. Without a generational collector, the verified GC spends a lot of time
sweeping garbage, whereas a copying minor collector in the baseline only needs to copy
live objects to the major heap. The results show that the verified GC is pragmatic.
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Fig. 29: Normalized running time of different OCaml GCs. The numbers in the
parenthesis next to the benchmark names are the running time in seconds for the
baseline OCaml 4.14.1 GC.

8 Extending the verified GC

In this section, we shows how we can extend our verified GC to collectors that are
different from our stop-the-world mark-and-sweep GC. For this exercise, we pick two
collectors that are used in the current OCaml runtime system, namely (1) a copying
collector and (2) an incremental version of the mark-and-sweep collector. Our aim
in this section is not to develop a full-fledged verified versions of these collectors,
but rather show that we can model their correctness specifications by extending the
specifications and the proofs that we have used in the stop-the-world mark-and-sweep
collector. As we will show, we can extend the abstract GC correctness specification
from Section 3 to cover these collectors as well.

8.1 Incremental mark and sweep GC

An incremental mark and sweep GC, as the name suggests performs the GC work
in slices. During each slice, the GC performs a part of the mark or sweep work and
these slices are interleaved with the mutator actions, i.e., the execution of the OCaml
program. The main advantage of an incremental GC is that it can reduce the pause
times of the application. In a stop-the-world GC, the GC actions are performed in a
single shot, which means that the application is paused for the entire duration of the
GC. With an incremental GC, the program is paused only for the duration of a slice.

OCaml uses an incremental mark and sweep collector for the major heap. OCaml
uses snapshot-at-the-beginning variant [21] of the incremental GC, which ensures that
the objects that are reachable at the beginning of the cycle are reachable at the end of
the cycle as well. This is achieved by using a deletion write barrier, which, on a field
update, marks the old value at that field. As the result, the old value, if unmarked,
gets marked before it is overwritten by the new value. This ensures that the old value
and the objects transitively reachable from it are reachable at the end of the cycle. As
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a result, despite the updates to the object graph, all the objects that were reachable at
the start of the cycle remain reachable at the end of the cycle (which is the snapshot-
at-the-beginning property). Note that the write barrier is the means by which the
mutator coordinates with the collector.

How do we reason about the correctness of an incremental mark and sweep GC?
We can still reason about the overall correctness of the GC cycle similar to the abstract
GC correctness (Definition 5) from Section 3. However, we need the mutator to provide
us a summary of the changes that it has made to the heap during the GC cycle. Let
new allocs be the set of objects that are allocated by the mutator during a GC cycle.
Whenever the mutator allocates a new object, the object id is added to the new allocs

set. Let added edges and deleted edges be the set of edges that are added and deleted by
the mutator during the GC cycle. Assume that new allocs, added edges and deleted edges

are empty at the start of the cycle. The added edges and deleted edges are computed in
the write barrier. The write barrier is a function that gets called before a write x := y

is performed. The sets added edges and deleted edges are computed in the write barrier
as follows:

(∗ called before [x := y] ∗)
let write barrier (x,y) = (∗ assuming that [y] is a heap object ∗)

let old = !x in (∗ assuming that [old] is a heap object ∗)
added edges := (added edges \ {(x,old)}) ∪ {(x,y)};
deleted edges := (deleted edges ∪ {(x,old)}) \ {(x,y)};
(∗ ...other write barrier actions... ∗)

Note that the above write barrier ensures that added edges ∩ deleted edges = ∅. An
edge that is added and then deleted will only appear in deleted edges set. Similarly, an
edge that is deleted and then added will only appear in added edges set.

With this information, we can define the correctness of an incremental mark and
sweep GC. Let h0 be the initial state of the heap on which the GC operates, such that
ω(h0) holds, and let r be the set of roots, which are pointers to objects into h0. Let
G(h0).V be the vertex-set and G(h0).E be the edge-set of G(h0). Let h1 be the heap after
a full cycle of the incremental mark and sweep GC. Let G(h1).V be the vertex-set and
G(h1).E be the edge-set of G(h1). Let RG(h0,r) be the reachable sub-graph residing in
G(h0).

Definition 6 (GC Correctness). An incremental mark and sweep GC is said to be
correct if the following conditions hold:

1. ω(h1)

2. (a) G(h1).V = RG(h0,r).V ∪ new allocs

(b) G(h1).E = (RG(h0,r).E ∪ added edges) \ deleted edges

3. (∀ x. x ∈ G(h1.V) =⇒ data(x,h0) = data(x,h1))

Observe that the correctness specification of the incremental mark and sweep GC
is the same as Definition 5, except for the change summary from the mutator.
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In addition to the correctness specification, we also observe that the incremental
mark and sweep GC can use the correctness proofs of the stop-the-world mark and
sweep GC. The intuition is that each slice of the incremental mark and sweep GC
is a sequence of atomic mark and sweep steps. The atomic mark and sweep steps
are exactly the definitions in mark body (in Figure 10) and sweep body (in Figure 11),
respectively. Given that the new allocs, added edges and deleted edges are not modified
during a GC slice, we conjecture that the proofs of mark body and sweep body can be
reused for the incremental mark and sweep GC without any significant change. As a
result, we anticipate that the incremental mark and sweep GC will reuse significant
parts of the proofs of the stop-the-world mark and sweep GC.

8.2 Copying collector

In the context of a copying collector, the heap is divided into two disjoint spaces, namely
from space and to space. The goal of the copying collector is to copy all the reachable
and only the reachable objects from the from space to the to space. Earlier works [22]
have proved the correctness of a standalone copying collector (albeit with a different
object layout than OCaml), and we simply adapt their correctness specifications in
our framework.

Let h0 be the state of from space of the heap on which the collector operates, such
that ω(h0) holds, and let r be the set of roots, which are pointers to objects into h0.
Let G(h0).V be the vertex-set and G(h0).E be the edge-set of G(h0). Let h1 be the state
of the to space of the heap after the GC terminates and let G(h1).V be the vertex-set
and G(h1).E be the edge-set of G(h1). Note that in a copying collector, the to space is
empty at the beginning of the GC.

Let RG(h0,r) be the reachable sub-graph residing in G(h0). Let f be a one-to-one
mapping function which maps objects in the from space to objects in the to space. For
a set s, we define fS(s) as the set obtained by applying f to every element in s. For a
graph g, we define fG(g) as the graph obtained by applying f to every object in vertex
set g.V and to the components of the pair in the edge set g.E.

Definition 7 (Correctness of copying collector). The copying collector is said to
be correct if the following conditions hold:

1. ω(h1)

2. G(h1) = fG(RG(h0,r)), where G(h1).V = fS(RG(h0).V) and
(∀x1, y1. x1 ∈ G(h1).V ∧ y1 ∈ G(h1).V ∧ (x1, y1) ∈ G(h1).E) ⇐⇒
(∃x0, y0. x0 ∈ G(h0).V ∧ y0 ∈ G(h0).V ∧ x1 = f(x0) ∧ y1 = f(y0) ∧
(x0, y0) ∈ G(h0).E)

3. (∀x1. x1 ∈ G(h1).V ⇐⇒
(∃x0. x0 ∈ G(h0).V ∧ x1 = f(x0) ∧ data(x0,h0) = data(x1,h1)))

Notice that this definition is almost identical to the correctness specification of the
mark-and-sweep GC defined in Section 3. In particular, it uses the object reachability
predicate to define the reachable subgraph RG in the from space heap, which needs to
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be preserved by the heap in the to space, along with well-formedness of the to space

heap and preserving the data values.
In the context of OCaml 4 runtime system, the copying collector is used for collecting

the minor heap. The from space will be the minor heap, while the to space would be the
major heap. Since we already have a verified major collector, a verified copying collector
for the minor heap can be incorporated fairly independently. The only subtlety is that
for the minor collection, the pointers from the major heap to the minor heap must
be included in the root set of the minor collection. This is ensured by the mutator,
which maintains a remembered set of pointers from the major heap to the minor heap.
Crucially, this is an expectation on the mutator and not the collector. However, unlike
the incremental mark-and-sweep GC, where significant parts of the layer 2 proofs may
be reused, we anticipate that the copying collector will require significant re-engineering
in layer 2 as the copying collector algorithm is quite different from a mark and sweep
GC.

9 Related Work

Previous works on verifying garbage collectors (GC) have either used pen-and-paper
proofs or mechanization using theorem provers. Mechanized verification has an advan-
tage over pen and paper proofs, so our discussion mainly focuses on mechanically
verified GCs. Hawblitzel et al. [9] verified a mark and sweep collector, similar to ours,
and a copying collector implemented in x86 assembly. They extensively annotated
code with specifications, using Boogie and Z3 to discharge proof obligations. Their
verification does not define GC correctness based on object reachability. Instead, the
verification relies on object color invariants of the GC implementation specifically tied
to the Bartok compiler. In contrast, our GC correctness specifications, based on explicit
reachability at an abstract graph theoretic level, are suitable to specify the correctness
of diverse GCs. As we discussed in Section 8, our specification can be extended and can
be used to describe the correctness of a copying collector, which does not use object
colors. We believe that our abstract graph-theoretic specification will let us evolve the
GC without having to wholesale rewrite the correctness specifications for each revision
of the GC.

Gammie et al.[3] verified a concurrent mark-and-sweep collector model in
Isabelle/HOL, but over an abstract model rather than the actual code. Our work
verifies the GC at both abstract and concrete implementation levels, with the C code
extract after the verification integrated with the OCaml run-time. Zakowski et al.[4]
used Coq to verify a concurrent mark-and-sweep collector expressed in a compiler
intermediate representation, without generating executable code. Xu et al. [28] propose
a model checking framework for gaining confidence in collector correctness but do not
present a concrete framework. McCreight et al.[29] provide a framework for verifying
GC and mutators, where they have proved the correctness of both mark and sweep and
copying collectors written in a RISC-like assembly language. The advantage of our work
is that we can extract portable C code from our verified GC, and can support all the
platforms that OCaml supports including x86, ARM, Power, RISC-V and IBM s390x.
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Another notable prior work is the verification of a generational copying collector for
CakeML [10], which employs HOL4. Similar to our work, they also employ a layered
approach from abstract algorithmic levels down to assembly closely integrated with
CakeML’s compiler. Wang et al. [30] develop a mathematical and spatial graph library
in Coq, verifying a generational copying collector as part of their framework. They
verify the correctness of their copying garbage collector by proving the abstract graph
isomorphism established by the copying function. Their basic object representation is
similar to ours, where an object consists of a header followed by a variable number of
fields. Their 400-line implementation was sufficient to certify a garbage collector for
the CertiCoq project. Compared to their object layout support, we need to support
additional complexities associated with the OCaml language including no-scan, closure
and infix object types.

Lin et al. [31] present the verification of a Yuasa incremental garbage collector in a
Hoare-style PCC framework, the Stack-based Certified Assembly Programming (SCAP)
system [32] with embedded separation-logic [33] primitives. Their verification in Coq
ensures that the collector always preserves the heap objects reachable by the mutator.
Some of the specification constructs follow their previous work [34] on verifying a stop-
the-world mark-sweep collector. However, their collectors assume that every object
has exactly two fields. Our support for different types of OCaml objects with variable-
length fields poses additional verification challenge. The extraction to portable C code
is a unique feature of our work, not available in any of the prior works.

As part of our development, we have verified the correctness of a DFS algorithm on
graphs. Verification of graph algorithms is a well-studied area [12–18]. Several works
also verify complex specifications for graph algorithms. Lammich et al.[35] provide a
framework for verifying depth-first search algorithms in Isabelle. Gueneau et al.[36]
use a program logic to verify both correctness and complexity of an incremental cycle
detection algorithm. Chen et al.[37] verify Tarjan’s strongly connected components
algorithm using different verification frameworks, encountering challenges with reason-
ing about reachability over arbitrary-length paths. We believe that the prior work on
graph algorithms will pave way for reasoning about the correctness of complex GC
algorithms. Our approach of separating out graph-theoretic correctness from the GC
implementation will be suitable to integrate such complex graph algorithms into GC
verification.

10 Limitations, Conclusion and Future Work

In this work, we have successfully developed a correct-by-construction GC for OCaml in
a proof-oriented manner using F*/Low* proof-oriented programming language. We have
extracted C code from the Low* program and have integrated the verified GC with the
OCaml. The OCaml compiler with the verified GC is able to run standard benchmark
programs as well as larger programs from the OCaml ecosystem. The experimental
results demonstrate that our verified GC is pragmatic. We believe that our layered
verification strategy should enable us to get close to the generational, incremental
mark-and-sweep GC used by OCaml. We have described how our specifications can be
extended to cover the correctness of these algorithms.
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In our current work, we have the limitation that the size of the mark stack should
be equal to the size of the heap (Section 6.3). This is necessary to prove the absence
of mark stack overflow. In the literature, there are a number of techniques to handle
mark stack overflow. For example, one approach on mark stack overflow is to continue
marking but not push the objects into the stack. After the mark stack is empty, we
linearly scan the heap to identify those objects which are marked but have at least one
unmarked child, and mark them. Proving the correctness of this approach is non-trivial,
and we would like to explore this approach in the future.

Another limitation of our work is that we do not short-circuit evaluated lazy values.
OCaml has support for lazy evaluation through lazy values. A lazy value is represented
by an object with the lazy tag, with one field that holds a reference to the closure that
represents the lazy computation. When the lazy computation is forced, the tag of the
object is updated to forward tag, and the result written to the first field. The observation
is that the GC can short-circuit the reference to the result, avoiding the intermediate
forward tag object. Short-circuiting lazy values is an optimization and does not affect
the correctness of the GC. We would like to explore this optimization in the future.

One of the challenges that we encountered with Low* is the need for explicit anti-
aliasing proofs. The proofs are not difficult to write, but they are tedious. F* has
support for concurrent separation logic through Steel [38] and its successor Pulse [39],
which we believe can not only simplify the proofs, but also allow us to reason about
the correctness of concurrent GCs.
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Collector for CakeML. Journal of Automated Reasoning 63(2), 463–488 (2019)

[11] Mccreight, A.E.: The mechanized verification of garbage collector implementations.
Yale University (2008)

[12] Russinoff, D.M.: A mechanically verified incremental garbage collector. Formal
Aspects of Computing 6(4), 359–390 (1994)

[13] Gonthier, G.: Verifying the safety of a practical concurrent garbage collector.
In: Computer Aided Verification: 8th International Conference, CAV’96 New
Brunswick, NJ, USA, July 31–August 3, 1996 Proceedings 8, pp. 462–465 (1996).
Springer Berlin Heidelberg

[14] Havelund, K.: Mechanical verification of a garbage collector. In: Parallel and
Distributed Processing: 11th IPPS/SPDP’99 Workshops Held in Conjunction with
the 13th International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing San Juan, Puerto Rico, USA, April 12–16,
1999 Proceedings 13, pp. 1258–1283 (1999). Springer

[15] Jackson, P.B.: Verifying a garbage collection algorithm. In: Theorem Proving
in Higher Order Logics: 11th International Conference, TPHOLs’ 98 Canberra,
Australia September 27–October 1, 1998 Proceedings 11, pp. 225–244 (1998).
Springer

[16] Goguen, H., Brooksby, R., Burstall, R.: An abstract formulation of memory
management. December (1998)

[17] Burdy, L.: B vs. coq to prove a garbage collector. In: the 14th International

46



2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

Conference on Theorem Proving in Higher Order Logics: Supplemental Proceedings
(2001)

[18] Coupet-Grimal, S., Nouvet, C.: Formal verification of an incremental garbage
collector. Journal of Logic and Computation 13(6), 815–833 (2003)

[19] Sivaramakrishnan, K., Dolan, S., White, L., Jaffer, S., Kelly, T., Sahoo, A.,
Parimala, S., Dhiman, A., Madhavapeddy, A.: Retrofitting parallelism onto ocaml.
Proceedings of the ACM on Programming Languages 4(ICFP), 1–30 (2020)

[20] Madhavapeddy, A., Minsky, Y.: Real World OCaml: Functional Programming for
the Masses. Cambridge University Press, Cambridge (2022)

[21] Yuasa, T.: Real-time garbage collection on general-purpose machines. Journal of
Systems and Software 11(3), 181–198 (1990)

[22] Myreen, M.O.: Reusable verification of a copying collector. In: International
Conference on Verified Software: Theories, Tools, and Experiments, pp. 142–156
(2010). Springer

[23] Bhargavan, K., Bond, B., Delignat-Lavaud, A., Fournet, C., Hawblitzel, C., Hritcu,
C., Ishtiaq, S., Kohlweiss, M., Leino, R., Lorch, J., et al.: Everest: Towards a
verified, drop-in replacement of https. In: 2nd Summit on Advances in Program-
ming Languages (SNAPL 2017) (2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik

[24] Ramananandro, T., Delignat-Lavaud, A., Fournet, C., Swamy, N., Chajed, T.,
Kobeissi, N., Protzenko, J.: {EverParse}: Verified secure {Zero-Copy} parsers for
authenticated message formats. In: 28th USENIX Security Symposium (USENIX
Security 19), pp. 1465–1482 (2019)

[25] Reitz, A., Fromherz, A., Protzenko, J.: Starmalloc: Verifying a modern, hardened
memory allocator. Proc. ACM Program. Lang. 8(OOPSLA2) (2024) https://doi.
org/10.1145/3689773

[26] Gouy, I.: The Computer Language Benchmarks Game. https://
benchmarksgame-team.pages.debian.net/benchmarksgame/

[27] Boehm, H.-J., Weiser, M.: Garbage collection in an uncooperative environment.
Software: Practice and Experience 18(9), 807–820 (1988)

[28] Xu, B., Moss, E., Blackburn, S.M.: Towards a model checking framework for a
new collector framework. In: Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes, pp. 128–139 (2022)

[29] McCreight, A., Shao, Z., Lin, C., Li, L.: A general framework for certifying
garbage collectors and their mutators. In: Proceedings of the 28th ACM SIGPLAN

47

https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/


2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Conference on Programming Language Design and Implementation, pp. 468–479
(2007)

[30] Wang, S., Cao, Q., Mohan, A., Hobor, A.: Certifying Graph-Manipulating C
Programs via Localizations within Data Structures. Proc. ACM Program. Lang.
3(OOPSLA) (2019) https://doi.org/10.1145/3360597

[31] Lin, C., Chen, Y., Hua, B.: Verification of an incremental garbage collector in
hoare-style logic. Int. J. Softw. Informatics 3(1), 67–88 (2009)

[32] Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of
assembly code with stack-based control abstractions. ACM SIGPLAN Notices
41(6), 401–414 (2006)

[33] Logic, S.: A logic for shared mutable data structures. John C. Reynolds. LICS
(2002)

[34] Lin, C.-X., Chen, Y.-Y., Li, L., Hua, B.: Garbage collector verification for proof-
carrying code. Journal of Computer Science and Technology 22(3), 426–437
(2007)

[35] Lammich, P., Neumann, R.: A framework for verifying depth-first search algorithms.
In: Proceedings of the 2015 Conference on Certified Programs and Proofs, pp.
137–146 (2015)
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