
Automated Robustness Verification of Concurrent Data
Structure Libraries against Relaxed Memory Models
Extended Version

KARTIK NAGAR, IIT Madras, India
ANMOL SAHOO, Purdue University, USA
ROMIT ROY CHOWDHURY, Chennai Mathematical Institute, India
SURESH JAGANNATHAN, Purdue University, USA

Clients reason about the behavior of concurrent data structure libraries such as sets, queues, or stacks using
specifications that capture well-understood correctness conditions, such as linearizability. The implementation
of these libraries, however, focused as they are on performance, may additionally exploit relaxed memory
behavior allowed by the language or underlying hardware that weaken the strong ordering and visibility
constraints on shared-memory accesses that would otherwise be imposed by a sequentially consistent (SC)
memory model. As an alternative to developing new specification and verification mechanisms for reasoning
about libraries under relaxed memory model, we instead consider the orthogonal problem of library robustness,
a property that holds when all possible behaviors of a library implementation under relaxed memory model
are also possible under SC. In this paper, we develop a new automated technique for verifying robustness
of library implementations in the context of a C11-style memory model. This task is challenging because a
most-general client may invoke an unbounded number of concurrently executing library operations that can
manipulate an unbounded number of shared locations. We establish a novel inductive technique for verifying
library robustness that leverages prior work on the robustness problem for the C11 memory model based on
the search for a non-robustness witness under SC executions. We crucially rely on the fact that this search is
carried out over SC executions, and use high-level SC specifications (including linearizability) of the library to
verify the absence of a non-robustness witness. Our technique is compositional - we show how we can safely
preserve robustness of multiple interacting library implementations and clients using additional SC fences
to guarantee robustness of entire executions. Experimental results on a number of complex realistic library
implementations demonstrate the feasibility of our approach.

Additional Key Words and Phrases: Relaxed Memory Models, Concurrent Library implementations, Robustness

1 Introduction
Unlike a sequentially consistent (SC) [41] memory model where concurrently executing threads all
witness the same view of memory, relaxed memory models such as those found in C11 [7, 8, 15] allow
each thread to have its own logical view of memory, resulting in behaviors like store buffering that
are not expressible under SC [37]. A program written to take advantage of the performance benefits
afforded by executing under a relaxed memory model 𝑀 , but whose behaviors can nonetheless be
fully explained in terms of SC (interleaved) executions, is said to be robust against 𝑀 . Intuitively, a
robust program is one in which every relaxed memory execution is also an SC one.

In this paper, we consider the problem of automatically verifying the robustness of library
implementations against RC20 [43], a useful variant of the C11 memory model. C11 allows the
expression of high-performance concurrent C/C++ code through the use of annotations affixed to
memory accesses. Release (rel) and acquire (acq) annotations enable a form of message-passing
between “release” writes and “acquire” reads [38], yielding a causally-consistent ordering between

Authors’ Contact Information: Kartik Nagar, IIT Madras, Chennai, India, nagark@cse.iitm.ac.in; Anmol Sahoo, Purdue
University, West Lafayette, USA, sahoo9@purdue.edu; Romit Roy Chowdhury, Chennai Mathematical Institute, Chennai,
India, romit@cmi.ac.in; Suresh Jagannathan, Purdue University, West Lafayette, USA, suresh@cs.purdue.edu.

2024. ACM 2475-1421/2024/10-ART362
https://doi.org/10.1145/3689802

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-0679-226X
HTTPS://ORCID.ORG/0009-0001-2490-6478
HTTPS://ORCID.ORG/0009-0004-4097-8115
HTTPS://ORCID.ORG/0000-0001-6871-2424
https://orcid.org/0000-0002-0679-226X
https://orcid.org/0009-0001-2490-6478
https://orcid.org/0009-0004-4097-8115
https://orcid.org/0000-0001-6871-2424
https://doi.org/10.1145/3689802

362:2 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

the operations that precede the “release” and those that follow the “acquire”; and, relaxed (rlx)
annotations are used to compile accesses to single hardware loads and stores with no additional
synchronization, other than basic store coherence guarantees [33] provided by the hardware. RC20
provides an improved semantics for atomic accesses [40], prevents undesirable executions involving
out-of-thin-air reads, and simplifies the semantics of synchronization for release-acquire pairs.

Robustness under the RC20 memory model is a well-studied problem [38, 43] for which algorithms
to check robustness of finite-state programs operating over a bounded number of threads have
been developed. By showing a program to be robust, one can then reason about its correctness w.r.t.
a high-level specification under the SC memory model, which is a significantly simpler problem.
Consequently, any correctness guarantees proven under SC also continue to hold under RC20.
Thus, proving library robustness can also enable a similar pathway to reasoning about correctness
of programs using library implementations under RC20. Prior efforts addressing the correctness of
library implementations under relaxed memory models have mostly focused on developing newer
forms of specification [18, 44, 49, 52] that allows reasonable non-SC behaviors and also exposes the
internals of the underlying memory model. While these specifications can admit highly efficient
library implementations, proving their correctness requires significant manual effort because of the
need to closely correlate abstract state-based specifications with the event-based relaxed memory
model semantics. Furthermore, using these relaxed specifications to prove correctness of client
programs using the library implementation is also highly non-trivial. On the other hand, by proving
a library implementation to be robust in the context of the most general client, we can extend this
robustness guarantee to any client program using the library, thus allowing one to reason about its
correctness under SC, which is a well-studied problem.

Following the classical modular verification paradigm, we would like to separately verify the
robustness of library implementations and their clients and then compose these guarantees together
to establish robustness of the overall execution. We consider the following strategy: first verify
a library implementation to be robust in the presence of a most general client, which can call the
library methods an arbitrary number of times across an arbitrary number of threads, and then
use this robustness guarantee to prove the robustness of any client program potentially calling
multiple libraries. Clearly, if a library is not robust on its own, any client program using the library
(and which does not restrict the concurrent behaviors of the library) would also be non-robust.

<latexit sha1_base64="dkMa/fgNRVZWkuQlRDr05OAUCi0=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMJuELUM2GgX0TwgCWF2cpMMmX0wc1cMS2z8FRsLRWz9Czv/xtlkC008MHA451zu3ONFUmh0nG8rt7S8srqWXy9sbG5t79i7e3UdxopDjYcyVE2PaZAigBoKlNCMFDDfk9DwRpep37gHpUUY3OE4go7PBoHoC87QSF37oI3wgIjJLeg0RCe0jSzulrt20Sk5U9BF4makSDJUu/ZXuxfy2IcAuWRat1wnwk7CFAouYVJoxxoixkdsAC1DA+aD7iTTCyb02Cg92g+VeQHSqfp7ImG+1mPfM0mf4VDPe6n4n9eKsX/RSUQQxQgBny3qx5JiSNM6aE8o4CjHhjCuhPkr5UOmGEdTWsGU4M6fvEjq5ZJ7VnJvTouV66yOPDkkR+SEuOScVMgVqZIa4eSRPJNX8mY9WS/Wu/Uxi+asbGaf/IH1+QOhwZcE</latexit>

Session ⌧2Session ⌧1<latexit sha1_base64="EzPSNnjMWmjnFxAOho1SpNrrEV4=">AAACAHicbVC7SgNBFJ31GeMramFhMxgEq7AbBS0DNtpFNA9IlmV2cjcZMvtg5q4YljT+io2FIrZ+hp1/42ySQhMPDBzOOZc79/iJFBpt+9taWl5ZXVsvbBQ3t7Z3dkt7+00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9Dyh1e533oApUUc3eMoATdk/UgEgjM0klc67CI8ImJ2BzoP0XEXWeo5XqlsV+wJ6CJxZqRMZqh7pa9uL+ZpCBFyybTuOHaCbsYUCi5hXOymGhLGh6wPHUMjFoJ2s8kBY3pilB4NYmVehHSi/p7IWKj1KPRNMmQ40PNeLv7ndVIMLt1MREmKEPHpoiCVFGOat0F7QgFHOTKEcSXMXykfMMU4ms6KpgRn/uRF0qxWnLNK9fa8XLuZ1VEgR+SYnBKHXJAauSZ10iCcjMkzeSVv1pP1Yr1bH9PokjWbOSB/YH3+AEIfltc=</latexit>

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Anon.

Finally, we note that the notion of induced subgraph robustness is closely related to the previously
proposed notion of observational robustness [38], which also allows benign non-robust events
without any outgoing dependencies. The major di�erence is that we explicitly maintain the induced
subgraph property, and the fact that invocation events retain the same behavior. Further, in heap
manipulating programs, it often happens that the location to be read by a subsequent read operation
depends on the value read from a previous read (as in the get implementation in the register library).
In such a scenario, observational robustness would then enforce robustness of the earlier read
(because there is an outgoing dependency), but in our case, induced subgraph robustness may allow
both reads to be non-robust if there is no outgoing dependency to the return value/global state.

6 COMPOSITIONALITY
The motivation to discuss library robustness and induced subgraph robustness is to be able to argue
for robustness as a whole, for an arbitrarily chosen client program which can make shared memory
accesses of its own, and which is also potentially interacting with multiple libraries. As per the
classical modular veri�cation paradigm, we would like to reason about the robustness of each library
and client separately, and then compose these robustness guarantees to infer robustness of the
overall execution. The treatment in the paper so far has shown how to reason about each individual
library’s robustness, while earlier work on the RC20 robustness problem can be used to show
robustness of the client program. In this section, we show how to combine the individual robustness
guarantees into whole program robustness, albeit by introducing some extra synchronization.

First, we present a negative example where we show that individually robust libraries can
interact with each other in such a way that the overall execution can easily become non-robust.
It is well known that under the RC20 memory model, atomic accesses to a single location follow
SC-per-location semantics, and thus even relaxed reads and writes to a single memory location,
in isolation, will give rise to robust execution graphs. Thus we consider a library L1 accessing
a speci�ed memory location, say ✓1, made up of two methods: set1(G) , store(✓1, G, rel) and
get1() , G = load(✓1, acq); return G . Similarly, we de�ne library L2 accessing ✓2 with methods
set2(G) = store(✓2, G, rel) and get2() , G = load(✓2, acq); return G . Each library is clearly robust
(both execution graph and induced subgraph robust), but we can have a standard store-bu�ering
execution formed out of interaction with both libraries: session g1 has a set1(1) followed by a
get2 which returns 0, while session 2 has a set2(1) followed by get1() which also returns 0. This
execution is possible under RC20, but not under SC, because in any interleaving, at least one of the
store operations will occur before a load of the same location.

For such executions comprising of calls to multiple libraries, individual library robustness is
clearly a necessary condition for overall robustness, but is not su�cient. The issue is that robustness
of a library itself does not provide enough synchronization guarantees that would be required to
establish whole execution robustness. To compensate for this, we consider adding an SC-fence
when crossing libraries within every thread. In the store bu�ering example above, suppose we
place an SC fence between the two invocations in each thread. The total ordering among the fences
along with the enforced hb relation between them prevents both the loads from ignoring store
under RC20, thus prohibiting the store bu�ering anomaly. On the other hand, if even one of the
SC-fence is removed, store bu�ering is still possible. This example clearly demonstrates that we
need SC-fences when crossing libraries within every thread, but the question is whether this is
su�cient in general for any execution involving any library implementation? We answer this in
the positive, and formally prove that for executions composed of calls to multiple robust libraries, if
there is an SC-fence within each thread when crossing di�erent libraries, then the overall execution
is guaranteed to be robust.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not a�ect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each
individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation. [KN: Some more insight about the proof here]

So far, we have talked about generating executions involving invocations to multiple libraries,
but this formalism still does not allow a client to also perform atomic RC20 accesses. Indeed, it is
possible to view the client program as a library itself, with every program segment in every thread
between two library calls encapsulated as a separate method in this arti�cially generated client
library. Then,Theorems 6.1 and 6.2 allows us to decompose the overall robustness problem into
proving robustness for the actual libraries and the client library. In particular, as a special case, we
can consider a client program which does not access any shared variable (i.e. leaves all the shared
memory operations to the libraries), or a client program which only accesses shared memory inside
locks. Such client programs will be robust according to our de�nition (i.e. the arti�cially generated
client library will be robust), and hence composing them with robust libraries guarantee overall
robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robustness execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can maybe place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we can
consider a library which has two methods corresponding to the two sessions involved in the store
bu�ering anomaly, i.e. each method has two memory events, a store followed by load to di�erent
location, with opposite order of locations in the two methods. Then, in an execution where each of
the methods is called in a separate thread, even with the presence of SC fences before and after the
invocations, store bu�ering is still possible.

Having said that, we note that our placement of SC fences to guarantee overall robustness is
not necessarily optimal, as it disregards any possible synchronization that may be carried out
by the library methods themselves. We are also not considering the structure of client programs
which may restrict the usage of libraries to patterns disallowing non-robust behavior. A more
�ned-grained analysis of both the synchronization performed by the library and the client usage
would be required to perform optimal fence placement which can guarantee overall robustness.
Guarantees beyond library robustness would be required, for example, the presence of hb relation
between certain invocations of the library. It would be possible to retro�t our robustness veri�cation
scheme for proving such stronger synchronization guarantees; we leave this as part of future work.

set1(G) , store(✓1, G, rel)
get1() , return load(✓1, acq)

set2(G) , store(✓2, G, rel)
get2() , return load(✓2, acq)

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not a�ect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each
individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation. [KN: Some more insight about the proof here]

So far, we have talked about generating executions involving invocations to multiple libraries,
but this formalism still does not allow a client to also perform atomic RC20 accesses. Indeed, it is
possible to view the client program as a library itself, with every program segment in every thread
between two library calls encapsulated as a separate method in this arti�cially generated client
library. Then,Theorems 6.1 and 6.2 allows us to decompose the overall robustness problem into
proving robustness for the actual libraries and the client library. In particular, as a special case, we
can consider a client program which does not access any shared variable (i.e. leaves all the shared
memory operations to the libraries), or a client program which only accesses shared memory inside
locks. Such client programs will be robust according to our de�nition (i.e. the arti�cially generated
client library will be robust), and hence composing them with robust libraries guarantee overall
robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robustness execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can maybe place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we can
consider a library which has two methods corresponding to the two sessions involved in the store
bu�ering anomaly, i.e. each method has two memory events, a store followed by load to di�erent
location, with opposite order of locations in the two methods. Then, in an execution where each of
the methods is called in a separate thread, even with the presence of SC fences before and after the
invocations, store bu�ering is still possible.

Having said that, we note that our placement of SC fences to guarantee overall robustness is
not necessarily optimal, as it disregards any possible synchronization that may be carried out
by the library methods themselves. We are also not considering the structure of client programs
which may restrict the usage of libraries to patterns disallowing non-robust behavior. A more
�ned-grained analysis of both the synchronization performed by the library and the client usage
would be required to perform optimal fence placement which can guarantee overall robustness.
Guarantees beyond library robustness would be required, for example, the presence of hb relation
between certain invocations of the library. It would be possible to retro�t our robustness veri�cation
scheme for proving such stronger synchronization guarantees; we leave this as part of future work.

set1(G) , store(✓1, G, rel)
get1() , return load(✓1, acq)

set2(G) , store(✓2, G, rel)
get2() , return load(✓2, acq)

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not a�ect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each
individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation. [KN: Some more insight about the proof here]

So far, we have talked about generating executions involving invocations to multiple libraries,
but this formalism still does not allow a client to also perform atomic RC20 accesses. Indeed, it is
possible to view the client program as a library itself, with every program segment in every thread
between two library calls encapsulated as a separate method in this arti�cially generated client
library. Then,Theorems 6.1 and 6.2 allows us to decompose the overall robustness problem into
proving robustness for the actual libraries and the client library. In particular, as a special case, we
can consider a client program which does not access any shared variable (i.e. leaves all the shared
memory operations to the libraries), or a client program which only accesses shared memory inside
locks. Such client programs will be robust according to our de�nition (i.e. the arti�cially generated
client library will be robust), and hence composing them with robust libraries guarantee overall
robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robustness execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can maybe place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we can
consider a library which has two methods corresponding to the two sessions involved in the store
bu�ering anomaly, i.e. each method has two memory events, a store followed by load to di�erent
location, with opposite order of locations in the two methods. Then, in an execution where each of
the methods is called in a separate thread, even with the presence of SC fences before and after the
invocations, store bu�ering is still possible.

Having said that, we note that our placement of SC fences to guarantee overall robustness is
not necessarily optimal, as it disregards any possible synchronization that may be carried out
by the library methods themselves. We are also not considering the structure of client programs
which may restrict the usage of libraries to patterns disallowing non-robust behavior. A more
�ned-grained analysis of both the synchronization performed by the library and the client usage
would be required to perform optimal fence placement which can guarantee overall robustness.
Guarantees beyond library robustness would be required, for example, the presence of hb relation
between certain invocations of the library. It would be possible to retro�t our robustness veri�cation
scheme for proving such stronger synchronization guarantees; we leave this as part of future work.

set1(G) , store(✓1, G, rel)
get1() , return load(✓1, acq)

set2(G) , store(✓2, G, rel)
get2() , return load(✓2, acq)

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not a�ect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each
individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation. [KN: Some more insight about the proof here]

So far, we have talked about generating executions involving invocations to multiple libraries,
but this formalism still does not allow a client to also perform atomic RC20 accesses. Indeed, it is
possible to view the client program as a library itself, with every program segment in every thread
between two library calls encapsulated as a separate method in this arti�cially generated client
library. Then,Theorems 6.1 and 6.2 allows us to decompose the overall robustness problem into
proving robustness for the actual libraries and the client library. In particular, as a special case, we
can consider a client program which does not access any shared variable (i.e. leaves all the shared
memory operations to the libraries), or a client program which only accesses shared memory inside
locks. Such client programs will be robust according to our de�nition (i.e. the arti�cially generated
client library will be robust), and hence composing them with robust libraries guarantee overall
robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robustness execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can maybe place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we can
consider a library which has two methods corresponding to the two sessions involved in the store
bu�ering anomaly, i.e. each method has two memory events, a store followed by load to di�erent
location, with opposite order of locations in the two methods. Then, in an execution where each of
the methods is called in a separate thread, even with the presence of SC fences before and after the
invocations, store bu�ering is still possible.

Having said that, we note that our placement of SC fences to guarantee overall robustness is
not necessarily optimal, as it disregards any possible synchronization that may be carried out
by the library methods themselves. We are also not considering the structure of client programs
which may restrict the usage of libraries to patterns disallowing non-robust behavior. A more
�ned-grained analysis of both the synchronization performed by the library and the client usage
would be required to perform optimal fence placement which can guarantee overall robustness.
Guarantees beyond library robustness would be required, for example, the presence of hb relation
between certain invocations of the library. It would be possible to retro�t our robustness veri�cation
scheme for proving such stronger synchronization guarantees; we leave this as part of future work.

set1(G) , store(✓1, G, rel)
get1() , return load(✓1, acq)

set2(G) , store(✓2, G, rel)
get2() , return load(✓2, acq)

L1

L2

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Anon.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not a�ect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each
individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation. [KN: Some more insight about the proof here]

So far, we have talked about generating executions involving invocations to multiple libraries,
but this formalism still does not allow a client to also perform atomic RC20 accesses. Indeed, it is
possible to view the client program as a library itself, with every program segment in every thread
between two library calls encapsulated as a separate method in this arti�cially generated client
library. Then,Theorems 6.1 and 6.2 allows us to decompose the overall robustness problem into
proving robustness for the actual libraries and the client library. In particular, as a special case, we
can consider a client program which does not access any shared variable (i.e. leaves all the shared
memory operations to the libraries), or a client program which only accesses shared memory inside
locks. Such client programs will be robust according to our de�nition (i.e. the arti�cially generated
client library will be robust), and hence composing them with robust libraries guarantee overall
robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robustness execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can maybe place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we can
consider a library which has two methods corresponding to the two sessions involved in the store
bu�ering anomaly, i.e. each method has two memory events, a store followed by load to di�erent
location, with opposite order of locations in the two methods. Then, in an execution where each of
the methods is called in a separate thread, even with the presence of SC fences before and after the
invocations, store bu�ering is still possible.

Having said that, we note that our placement of SC fences to guarantee overall robustness is
not necessarily optimal, as it disregards any possible synchronization that may be carried out
by the library methods themselves. We are also not considering the structure of client programs
which may restrict the usage of libraries to patterns disallowing non-robust behavior. A more
�ned-grained analysis of both the synchronization performed by the library and the client usage
would be required to perform optimal fence placement which can guarantee overall robustness.
Guarantees beyond library robustness would be required, for example, the presence of hb relation
between certain invocations of the library. It would be possible to retro�t our robustness veri�cation
scheme for proving such stronger synchronization guarantees; we leave this as part of future work.

set1(G) , store(✓1, G, rel)
get1() , return load(✓1, acq)

set2(G) , store(✓2, G, rel)
get2() , return load(✓2, acq)

L1

L2

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Robustness Verification 1:21

set1(1);

set2(1);

G = get1(); // x = 0

~ = get2(); // y = 0

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,
we model memory events using FOL domains, executions as relations between events and then
we generate FOL queries that instantiate memory events involved in establishing �BA2 and �3BC .
For example, referring back to Table 1, violations of �BA2 would require us to instantiate events
`F, `1, `2 satisfying the antecedent of �BA2 , while the negation of the consequent can be simpli�ed
as ¬(`F hb��! `2).

In addition to memory events which are directly involved in �BA2 and �3BC , for the library method
containing these events, the FOL query also instantiates an event for every program statement
present in the implementation of the method. We call the entire set of instantiated events as a partial
execution, which is essentially the non-robust core of an actual execution. If such a non-robust
core cannot be instantiated, then no potential or actual non-robustness witnesses can exist. Thus, if
the generated FOL formulae are not satis�able, we can conclude that �BA2 and �3BC hold, implying
robustness of the library implementation.

Next, we require that the partial execution must be a part of a valid SC execution. To ensure this,
we encode the constraints on the executions in terms of FOL formula obtained from the j10B4 and
j(⇠ constraints of §3.2. For each relation ' 2 {rf,mo, fr, sw, so, hb, hbSC}, we encode constraints
that ensure or prohibit their presence between pairs of events. For instance, all events belonging to
the same invocation must be related by so, two events writing to the same location must be related
by mo, there must be a rf between a unique write event to a location and a read event returning
the same value, etc. We also encode how the derived relations such as
� 5 A , sw, hb, hbSC depend on the base relations.

Note that �BA2 and �3BC need to be checked individually for every location used in any execution
of the implementation. While an implementation can allocate and access an unbounded number of
locations on the heap during executions, to generate our encoding, we use a �xed, �nite number of
location classes. We de�ne a location class for every shared global variable and every �eld (for record
types allocated on the heap). For example, the location classes for the register implementation of
Fig. 1 are the global variable L and the �eld val.

Instantiating partial executions with a �xed, �nite number of events may result in a number of
false positives, i.e. partial executions that would not be a part of any complete execution. To prune
these false positives, we introduce an analysis phase before checking �BA2 and �3BC that derives
useful constraints obeyed by any SC execution of the library implementation. These constraints
are then expressed as universally quanti�ed FOL formulae and added to the encoding. The derived
constraints can be broadly classi�ed into two classes: (1) program structure constraints that are
derived by a static analysis of the implementation and (2) speci�cation constraints that are directly
obtained from the speci�cation of the implemented data structure (as described in §3.3). Since we
assume that the library implementation is correct under SC, we can directly incorporate these

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Robustness Verification 1:21

set1(1);

set2(1);

G = get1(); // x = 0

~ = get2(); // y = 0

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,
we model memory events using FOL domains, executions as relations between events and then
we generate FOL queries that instantiate memory events involved in establishing �BA2 and �3BC .
For example, referring back to Table 1, violations of �BA2 would require us to instantiate events
`F, `1, `2 satisfying the antecedent of �BA2 , while the negation of the consequent can be simpli�ed
as ¬(`F hb��! `2).

In addition to memory events which are directly involved in �BA2 and �3BC , for the library method
containing these events, the FOL query also instantiates an event for every program statement
present in the implementation of the method. We call the entire set of instantiated events as a partial
execution, which is essentially the non-robust core of an actual execution. If such a non-robust
core cannot be instantiated, then no potential or actual non-robustness witnesses can exist. Thus, if
the generated FOL formulae are not satis�able, we can conclude that �BA2 and �3BC hold, implying
robustness of the library implementation.

Next, we require that the partial execution must be a part of a valid SC execution. To ensure this,
we encode the constraints on the executions in terms of FOL formula obtained from the j10B4 and
j(⇠ constraints of §3.2. For each relation ' 2 {rf,mo, fr, sw, so, hb, hbSC}, we encode constraints
that ensure or prohibit their presence between pairs of events. For instance, all events belonging to
the same invocation must be related by so, two events writing to the same location must be related
by mo, there must be a rf between a unique write event to a location and a read event returning
the same value, etc. We also encode how the derived relations such as
� 5 A , sw, hb, hbSC depend on the base relations.

Note that �BA2 and �3BC need to be checked individually for every location used in any execution
of the implementation. While an implementation can allocate and access an unbounded number of
locations on the heap during executions, to generate our encoding, we use a �xed, �nite number of
location classes. We de�ne a location class for every shared global variable and every �eld (for record
types allocated on the heap). For example, the location classes for the register implementation of
Fig. 1 are the global variable L and the �eld val.

Instantiating partial executions with a �xed, �nite number of events may result in a number of
false positives, i.e. partial executions that would not be a part of any complete execution. To prune
these false positives, we introduce an analysis phase before checking �BA2 and �3BC that derives
useful constraints obeyed by any SC execution of the library implementation. These constraints
are then expressed as universally quanti�ed FOL formulae and added to the encoding. The derived
constraints can be broadly classi�ed into two classes: (1) program structure constraints that are
derived by a static analysis of the implementation and (2) speci�cation constraints that are directly
obtained from the speci�cation of the implemented data structure (as described in §3.3). Since we
assume that the library implementation is correct under SC, we can directly incorporate these

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Robustness Verification 1:21

set1(1);

set2(1);

G = get1(); // x = 0

~ = get2(); // y = 0

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,
we model memory events using FOL domains, executions as relations between events and then
we generate FOL queries that instantiate memory events involved in establishing �BA2 and �3BC .
For example, referring back to Table 1, violations of �BA2 would require us to instantiate events
`F, `1, `2 satisfying the antecedent of �BA2 , while the negation of the consequent can be simpli�ed
as ¬(`F hb��! `2).

In addition to memory events which are directly involved in �BA2 and �3BC , for the library method
containing these events, the FOL query also instantiates an event for every program statement
present in the implementation of the method. We call the entire set of instantiated events as a partial
execution, which is essentially the non-robust core of an actual execution. If such a non-robust
core cannot be instantiated, then no potential or actual non-robustness witnesses can exist. Thus, if
the generated FOL formulae are not satis�able, we can conclude that �BA2 and �3BC hold, implying
robustness of the library implementation.

Next, we require that the partial execution must be a part of a valid SC execution. To ensure this,
we encode the constraints on the executions in terms of FOL formula obtained from the j10B4 and
j(⇠ constraints of §3.2. For each relation ' 2 {rf,mo, fr, sw, so, hb, hbSC}, we encode constraints
that ensure or prohibit their presence between pairs of events. For instance, all events belonging to
the same invocation must be related by so, two events writing to the same location must be related
by mo, there must be a rf between a unique write event to a location and a read event returning
the same value, etc. We also encode how the derived relations such as
� 5 A , sw, hb, hbSC depend on the base relations.

Note that �BA2 and �3BC need to be checked individually for every location used in any execution
of the implementation. While an implementation can allocate and access an unbounded number of
locations on the heap during executions, to generate our encoding, we use a �xed, �nite number of
location classes. We de�ne a location class for every shared global variable and every �eld (for record
types allocated on the heap). For example, the location classes for the register implementation of
Fig. 1 are the global variable L and the �eld val.

Instantiating partial executions with a �xed, �nite number of events may result in a number of
false positives, i.e. partial executions that would not be a part of any complete execution. To prune
these false positives, we introduce an analysis phase before checking �BA2 and �3BC that derives
useful constraints obeyed by any SC execution of the library implementation. These constraints
are then expressed as universally quanti�ed FOL formulae and added to the encoding. The derived
constraints can be broadly classi�ed into two classes: (1) program structure constraints that are
derived by a static analysis of the implementation and (2) speci�cation constraints that are directly
obtained from the speci�cation of the implemented data structure (as described in §3.3). Since we
assume that the library implementation is correct under SC, we can directly incorporate these

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Robustness Verification 1:21

set1(1);

set2(1);

G = get1(); // x = 0

~ = get2(); // y = 0

7 AUTOMATED VERIFICATION
Our automated veri�cation strategy relies on discovering violations of �BA2 and �3BC , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,
we model memory events using FOL domains, executions as relations between events and then
we generate FOL queries that instantiate memory events involved in establishing �BA2 and �3BC .
For example, referring back to Table 1, violations of �BA2 would require us to instantiate events
`F, `1, `2 satisfying the antecedent of �BA2 , while the negation of the consequent can be simpli�ed
as ¬(`F hb��! `2).

In addition to memory events which are directly involved in �BA2 and �3BC , for the library method
containing these events, the FOL query also instantiates an event for every program statement
present in the implementation of the method. We call the entire set of instantiated events as a partial
execution, which is essentially the non-robust core of an actual execution. If such a non-robust
core cannot be instantiated, then no potential or actual non-robustness witnesses can exist. Thus, if
the generated FOL formulae are not satis�able, we can conclude that �BA2 and �3BC hold, implying
robustness of the library implementation.

Next, we require that the partial execution must be a part of a valid SC execution. To ensure this,
we encode the constraints on the executions in terms of FOL formula obtained from the j10B4 and
j(⇠ constraints of §3.2. For each relation ' 2 {rf,mo, fr, sw, so, hb, hbSC}, we encode constraints
that ensure or prohibit their presence between pairs of events. For instance, all events belonging to
the same invocation must be related by so, two events writing to the same location must be related
by mo, there must be a rf between a unique write event to a location and a read event returning
the same value, etc. We also encode how the derived relations such as
� 5 A , sw, hb, hbSC depend on the base relations.

Note that �BA2 and �3BC need to be checked individually for every location used in any execution
of the implementation. While an implementation can allocate and access an unbounded number of
locations on the heap during executions, to generate our encoding, we use a �xed, �nite number of
location classes. We de�ne a location class for every shared global variable and every �eld (for record
types allocated on the heap). For example, the location classes for the register implementation of
Fig. 1 are the global variable L and the �eld val.

Instantiating partial executions with a �xed, �nite number of events may result in a number of
false positives, i.e. partial executions that would not be a part of any complete execution. To prune
these false positives, we introduce an analysis phase before checking �BA2 and �3BC that derives
useful constraints obeyed by any SC execution of the library implementation. These constraints
are then expressed as universally quanti�ed FOL formulae and added to the encoding. The derived
constraints can be broadly classi�ed into two classes: (1) program structure constraints that are
derived by a static analysis of the implementation and (2) speci�cation constraints that are directly
obtained from the speci�cation of the implemented data structure (as described in §3.3). Since we
assume that the library implementation is correct under SC, we can directly incorporate these

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Fig. 1. Example showing non-compositionality of ro-
bustness

Unfortunately, we find that naïvely compos-
ing individually robust libraries may not lead
to an overall robust execution. To illustrate this,
consider the two simple register libraries L1
and L2 given in Fig. 1. It is well known that un-
der the RC20 memory model, atomic accesses to
a single location follow SC-per-location seman-
tics, and thus both the libraries (which access
single distinct locations ℓ1 and ℓ2) will be individually robust for the most general client. However,
we can construct a standard store-buffering execution formed out of interaction with both libraries,
as shown by the sessions 𝜏1 and 𝜏2 in the figure (assume that the initial value at locations ℓ1 and
ℓ2 is 0). This execution is not possible under SC, because in any interleaving, at least one of set1
or set2 (and hence the underlying store) operations will happen first, so that at least one of the
get1 or get2 operations would return 1. To recover overall robustness, we can add an SC-fence
when crossing libraries within every session. In the RC20 memory model, an SC-fence is defined
using a composition of three instructions: fence(acq); fadd(𝑓 , 0, acqrel); fence(rel) where 𝑓 is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:3

an identifier for a distinguished location not accessed by any other instruction [43]. The fadd
instruction guarantees synchronization between any two SC fences.

In the execution above, suppose we place an SC fence between the two invocations in each
session. Then, the total ordering among the fences would prevent both the loads from ignoring the
stores under RC20, thus prohibiting the store buffering anomaly. On the other hand, if even one of
the SC-fences is removed, store buffering is still possible. We call an execution well-fenced if there
is an SC-fence between every adjacent pair of invocations to different libraries in every session.

Having well-fenced executions then gives us a way to decompose the overall robustness problem
into robustness of individual libraries. In this work, we leverage this observation and make signifi-
cant progress on the problem of verifying robustness of programs using library implementations: (i)
we propose an automated, sound (but not complete) verification procedure for proving robustness
of individual library implementations against the most general client, (ii) we formally prove that a
well-fenced execution comprising of calls to individually robust libraries is guaranteed to be robust.

Verifying individual library robustness conceptually requires us to compare the set of all SC
and RC20 executions of the library implementation. This is a non-trivial problem because the
most general client can invoke library methods an arbitrary number of times concurrently across
an arbitrary number of threads. Previous efforts on robustness verification of relaxed memory
programs [11, 38, 43] are only applicable for finite state programs involving a bounded number of
threads. Our primary contribution in this regard is a fully automated verification strategy that is
not constrained by these restrictions.

Our verification strategy is based on searching SC executions of a library implementation
for potential non-robustness witnesses [38, 43]. SC executions are constructed by simply treating
all memory accesses as being sequentially consistent, ignoring the actual annotations affixed
to these accesses in the program. A non-robustness witness is a prefix of an SC execution that
contains a location whose latest write 𝑤 would be witnessed by the next operation (say a read 𝑟) in
that execution, but which may not necessarily be witnessed in an RC20 execution, i.e. informally,
hbSC (𝑤, 𝑟) holds but hbRC20 (𝑤, 𝑟) does not, where hbSC and hbRC20 define a happens-before ordering
among read and write actions in SC and RC20 executions, resp. Verifying the absence of such a
witness is tantamount to showing robustness in a RC20 setting [38, 43]. We use an inductive strategy
to cover the infinite set of executions, and crucially take advantage of axioms and constraints
provided by the library’s SC specification to help discharge the verification conditions.

We note that unlike prior approaches to robustness verification [38, 43] which are both sound and
complete, our approach sacrifices completeness for the sake of automation by devising sufficient
but not necessary conditions for proving absence of a non-robustness witness. However, this
makes our verification strategy more amenable to automation, and also better suited to library
implementations. We also crucially rely on expressive SC specifications to rule out infeasible
non-robustness witnesses, with the caveat that spurious non-robustness witnesses can arise if
the SC specification is not expressive enough. However, our extensive experimental evaluation
suggests that the SC specification of the standard data structures is rich enough to verify a number
of complex implementations.

This paper makes the following contributions:

(1) We provide a verification methodology for proving robustness of a concurrent data structure
library executing under the RC20 memory model. To enable automated verification, our proof
methodology exploits various constraints derived from the library’s SC specification. We
provide a common SMT-based framework to systematically relate these high-level constraints
with the low-level event-based guarantees required for robustness proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:4 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

1 void set(int v) {
2 node* N = malloc(sizeof(node));
3 store(N→ val, v, rlx);
4 store(L, N, rel) ;
5 }
6

4 int get {
5 node* r = load(L, acq);
6 if (r == NULL)
7 return UNDEF;
8 else {
9 int v = load(r→ val,rlx);

10 return v;
11 }
12 }
13

Fig. 2. A stylized C11 implementation of a Register library. The contents of variables N and L can be accessed
by multiple threads; variable r, on the other hand, is thread-local.

(2) We introduce a new notion of robustness, called induced subgraph robustness, tailored for
reasoning about robustness of library implementations that may have benign non-robustness
as part of their speculative computations. This weaker definition permits executions to have
library-internal non-robust operations, as long as their effects do not manifest in a method’s
return value.

(3) We extend our methodology for proving robustness of an individual library to compose
multiple robust libraries using SC fences to guarantee overall execution robustness. Our
composition guarantees also extend to induced subgraph robustness. Our initial experiments
indicate that the performance penalty of putting additional SC fences is not significant, and
potentially masked by the synchronization already performed by the individual libraries to
maintain robustness.

(4) We have applied our approach on a number of realistic concurrent C11 library implementa-
tions, including real-world benchmarks such as Meta’s Folly lock-free queue implementation
that make sophisticated use of relaxed atomics [26]. Our results establish, often for the first
time, robustness against RC20 of well-known library implementations.

The remainder of the paper is structured as follows. The next section presents a motivating
example to illustrate the core ideas underlying our approach for proving robustness of a library.
§3 introduces a representative language, along with an axiomatic formalization of the memory
model. The derivation of the inductive invariant used for our robustness proof is given in §4. We
formalize the definition of induced subgraph robustness in §5. We provide our methodology to
compose robust libraries in §6. Details about the implementation and SMT encoding are given in
§7. Experimental results are presented in §8. Related work and conclusions are given in §9.

2 Motivating Example
Consider an implementation of a concurrent register data structure shown in Figure 2. Although

not very efficient, it nonetheless exhibits access patterns commonly found in a number of real-world
library implementations, and it allows us to provide a simple, concise demonstration of the core
ideas of our verification strategy. The register data structure has two methods (set(v) and get),
with the intended semantics that get returns the most recent value that was assigned to the register
by a set operation, or else UNDEF if no set operations have yet executed. In Figure 2, the set
method is implemented by allocating a new node containing the value (in the field val), storing
a reference to the node in a shared variable L. The get method reads the variable L and then
derefences the val field (if L is not NULL) to return the value. Notice that each memory access is
annotated with an access mode, which has an effect on its behavior, as well as the behavior of
subsequent accesses.

If we ignore the annotations defining relaxed access modes and assume all reads and writes to
shared-memory are SC, then every concurrent execution can be thought of as an interleaving of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:5

statements from different threads, all accessing a single shared memory. Under SC, it is straightfor-
ward to prove that the above implementation is correct, which means that all the invocations in an
execution follow the intended register semantics.

2.1 RC20 Memory Model and Robustness
In order to describe executions under the RC20 relaxed memory model, we consider the read/write
events generated during an execution, as well as dependency relations between these events. In
the following, we give a brief informal description of these relations; they are formally defined
in the next section. The relations include (i) reads-from (rf) that relates a write event to the read
event which reads from it, (ii) modification-order (mo), a total ordering on all write events to the
same location, and (iii) from-read (fr), a relation that relates a read event to write events that occur
later than the write event it reads from according to the mo order. Events in the same thread are all
totally ordered according to a session order (so) relation, a generalization of program order adapted
to a concurrent library setting (a session is defined as a sequence of library method invocations
performed by the same thread).

The access modes associated with read/write events are used to determine the synchronizes-with
relation (sw): write and read events that are related by rf are also related by sw if the write is
annotated with rel access mode and the read is annotated with acq mode (there are also other
ways to establish sw, more details in §3.2). Finally, these primitive relations are used to define two
derived relations: (i) hbSC, the transitive closure of rf, fr,mo, so, and (ii) hb, the transitive closure
of sw and so. Intuitively, hbSC will be used to define the behavior of SC executions, while hb will
define the behavior of RC20 executions.

For the purpose of this section, we are mainly interested in how the RC20 memory model uses
hb to constrain the behavior of read events by forcing them to not ignore write events that are in
hb order to them. This means that a read event 𝑒𝑟 cannot read from a write event 𝑒𝑤 if there is
another write event 𝑒 ′𝑤 such that 𝑒𝑤

mo−−→ 𝑒 ′𝑤 and 𝑒 ′𝑤
hb−−→ 𝑒𝑟 (more precisely, 𝑒 ′𝑤 must be in hb-order

before some previous event in the session containing 𝑒𝑟). In this case, 𝑒𝑟 must read from either 𝑒 ′𝑤
or an event mo-after 𝑒 ′𝑤 .

so rf so
hb

sw
<latexit sha1_base64="ARpfrT34H1csyk3E4cnc0bYbJe4=">AAACI3icbZDPSsNAEMY3/rf+q3r0EiyCoJRERMVT0YsHkQrWCk0pm+20Lt1swu5ECCFv4QN48VW8eFDESw++i9tUUVs/WPjxzTfszPiR4Bodp29NTE5Nz8zOzRcWFpeWV4qra9c6jBWDGgtFqG58qkFwCTXkKOAmUkADX0Dd750O6vU7UJqH8gqTCJoB7Ure4YyisVrFYy+geIuY1jNPUNkV8G2cZ7vfePGDCkTmqTzYKpacspPLHgf3C0qVTW/nvl9Jqq3im9cOWRyARCao1g3XibCZUoWcCcgKXqwhoqxHu9AwKGkAupnmO2b2lnHadidU5km0c/d3R0oDrZPAN8nBqHq0NjD/qzVi7Bw1Uy6jGEGy4UedWNgY2oOD2W2ugKFIDFCmuJnVZrdUUYbmrAVzBHd05XG43iu7B+X9S7dUOSFDzZENskm2iUsOSYWckSqpEUYeyBN5Ia/Wo/VsvVnvw+iE9dWzTv7I+vgEwUCpzA==</latexit>

WhL, N, reli

<latexit sha1_base64="P4Vcd538iSnuKWXl3cFYymm1O6Q=">AAACI3icbZDLSsNAFIYnXmu9RV26CS2CoJRERMVV0Y0LkSr2Ak0pk+m0HTqZxJkToYS8hQ/gxldx40IpbrrwXZzeUFt/GPj4z3+Yc44XcqbAtvvG3PzC4tJyaiW9ura+sWlubZdUEElCiyTggax4WFHOBC0CA04roaTY9zgte53LQb38SKVigbiHbkhrPm4J1mQEg7bq5rnrY2gDxHeJy7FocToxrpPDCd78ICYPiSuHwbqZtXP2UNYsOGPI5jPuwVM/3y3UzZ7bCEjkUwGEY6Wqjh1CLcYSGOE0SbuRoiEmHdyiVY0C+1TV4uGOibWnnYbVDKR+Aqyh+7sjxr5SXd/TycGoaro2MP+rVSNontViJsIIqCCjj5oRtyCwBgezGkxSAryrARPJ9KwWaWOJCeizpvURnOmVZ6F0lHNOcse3TjZ/gUZKoV2UQfvIQacoj65QARURQc/oFb2jD+PFeDN6xucoOmeMe3bQHxlf36Lrqbk=</latexit>

RhL, N, acqi

<latexit sha1_base64="FAfNPysEQsz7VEGquTyt/rAsedM=">AAACPXicbVDLSgMxFM34tr6qLt0EiyAoZUZEXRbduJIqVoVOKXfStA1mMkNyRy3D/IVf48Z/cNedGxeKuHVr2vrWC4GTc+5J7j1BLIVB1+06Q8Mjo2PjE5O5qemZ2bn8/MKJiRLNeIVFMtJnARguheIVFCj5Waw5hIHkp8H5Xk8/veDaiEgdYyfmtRBaSjQFA7RUPX/sh4BtxPQo8yWoluQfxEHma9FqI2gdXfrr9IO/AJmtf16+oJZX1tF/op4vuEW3X/Qv8N5BobTsr113S51yPX/nNyKWhFwhk2BM1XNjrKWgUTDJs5yfGB4DO4cWr1qoIOSmlva3z+iKZRq0GWl7FNI++92RQmhMJwxsZ29U81vrkf9p1QSbO7VUqDhBrtjgo2YiKUa0FyVtCM0Zyo4FwLSws1LWBg0MbeA5G4L3e+W/4GSj6G0VNw+9QmmXDGqCLJFlsko8sk1KZJ+USYUwckPuySN5cm6dB+fZeRm0DjnvnkXyo5zXN67JtX4=</latexit>

RhN ! val, v, rlxi

<latexit sha1_base64="oDMzk4SzHKzHWXXabe6KIHg6/+c=">AAACPXicbVDLSgMxFM34tr6qLt0EiyAoZUZEXRbduJIK1gqdUu6kaRvMZIbkjlqG+Qu/xo3/4K47Ny4UcevWtPWtFwIn59yT3HuCWAqDrttzRkbHxicmp6ZzM7Nz8wv5xaVTEyWa8QqLZKTPAjBcCsUrKFDys1hzCAPJq8H5QV+vXnBtRKROsBvzeghtJVqCAVqqkT/xQ8AOYlrNfAmqLfkHcZT5WrQ7CFpHl/4m/eAvQGabn5cvqOWVdQyeaOQLbtEdFP0LvHdQKK36G9e9UrfcyN/5zYglIVfIJBhT89wY6yloFEzyLOcnhsfAzqHNaxYqCLmpp4PtM7pmmSZtRdoehXTAfnekEBrTDQPb2R/V/Nb65H9aLcHWXj0VKk6QKzb8qJVIihHtR0mbQnOGsmsBMC3srJR1QANDG3jOhuD9XvkvON0qejvF7WOvUNonw5oiK2SVrBOP7JISOSRlUiGM3JB78kienFvnwXl2XoatI867Z5n8KOf1DbfUtYM=</latexit>

WhN ! val, v, rlxi

Fig. 3. An execution of the register library

To illustrate this, consider an execution of the reg-
ister library consisting of two invocations, set(v)
and get. The events generated during this execution
are shown in Figure 3, with the two events on the
left side of the figure generated by set(v) and the
two events on the right generated by get. Assuming
that the malloc statement in set(v) allocates a new
node N, the rf relation from the store of L in set to the load of L in get induces a sw relation
(because of the rel and acq annotations associated with the store operation in the set method
(line 4) and the load operation in the get method (line 5)). Due to this, the write of N→val in set
comes in hb-order before the read of N→val in get. As a result, this load must read the value v.
However, if the access mode of either the load or store to L are changed to rlx, then the store to
N→val would no longer be in hb order, allowing the load to N→val to ignore it. The execution
in Figure 3 corresponds to classical message-passing behavior, and is possible under both SC and
RC20.

The robustness problem then asks whether any arbitrary RC20 execution of the library implemen-
tation is also possible under SC. In order to solve the robustness problem, we consider an alternative
event-based characterization of SC executions: SC constrains the behavior of read events by forcing
them to not ignore write events which are in hbSC order before them. This characterization is almost

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:6 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

(a)

𝐺

(b)

𝐺

(c)

𝐺

(d)

𝐺

(e)

𝐺

Fig. 4. Establishing the inductive invariant for the location L in the register library implementation

identical to the RC20 memory model, replacing the hb relation with hbSC, and this observation
leads to the following sufficient condition for robustness[43]: At every step during an SC execution,
if the next event is a read event 𝑒𝑟 to location ℓ , and if the most recent write event 𝑒𝑤 to ℓ (according to
the mo ordering) is in hbSC order to the session 𝜏 containing 𝑒𝑟 , then 𝑒𝑤 is also in hb ordering to 𝜏 .
This means that, under RC20, the read event 𝑒𝑟 cannot ignore the write event 𝑒𝑤 , and hence it must
have the same behavior as under SC. Notice that although we are trying to establish robustness of
RC20 executions, the robustness condition itself needs to be checked over SC executions only. This
is because we are essentially searching for the minimal or first robustness violation, and hence the
execution leading up to the violation must be itself robust and hence possible under SC.

Coming back to the execution in Figure 3, just before the event R⟨ N→ val, v, rlx ⟩, the most
recent write event to the location N→ val, W⟨ N→ val, v, rlx ⟩, is in both hbSC and hb order, thus
ensuring that the read event has the same behavior under both SC and RC20. On the other hand, if
the access modes of either the load or store to L were to be changed to rlx, robustness would be
violated by the read event to N→val, resulting in a manifestation of a non-robustness witness.

2.2 Verifying Robustness
Our verification strategy aims to prove the absence of non-robustness witnesses, which are nothing
but violations of the sufficient condition for robustness: an SC execution of the library implementa-
tion that contains a write event on a location ℓ that is in hbSC but not hb order to a session where the
next event is a read event on ℓ . Since a library implementation can be invoked an arbitrary number
of times by clients across arbitrary number of threads, we have to reason about robustness of an
unbounded number of executions. To make this problem tractable, we define an inductive proof
strategy that essentially uses the absence of non-robustness witnesses as an inductive invariant.
We prove the correctness of the inductive invariant systematically on a per-location basis, and use
information about the SC behavior of the library implementation (such as its high-level specification
under SC) to facilitate automated verification.

To illustrate, we describe how to verify the robustness of the register implementation of Figure 2.
Executions of this implementation access two classes of locations: (i) L and (ii) N→val for different
values of N. We reason about the absence of non-robustness witnesses involving these location
classes separately. Intuitively, the rel/acq annotations to the store/load of location L should ensure
robust behavior of loads to location N → val. However, it is not clear how the implementation
ensures robustness for accesses to location L. We prove that it does so by establishing the following
inductive invariant over all SC executions: if the most recent write to the location L (according to
mo) comes hbSC before another event, then it also comes hb before it. This would then ensure that a
subsequent load to L would have the same behavior under SC and RC20. We use induction on the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:7

number of events in an SC execution, and consider adding events in an order that obeys the hbSC
relation. Figure 4 depicts some of the more interesting inductive cases; for each case, we consider
an arbitrary SC execution𝐺 of the library (depicted by the rectangle) and a new event ` to be added
to the execution. The most recent write to location L in the execution 𝐺 is labelled `𝑤 . Inductively,
we assume that if `𝑤 comes hbSC before another event in 𝐺 , it also comes hb before it.

The various cases exhaustively consider new additions to hbSC due to the inclusion of `. We
highlight the different ways in which the inductive invariant is maintained. Figure 4(a) considers
the case where ` is a read event to L, which can cause a new hbSC edge to be established through
the rf relation. Now, since all writes to L use the access mode rel while all reads to L use access
mode acq, the rf relation induces a sw relation, and thus a hb relation so that the required condition
continues to hold. Figure 4(b) depicts an execution in which ` is a write to L that results in an
incoming fr edge from an existing read (`𝑟) in 𝐺 . Note that the dotted arrow labeled with hbSC
indicates that the hbSC relation is established through some sequence of events. Now, since `𝑤
occurs hbSC-before `𝑟 , it also occurs hbSC-before `. However, in the new execution after addition
of the event `, notice that ` now becomes the most recent write to L, and it cannot occur hbSC
before any event in 𝐺 (because we are adding events in hbSC order). Hence, the required invariant
holds trivially, and we do not have to consider any hbSC paths from `𝑤 .

A more interesting case is shown in Figure 4(c). Here ` is a write event to N→val and its addition
to the execution establishes a new hbSC path from `𝑤 through a fr relation on `𝑟 . On the surface,
it would seem that this depicts a non-hb (but hbSC) path from `𝑤 to `. However, in an actual
execution, the fr relation involving N→val can never arise. In the following, we show how we can
infer the infeasibility of this execution by using the fact that we are only considering SC executions.

Notice that in a SC execution, there is a unique write to any location of the class N→val, because
it only happens inside the set method, and malloc will always return a fresh location. Since `𝑟
does not read from this write event, and since there is no other write event to N→val, `𝑟 must read
the initial value of the location (say 0), which will also be returned by get invocation containing
`𝑟 . However, the register implementation is agnostic to the actual value passed as an argument to
set (i.e., set’s control-flow is unaffected by v) and thus we can assume data independence of its
arguments [1]. In particular, we prohibit executions where set is passed the initialization value 0.
But the get invocation containing `𝑟 returns 0, and the register specification says that for every get
invocation which return a non-UNDEF value, there must be a set invocation whose argument value
is the same as the return value of the get invocation. We thus derive a contradiction, establishing
infeasibility of the execution in Fig. 4(c). Notice how we are able to leverage program structure
constraints (uniqueness of write to N→val enforced by malloc) and the register specification for
this reasoning.

The cases depicted in Figures 4(d) and 4(e) can also be handled in a fashion similar to the handling
of cases 4(a) - 4(c). In particular, the execution shown in Figure 4(d) is not possible due to uniqueness
of writes to N→val. Figure 4(e) depicts a feasible execution. In this case, there will already exist a
hb ordering between the event W⟨N→val, _, _⟩ and ` (as shown in Figure 3) via a path comprising
sw and so edges. Using the inductive hypothesis that `𝑤 also occurs hb-before W⟨N→val, _, _ ⟩ and
the transitivity of hb, we can infer that `𝑤 occurs hb-before `. Collectively, our case analysis shows
robustness for the location L, guaranteeing that there can be no non-robustness witnesses caused
by accesses to this location. In each case, either we cannot establish the hbSC relation, or if we can,
then hb relation is also established. A similar analysis can be carried out for the location N→val.

The following sections formalize these intuitions, generalizes the approach to deal with im-
plementations that use loops and synchronization operations like cas and fence, and builds an
automated procedure to perform the above reasoning.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:8 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

𝑐 ∈ Constant
ℓ ∈ Location
𝑥, 𝑦 ∈ Var
𝜏 ∈ SessionId
𝑚 ∈ MethodName
` ∈ MemEvt
𝑜X ∈ ModX where X ∈ {R, W, U, F}

𝑣 ∈Value ::= 𝑐 | ℓ
𝑒 ∈Expr ::= 𝑣 | 𝑥 | 𝑒1 == 𝑒2 | . . .
𝐼 ∈Method ::= method𝑚 (𝑥) = 𝑠

𝑠 ∈Stmt ::= skip | 𝑥 = 𝑒 | 𝑥 = malloc(c)
| store(𝑥, 𝑒, 𝑜W) | 𝑦 = load(𝑥, 𝑜R) | 𝑦 = cas(𝑥, 𝑒1, 𝑒2, 𝑜U, 𝑜R) | fence(𝑜F)
| 𝑦 = fadd(𝑥, 𝑒, 𝑜U) | 𝑠1; 𝑠2 | if 𝑒 then 𝑠1 else 𝑠2 | while𝑒 do 𝑠 | return𝑒

𝛼 ∈ Action ::= 𝜖 | R⟨ℓ, 𝑣, 𝑜R ⟩ | W⟨ℓ, 𝑣, 𝑜W ⟩ | U⟨ℓ, 𝑣1, 𝑣2, 𝑜U ⟩ | F⟨𝑜F ⟩
𝛾 ∈ InvkEvt ::= Invk⟨𝑖,𝑚, 𝑣𝑎, 𝑣𝑟 , 𝜏 ⟩
𝜔 ∈ Evt ::= 𝛾 | Sil⟨𝛾 ⟩ | Mem⟨𝑖, 𝜏, 𝛼 ⟩

Fig. 5. Domains and language syntax.

3 Preliminaries
3.1 Syntax and Program Semantics
To describe our approach, we consider a C-style imperative language, with standard control-flow
operators (sequencing (;), while, if-then-else, etc.), and operations to access thread-local and shared
state (Figure 5). A library implementation of a data structure is given by a set of methods written in
this language, with each method corresponding to an operation of the data structure; we prohibit
methods from invoking other methods.

Library implementations have access to a shared heap i.e., an unbounded collection of locations
(Location), shared among all sessions; additionally, library methods can bind and read local variables
whose values are accessible to the method only for the lifetime of the invocation. We assume that
every instance of the malloc(𝑐) command returns a unique location on the heap, allocating 𝑐 units
of memory. We also require that a library implementation owns its accessed locations, which means
they cannot be accessed by clients (or other library implementations) [49]. A method body is a
sequence of statements, at least one of which must be a return.

The most interesting part of the language are statements that access shared memory. Specifically,
statements load(𝑥 ,𝑜R) and store(𝑥 ,𝑒 ,𝑜W) are used to load values from, and store values to, locations in
shared memory whose address is contained in variable 𝑥 , resp. Following the RC20 memory model,
each shared memory access in our language is also associated with an access mode, taken from
the set Mod ≜ {rlx, acq, rel, acqrel}. These modes define the consistency level of the memory
access. Note that the language does not allow non-atomics, as every access is identified with a
consistency level. We define specific subsets of access modes for the different types of memory
accesses:

ModR = {rlx, acq} ModU = {rlx, acq, rel, acqrel}
ModW = {rlx, rel} ModF = {acq, rel, acqrel}

A partial order ⊑ is also defined over these access modes, which intuitively orders them according
to their consistency level:rlx ⊑ acq ⊑ acqrel and rlx ⊑ rel ⊑ acqrel. Additionally, the cas(𝑥 ,𝑒1,𝑒2,
𝑜U, 𝑜R) operation atomically updates the location ℓ bound to 𝑥 to the evaluation of 𝑒2 if 𝑒1 evaluates
to the value stored in ℓ , returning true in this case, and returns false otherwise.

The semantics of library implementations are defined in terms of a most general client which
can call arbitrary methods in any arbitrary session. Formally, for a library L ∈ P(Method), we
define a labeled transition system (LTS), ΩL = (Φ, Evt,⇒), where Φ denotes a set of states, Evt
denotes a set of events (also used as labels on transitions) and⇒⊆ Φ × Evt × Φ defines a transition
relation over states and events. We write

𝜔
=⇒ for the relation {⟨𝑠1, 𝑠2⟩∥⟨𝑠1, 𝜔, 𝑠2⟩ ∈⇒}.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:9

I ∈ Invocations = SessionId→ (InvkEvt ∪ {⊥}) × (Stmt ∪ {⊥})
𝜚 ∈ Environments = SessionId→ EnvLocal

L ∈ Library ∈ P(Method)

𝜌 ∈ EnvLocal = Var→ Value
Invk

I(𝜏) = (_,⊥) 𝑚 = _ 𝑥.𝑠 ∈ L
𝜚 ′ = 𝜚 [𝜏 ↦→ 𝜚 (𝜏) [𝑥 ↦→ 𝑣𝑎]]

𝑖 unique 𝛾 = Invk⟨𝑖,𝑚, 𝑣𝑎, 𝑣𝑟 , 𝜏 ⟩
I′ = I[𝜏 ↦→ ⟨𝛾, 𝑠 ⟩]
⟨𝜚, I⟩ 𝛾

=⇒ ⟨𝜚 ′, I′⟩

Ret

I(𝜏) = ⟨𝛾, return(𝑒) ; 𝑠 ⟩
𝛾 = Invk⟨_, _, _, 𝑣𝑟 , 𝜏 ⟩ 𝑒 {𝜚 (𝜏) 𝑣𝑟
I′ = I[𝜏 ↦→ ⟨𝛾,⊥ ⟩] 𝜚 ′ = 𝜚 [𝜏 ↦→ 𝜌⊥]

⟨𝜚, I⟩ 𝜖
=⇒ ⟨𝜚 ′, I′⟩

StepLocal

I(𝜏) = ⟨𝛾, 𝑠 ⟩ ⟨𝜚 (𝜏), 𝑠 ⟩ 𝜖−→𝜏 ⟨𝜌′, 𝑠′⟩
I′ = I[𝜏 ↦→ ⟨𝛾, 𝑠′⟩] 𝜚 ′ = 𝜚 [𝜚 (𝜏) ↦→ 𝜌′]

⟨ 𝜚, I⟩ Sil⟨𝛾 ⟩
=====⇒ ⟨𝜚 ′, I′⟩

StepMem

I(𝜏) = ⟨𝛾, 𝑠 ⟩ ⟨𝜚 (𝜏), 𝑠 ⟩ 𝛼−→𝜏 ⟨𝜌′, 𝑠′⟩
I′ = I[𝜏 ↦→ ⟨𝛾, 𝑠′⟩]

𝜚 ′ = 𝜚 [𝜚 (𝜏) ↦→ 𝜌′] 𝑖 unique ` = Mem⟨ 𝑖, 𝜏, 𝛼 ⟩
⟨𝜚, I⟩ `

=⇒ ⟨𝜚 ′, I′⟩

Fig. 6. Global Reduction Rules

A state in Φ is a tuple, comprising a set of thread-local environments (𝜚) indexed by session
ids and a set of current invocations (I, also indexed by session ids) that records the state of each
session along with the invocation event of the method currently executing in that session. In an
invocation event, Invk⟨𝑖,𝑚, 𝑣𝑎, 𝑣𝑟 , 𝜏⟩, 𝑖 represents an invocation number (a unique identifier for a
particular invocation),𝑚 is a method name, 𝑣𝑎 and 𝑣𝑟 represent the argument supplied to and value
returned by the method, and 𝜏 is a session identifier. The prophesied return value 𝑣𝑟 must match the
value yielded by 𝑒 in any return 𝑒 statement executed during the execution of𝑚 with invocation
number 𝑖 . This follows the convention introduced by [49] to describe method invocations in a
relaxed memory setting using a single event, instead of the traditional invocation and response
events used in the SC setting.

We note that SessionId is an unbounded set of sessions. The initial state 𝑠⊥ of Ω𝐿 is ⟨𝜚⊥,I⊥⟩. I⊥
maps each session in SessionId to ⟨ ⊥,⊥ ⟩, while 𝜚⊥ maps each variable to an initial value.

Figure 6 defines the semantics of clients. It models the behavior of a most-general client. A client
can invoke a new method using the Invk rule, which also establishes an initial local environment.
Notice that I(𝜏) = (_,⊥) ensures that 𝜏 is not an active session. The Ret rule corresponds to the
return of a method. We use the notation 𝑒 {𝜚 (𝜏) 𝑣𝑟 to indicate that the expression 𝑒 evaluate to 𝑣𝑟
under the local environment 𝜚 (𝜏). Notice that the Ret rule sets the second component of I(𝜏) to
⊥, thus allowing future calls in 𝜏 through Invk. The Step rules allow a method invocation active in
a session to take either a silent step (StepLocal) or a step that affects memory (StepMem) 1.

Steps taken by an invocation that do not access shared memory are recorded using a silent
event (Sil⟨𝛾 ⟩). Steps that involve either reading or writing from shared memory are recorded using
memory events that are of the form: Mem⟨𝑖, 𝜏, 𝛼⟩, where 𝑖 is a unique event identifier, 𝜏 is the
session containing the event, and 𝛼 defines the particular operation performed on the memory
(read (R), write (W), read-modify-update (U), or fence (F)). We assume the language modeled by the
LTS is receptive [51] and does not constrain the specific values read from memory. This assumption
is consistent with prior work [43] that also separates out the memory system from the program
semantics, by allowing load operations to read arbitrary values from memory. These values are
then constrained by the memory system as defined in §3.2.

1The local reduction rules defining 𝛼−→𝜏 are straightforward and provided in the appendix, §A.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:10 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

3.2 Memory system
We use declarative specifications of the RC20 memory model to construct the memory system.
These specifications constrain execution graphs, which consist of the memory events that we defined
in the previous subsection, along with a number of binary relations among these events. Formally,
an execution graph 𝐺 = ⟨𝑀, rf,mo, so⟩ consists of a set of memory events 𝑀 along with the binary
relations reads-from (rf), modification-order (mo) and session-order (so). Our development closely
follows prior work in this area [33, 38, 43].

Notation. For a relation 𝑅, we write 𝑅? for the reflexive and 𝑅+ for the transitive closure of 𝑅,
𝑅−1 denotes its inverse, while 𝑑𝑜𝑚(𝑅) denotes its domain. 𝑅1;𝑅2 denotes the composition of the
two relations 𝑅1 and 𝑅2. Given a set of memory events 𝑀 , [𝑀] denotes the identity relation on 𝑀 .
Hence, [𝑀1];𝑅; [𝑀2] denotes 𝑅 ∩ (𝑀1 ×𝑀2). Given an execution graph 𝐺 = ⟨𝑀, rf,mo, so⟩, we use
the notation 𝐺.𝑋 to denote the subcomponent 𝑋 of 𝐺 . Given a subset of events 𝑀 ′ ⊆ 𝐺.𝑀 and
binary relation 𝐺.𝑅 over 𝐺.𝑀 , we write 𝐺.𝑅 |𝑀′ to denote the projection of 𝑅 over the events in 𝑀 ′.
We also use the notation 𝐺.𝑀𝜏 to denote the set of events in 𝐺.𝑀 of session 𝜏 , and use 𝐺.𝑀T to
denote set of events in𝐺.𝑀 of memory event type T (T ∈ {R, W, U, F}). We use𝐺.𝑀W+U to indicate the
set of all write and update events.𝐺.𝑀⊑X is used to denote the set of all events in𝐺.𝑀 whose access
mode is related by the partial order ⊑, with X.𝐺.𝑀ℓ for location ℓ denotes the set of memory events
accessing ℓ . We can also combine these notations to denote subsets of events satisfying multiple
properties, for example, 𝐺.𝑀W,ℓ denotes write events to location ℓ . We use 𝐺.𝑤max

ℓ to denote the
most recent write (or update) event in𝐺.𝑀 to ℓ according to the𝐺.mo order. Given a memory event
` = Mem(𝑖, 𝜏, 𝛼), we use various projection functions sess(`), type(`), loc(`), rval(`),wval(`),
mod(`) to denote the session, memory event type, memory location, read value, write value, access
mode respectively. Similarly, for an invocation event 𝛾 , we use functions method(𝛾), arg(𝛾), ret(𝛾)
to denote the method name, argument, and return value resp. Given a relation 𝑅 between memory
events, we use the notation `1

𝑅−→ `2 to denote 𝑅(`1, `2) for memory events `1, `2.
Execution Graphs. A valid execution graph 𝐺 = ⟨𝑀, rf,mo, so⟩ obeys certain well-formedness

constraints, irrespective of the memory model. These well-formedness constraints follow directly
from the definition of the various relations and include the following: (i) mo ⊆ 𝑀W+U ×𝑀W+U is a
total order between write/update events to the same location, (ii) so is a total order between events
in the same session, (iii) rf ⊆ 𝑀W+U ×𝑀U+R is total on its co-domain and only relates events to the
same location and (iv) if `1

rf−→ `2, then wval(`1) = rval(`2). We denote these constraints by 𝜒base.
In order to understand how execution graphs are constrained by memory models, we first describe
the specification for SC. Given an execution graph 𝐺 = ⟨𝑀, rf,mo, so⟩, we define the following
derived relations:

𝐺.fr = (𝐺.rf−1;𝐺.mo) \ [𝐺.𝑀] 𝐺.sw = [𝐺.𝑀⊒rel]; ([𝐺.𝑀F];𝐺.so)?;𝐺.rf+; (𝐺.so; [𝐺.𝑀F])?; [𝐺.𝑀⊒acq]
𝐺.hbSC = (𝐺.rf ∪𝐺.mo ∪𝐺.fr ∪𝐺.so)+ 𝐺.hb = (𝐺.sw ∪𝐺.so)+

The fr relation relates a read event with write events that it does not witness. Execution graph𝐺 is
said to be SC-consistent if hbSC is irreflexive. The hbSC ordering is an interleaving of events across
sessions; making it irreflexive ensures that each read event reads from the most recent write event,
formalizing our intuitive understanding of SC executions. We denote this constraint by 𝜒sc (𝐺).

The sw relation relates rel writes with acq reads that read from them, as well as rel and acq
fences that have rf-related write and read events between them; hb then transitively expands sw
while also taking into account so. An execution graph𝐺 is said to be RC20-consistent if the following
conditions hold: (1) 𝐺.fr; (𝐺.rf)?;𝐺.hb is irreflexive; (2) 𝐺.mo; (𝐺.rf)?; (𝐺.hb)? is irreflexive; (3)
𝐺.fr;𝐺.mo is irreflexive; and, (4) 𝐺.rf ∪𝐺.so is acyclic.

We denote this set of constraints by 𝜒RC20 (𝐺). Intuitively, the first two irreflexivity constraints
guarantee that read and write operations obey hb ordering, i.e. a read event cannot overlook a write

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:11

event that happens-before the read, and the modification order between two write events must agree
with the happens-before order. The third irreflexivity constraint guarantees CAS semantics, i.e.,
two distinct update events cannot read from the same write event. The last constraint is required
to prohibit out-of-thin-air reads [9]. Notice that 𝜒SC (𝐺) ⇒ 𝜒RC20 (𝐺), and hence, if an execution
graph is SC-consistent, it is also RC20-consistent. The above specification of RC20-consistency
matches with the development used in previous work [43].

Traces. We now present the memory systems for the SC and RC20 memory models. We define
a common parameterized system that can be instantiated with either 𝜒SC or 𝜒RC20. The labeled
transition system for memory model 𝑋 is given byMS𝑋 = ⟨G,MemEvt,→𝑋 ⟩. Here, G is the set
of all execution graphs, MemEvt are memory events as defined earlier, and→𝑋⊆ G ×MemEvt×G
are labeled transitions. We define an initial execution graph 𝐺⊥ = ⟨𝑀⊥, ∅, ∅, ∅⟩, where 𝑀⊥ contains
an initial write event W⟨ ℓ, 𝑣⊥ℓ , rlx ⟩ to every location ℓ .

Each transition adds a new memory event, corresponding to an arbitrary action 𝛼 in arbitrary
session 𝜏 , as long as the new execution graph obeys the well-formedness constraints and the
consistency constraints of the memory model. We now take the product of the program semantics
(ΩL) and memory system (MS𝑋) to describe executions of a library implementation L under
memory model 𝑋 . In the product, the transition of the program semantics

`
=⇒ and the transition of

the memory system
`−→𝑋 must agree on the memory event. For method invocations, returns, or

silent transitions of the program semantics, there will be no transitions in the memory system. A
trace of the combined transition system begins from the initial state ⟨𝑠⊥,𝐺⊥⟩ and contains a finite
number of transitions. A complete trace must end in a final state ⟨𝑠⊥,𝐺⊥⟩

𝜔1
==⇒ . . .

𝜔𝑛

===⇒ ⟨𝑠,𝐺⟩, where
in the state 𝑠 , all invocations have completed their executions, i.e. there are no pending return
statements in any session.

In the following, we consider an execution of a library implementation 𝐿 under memory model
𝑋 to be a tuple 𝐸 = ⟨𝑡, Γ,𝐺⟩ where 𝑡 is a trace of the combined transition system Ω𝐿 ×MS𝑋 , Γ is
the set of all method invocation events and 𝐺 is the execution graph in the final state of the trace.
We also define an invocation session order soinv, which relates invocation events belonging to the
same session in the order in which they appear in the trace 𝑡 . We use the notation E𝐿𝑋 to denote the
set of all such executions. Similarly, a complete execution corresponds to a complete trace, and we
use CE𝐿𝑋 to denote the set of all complete executions. We also use the notation 𝐸.𝐺 to denote the
execution graph of 𝐸, and 𝐸.𝑀, 𝐸.rf, 𝐸.mo, 𝐸.so to denote the various components of the execution
graph 𝐺 .

3.3 Robustness and Library Correctness under SC
The robustness problem, in general, asks whether every RC20 execution of a program is also possible
under SC. In the context of library implementations, we re-define the notion of execution-graph
robustness, originally proposed in [38], as follows:

Definition 3.1. An execution 𝐸 ∈ E𝐿RC20 of a library implementation 𝐿 is execution-graph robust,
if 𝐸 ∈ E𝐿SC. A library implementation 𝐿 is execution-graph robust if all of its complete executions
𝐸 ∈ CE𝐿RC20 are execution-graph robust.

Our verification strategy (described in §4) uses the SC specification of a library implementation
to discharge the verification conditions. The correctness of a library implementation under SC
is typically specified using the notion of linearizability, which tries to establish a simulation
between concurrent executions of the implementation and sequential executions of a reference
implementation of the same data structure. However, previous works ([23, 25]) have also proposed

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:12 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

alternative declarative specifications which are equivalent to linearizability and which directly
constrain the argument/return value of invocations using a collection of axioms. Such a declarative
specification is more amenable to SMT encoding, and hence we have used such specifications in
our work. The specifications also establish a happens-before ordering among invocations (hbinv)
which is required to be a total order.

For example, to provide a declarative specification of the register library of Fig. 2, we first define
a binary predicate match over invocation events in an execution, which is used in the following
three specification predicates. These take as input the invocation events Γ in an execution 𝐸 of the
library implementation:

match(𝛾1, 𝛾2) ≜ method(𝛾1) = set ∧method(𝛾2) = get ∧ arg(𝛾1) = ret(𝛾2)
𝜒GetSet (Γ) ≜ ∀𝛾 ∈ Γ. method(𝛾) = get ∧ ret(𝛾) ≠ UNDEF⇒ ∃𝛾 ′ ∈ Γ. match(𝛾 ′, 𝛾)∧

𝛾 ′
hbinv−−−−→ 𝛾

𝜒GetFrom (Γ) ≜ ∀𝛾1, 𝛾2, 𝛾3 ∈ Γ. ¬(match(𝛾1, 𝛾2) ∧method(𝛾3) = set ∧ 𝛾1
hbinv−−−−→ 𝛾3 ∧ 𝛾3

hbinv−−−−→ 𝛾2)
𝜒GetUNDEF (Γ) ≜ ∀𝛾1, 𝛾2 ∈ Γ. method(𝛾1) = set ∧method(𝛾2) = get ∧ 𝛾1

hbinv−−−−→ 𝛾2
⇒ ret(𝛾2) ≠ UNDEF

𝜒LIN ≜ (soinv ⇒ hbinv) ∧ hbinv is a total order

𝜒GetSet constrains all get invocations that return non-UNDEF values to match their return values
with the argument value of some set invocation (and also defines hbinv relation between them),
𝜒GetFrom disallows scenarios in which a get invocation returns the value of an older (not most-
recent) set operation, while 𝜒GetUNDEF disallows a get operation to return UNDEF if there is set
operation before it. 𝜒LIN ensures that hbinv is a total order and obeys the session order among
invocations. The set 𝜒reg = {𝜒GetSet, 𝜒GetFrom, 𝜒GetUNDEF, 𝜒LIN} defines a specification of the register
library equivalent to linearizability[25]. Under SC, it is easy to see that any execution of the
implementation of Fig. 2 satisfies 𝜒reg.

In general, given a library implementation L of data structure D with specification 𝜒D , we
assume library correctness under SC, which means that every complete execution 𝐸 = ⟨𝑡, Γ,𝐺⟩ ∈
CE𝐿SC satisfies the specification, i.e. A𝑖 (Γ) holds for all A𝑖 ∈ 𝜒D . Declarative specifications
equivalent to linearizability have been defined for all common data structures such as stack, queue,
set, etc. in previous works [25].These specifications can be easily encoded as FOL formulae over
the domain of invocation events, constraining the method names, arguments, return value and
the session order relation. Note that specifications do not directly constrain any internal event
of the library implementation, since these would not be directly observable to a client, and the
specification should be agnostic of the implementation.

4 Induction for Robustness
In this section, we adapt an existing approach [43] to checking robustness of programs under
the RC20 memory model to the library setting, and in particular derive an inductive strategy for
establishing robustness. Our strategy is based on deriving sufficient conditions for robustness, such
that if these conditions are maintained at every step in every SC execution of the implementation,
then it is guaranteed to be execution-graph robust. In order to describe this robustness condition,
we first define the notion of prefix of executions.

Definition 4.1. Given a complete execution 𝐸 = ⟨ 𝑡, Γ,𝐺 ⟩ ∈ CE𝐿SC of implementation 𝐿 under
SC, a prefix 𝐸 ′ = ⟨ 𝑡 ′, Γ′,𝐺 ′ ⟩ ∈ E𝐿SC is an execution obtained from a prefix 𝑡 ′ of the trace 𝑡 . That is,
there exists 𝑡 ′′ such that 𝑡 = 𝑡 ′ ◦ 𝑡 ′′ where ◦ composes two traces if the final state in 𝑡 ′ is the same
as the initial state of 𝑡 ′′.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:13

Note that for every relation 𝑅 defined in the execution graph 𝐺 , the relation 𝑅′ in the execution
graph 𝐺 ′ will be 𝑅 |𝐺′.𝑀 . That is because for events 𝑒1, 𝑒2 ∈ 𝐺 ′.𝑀 , if 𝑒1

𝑅−→ 𝑒2, then since both events
also occur in the trace 𝑡 ′, we would also have 𝑒1

𝑅′−→ 𝑒2. The prefix 𝐸 ′ also obeys the following
property:

∀` ′ ∈ 𝐸 ′.𝑀. ∀` ∈ 𝐸.𝑀. `
𝐸.so−−−→ ` ′⇒ ` ∈ 𝐸 ′.𝑀

That is, if an event ` ′ is in the prefix, then every event ` before it in the same session must also be
in the prefix. We now define the next event of a prefix:

Definition 4.2. Given a prefix 𝐸 ′ = ⟨ 𝑡 ′, Γ′,𝐺 ′ ⟩ of 𝐸, ` is called the next event of 𝐸 ′ if 𝑡 ′
𝜔1
==⇒

𝐶1
𝜔2
==⇒ 𝐶2 ⇒ . . .

𝜔𝑛−1
====⇒ 𝐶𝑛−1

`
=⇒ 𝐶𝑛 is also a prefix of 𝑡 , where 𝜔1, . . . , 𝜔𝑛−1 are either invocation

events or local events and ` is a memory event.

The next event of prefix 𝐸 ′ is denoted by next(𝐸 ′, 𝐸). For prefix 𝐸 ′ and ` = next(𝐸 ′, 𝐸), 𝐸 ′ + ` is
used to denote the execution corresponding to the prefix of 𝐸 ending in event `. The following
definition characterizes a non-robustness witness[43], i.e. a SC execution which leads to a non-
robust RC20 execution.

Definition 4.3. Given a complete SC execution 𝐸 ∈ CE𝐿SC of implementation 𝐿, let 𝐸 ′ be a prefix
of 𝐸 and event ` = next(𝐸 ′, 𝐸) such that loc(`) = ℓ and sess(`) = 𝜏 . Then 𝐸 ′ is a non-robustness
witness if the following conditions are true:2

(1) 𝐸 ′.𝑤max
ℓ ∈ 𝑑𝑜𝑚(𝐸 ′.hb?

SC; [𝐸 ′.𝑀𝜏])
(2) There exists `𝑤 ∈ 𝐸 ′.𝑀W,ℓ ∪ 𝐸 ′.𝑀U,ℓ such that `𝑤 ≠ 𝐸 ′.𝑤max

ℓ ,
`𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.mo;𝐸 ′.rf?;𝐸 ′.hb?; [𝐸 ′.𝑀𝜏]) and if act(`) ≠ R then `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.rf; [𝐸 ′.𝑀U]))
and

The non-robustness witness definition formalizes our intuitive understanding of a non-robust
execution: for a prefix 𝐸 ′, the next event ` can be non-robust (i.e. can have a different behavior
under RC20 and SC memory models) if the most recent write event 𝑤max

ℓ to ℓ occurs hbSC-before
the session containing `, so under SC, if ` is a read event, then it must read from 𝑤max

ℓ . But 𝑤max
ℓ

does not occur hb-before the session containing ` (because of the presence of the earlier write
event `𝑤), so that in a RC20 execution, ` can read from `𝑤 . Note that if ` is not a read event, then
the definition further constrains the earlier write event `𝑤 to not be related by rf to an update
event, since the CAS semantics even under the C11 memory model would not allow another write
(in this case `) to come between the write (`𝑤) from which an update events reads from. In essence,
referring back to the memory system defined in Sec. 3.2, 𝐸 ′.𝐺

`−→RC20 𝐸 ′.𝐺 + ` would be a valid
transition in the RC20 memory model, but this would not be a valid transition in the SC system.

Further, the execution leading up to such a non-robustness witness must obey SC semantics, thus
characterizing the first (or minimal) violation of robustness. If we can ensure such a non-robustness
witness does not arise during any SC execution, the library implementation is guaranteed to be
robust.

Theorem 4.4. Given a library implementation 𝐿, if every prefix 𝐸 ′ of every complete execution
𝐸 ∈ CE𝐿SC is not a non-robustness witness, then 𝐿 is execution-graph robust3.

The above theorem is a direct application of Theorem 4.6 in [43] but applied to executions of a
library implementation in the presence of the most general client. In order to illustrate this idea,
2Adapted from Definition 4.5 in [43]
3All proofs can be found in appendix, §B

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:14 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

we revisit the execution in Figure 3. Notice that just before the event R⟨ N→ val, v, rlx ⟩, the most
recent write event to the location N→val, W⟨ N→ val, v, rlx ⟩, is in both hbSC and hb order, thus
ensuring that the read event has the same behavior under both SC and RC20. On the other hand,
suppose we modified the library implementation and changed the access modes of either the load or
store of L to be rlx. Then, we would get a non-robustness witness 𝐸 ′ consisting of the two events
of the set invocation (on the left) and the first event of the get invocation (R⟨ L, N, rlx ⟩), with the
next event being the read of N→ val. This witness can be obtained through an SC execution, in the
sense that it does not violate 𝜒SC, and it obeys both the conditions of Definition 4.3. In particular,
with the next event to 𝐸 ′ being a read to location N→ val , the most recent write event 𝑤max

N→val is
W⟨ N→ val, v, rlx ⟩ and it is in hbSC order to the session on the right (thus obeying condition-1),
but it is not in hb order to it. As a result, the initializing write event to N→ val (not depicted in
the figure) would take the role of the event `𝑤 in condition-2 of Definition 4.3. Hence, relaxing
the access mode of either of the accesses to the location L renders the library implementation
non-robust.

While Definition 4.3 simplifies our task of proving robustness of executions by reducing it to a
search problem over SC executions, this is still a tall order, as it requires maintaining information
about relations between low-level events across an unbounded number of arbitrarily long executions
involving an unbounded number of heap locations. To address this issue, our verification strategy
uses induction on the prefixes of SC executions, and then shows the absence of a non-robustness
witness at every step of every SC execution. We can try to use the non-existence of a non-robustness
witness itself as an inductive invariant. That is, for an SC execution 𝐸, we consider a prefix 𝐸 ′ and
assume inductively that for ` = next(𝐸 ′, 𝐸), 𝐸 ′ and ` do not form a non-robustness witness, and then
prove that for ` ′ = next(𝐸 ′ + `, 𝐸), 𝐸 ′ + ` and ` ′ do not form a non-robustness witness. Notice from
Def. 4.3 that 𝐸 ′ and ` not forming a non-robustness witness would mean ¬((1)∧ (2)) ≡ (1) ⇒ ¬(2),
which essentially means that if 𝐸 ′.𝑤max

ℓ is in hbSC order before session 𝜏 , then it should also be in
hb order before 𝜏 .

Unfortunately, we find that this does not constitute an appropriate inductive invariant, since it
only constrains the events that access location ℓ , but the next event of the new prefix 𝐸 ′ + ` may
access a different location after this event is added. Hence, the inductive hypothesis involving ℓ
is not useful. We could try to use as inductive invariant the required property for all locations:
i.e. ∀ℓ , if 𝐸 ′.𝑤max

ℓ is in hbSC order before some session 𝜏 , it is in hb order before it. However, this
condition is too strong and not necessary for establishing non-robustness. This is because even if
this condition does not hold for some location (say ℓ ′), which means that 𝐸 ′.𝑤 ′max

ℓ is in hbSC order
before the session 𝜏 but not in hb order before it, the next event in 𝜏 must access ℓ ′ to form the
actual non-robustness witness. The presence of such a event 𝐸 ′.𝑤 ′max

ℓ is a necessary condition for
forming an actual non-robustness witness, which we formalize below as a potential witness:

Definition 4.5. Given an execution 𝐸 ∈ CE𝐿SC, a prefix 𝐸 ′ of 𝐸, ` ∈ 𝐸 ′.𝑀 and a write event
` ′ ∈ 𝐸 ′.𝑀max

W ∪ 𝐸 ′.𝑀max
U , 𝐸 ′, ` ′ and ` form a potential non-robustness witness if ` ′ 𝐸′.hbSC−−−−−→ ` and

¬(` ′ 𝐸′.hb−−−−→ `).
𝐸.𝑀max

W indicates the set of maximal events in 𝐸 according to the mo ordering. Note that to
obtain an actual non-robustness witness, we would have to instantiate the above definition with
` ′ = 𝑤max

ℓ for some location ℓ , and the next event in the session containing ` must also access
ℓ . Figure 7 shows a potential non-robustness witness for the register library implementation. It
shows an execution with two set invocations which happen in different sessions. Because of the
mo relation between the two write events to location L, the write event W⟨ N1 → val, v1, rlx ⟩
comes in hbSC order to the last event of session 𝜏2 (W⟨ L, N2, rel ⟩), but it is not in hb order before

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:15

it. Using the notation of the above definition, 𝐸 ′ would be the execution depicted in Figure 7,
` ′ would be the write event to N1 → val, and ` would be the write event to L in session 𝜏2.

<latexit sha1_base64="SY0/6jH6PiZrvLW0pqrY65j8DJc=">AAACEXicbVC7SgNBFJ31GeMramkzGASrsCuiYhW0sYxgopANy+zkJg7OzC4zd4NhyS/Y+Cs2ForY2tn5N84mKXwdGDiccw937olTKSz6/qc3Mzs3v7BYWiovr6yurVc2Nls2yQyHJk9kYq5jZkEKDU0UKOE6NcBULOEqvj0r/KsBGCsSfYnDFDqK9bXoCc7QSVFlL8x0F0wRz8M+U4pFwUlIQ4Q7RMwt4CikgygYRZWqX/PHoH9JMCVVMkUjqnyE3YRnCjRyyaxtB36KnZwZFFzCqBxmFlLGb1kf2o5qpsB28vFFI7rrlC7tJcY9jXSsfk/kTFk7VLGbVAxv7G+vEP/z2hn2jju50GmGoPlkUS+TFBNa1EO7wgBHOXSEcSPcXym/YYZxdCWWXQnB75P/ktZ+LTisBRcH1frptI4S2SY7ZI8E5IjUyTlpkCbh5J48kmfy4j14T96r9zYZnfGmmS3yA977FxoPnc8=</latexit>

�1 : set v1

<latexit sha1_base64="FEuDmENY65BrmWAXB8FQaC7Wt20=">AAACIHicbVDLSgMxFM34rPVVdekmWAQXUmZErMuCGwWRCvYBnVIy6W0NZjJDckcsw3yKG3/FjQtFdKdfY/pQfB0IHM45l5t7glgKg6775kxNz8zOzecW8otLyyurhbX1uokSzaHGIxnpZsAMSKGghgIlNGMNLAwkNIKro6HfuAZtRKQucBBDO2R9JXqCM7RSp1D2EW4QMW1kvmSqL4F+KqfZLj3reLtfggaZUV+PUp1C0S25I9C/xJuQIpmg2im8+t2IJyEo5JIZ0/LcGNsp0yi4hCzvJwZixq9YH1qWKhaCaaejAzO6bZUu7UXaPoV0pH6fSFlozCAMbDJkeGl+e0PxP6+VYO+wnQoVJwiKjxf1EkkxosO2aFdo4CgHljCuhf0r5ZdMM46207wtwft98l9S3yt5ByXvfL9YOZnUkSObZIvsEI+USYUckyqpEU5uyT15JE/OnfPgPDsv4+iUM5nZID/gvH8AB3CkIQ==</latexit>

WhL, N1, reli

<latexit sha1_base64="PurJ5l1egCwYDpRyBf3WnevjFwA=">AAACKXicbVBNa9tAFFylSZq4aeq0x1yWmkAPxkglpD0aemkvIYX4AywjntbP9pLVSuw+uTbCfyeX/pVeWkhJes0fyVp2oLEzsDDMzOPtmzhT0pLv33lbL7Z3dl/u7VdeHbw+fFM9etu2aW4EtkSqUtONwaKSGlskSWE3MwhJrLATX31Z+J0JGitTfUmzDPsJjLQcSgHkpKjaDAmnRFR05qECPVLIz6OAh0aOxgTGpD/4BFSdT6Kgzh+zRk3nLlLGo2rNb/gl+CYJVqTGVriIqn/CQSryBDUJBdb2Aj+jfgGGpFA4r4S5xQzEFYyw56iGBG2/KC+d8xOnDPgwNe5p4qX6/0QBibWzJHbJBGhs172F+JzXy2n4uV9IneWEWiwXDXPFKeWL2vhAGhSkZo6AMNL9lYsxGBDkyq24EoL1kzdJ+2MjOGsE309rzW+rOvbYMXvPPrCAfWJN9pVdsBYT7Jr9Yjfsr/fT++3dev+W0S1vNfOOPYF3/wCKrKdv</latexit>

WhN1 ! val, v1, rlxi

<latexit sha1_base64="dkMa/fgNRVZWkuQlRDr05OAUCi0=">AAACAXicbVC7SgNBFJ2NrxhfqzaCzWAQrMJuELUM2GgX0TwgCWF2cpMMmX0wc1cMS2z8FRsLRWz9Czv/xtlkC008MHA451zu3ONFUmh0nG8rt7S8srqWXy9sbG5t79i7e3UdxopDjYcyVE2PaZAigBoKlNCMFDDfk9DwRpep37gHpUUY3OE4go7PBoHoC87QSF37oI3wgIjJLeg0RCe0jSzulrt20Sk5U9BF4makSDJUu/ZXuxfy2IcAuWRat1wnwk7CFAouYVJoxxoixkdsAC1DA+aD7iTTCyb02Cg92g+VeQHSqfp7ImG+1mPfM0mf4VDPe6n4n9eKsX/RSUQQxQgBny3qx5JiSNM6aE8o4CjHhjCuhPkr5UOmGEdTWsGU4M6fvEjq5ZJ7VnJvTouV66yOPDkkR+SEuOScVMgVqZIa4eSRPJNX8mY9WS/Wu/Uxi+asbGaf/IH1+QOhwZcE</latexit>

Session ⌧2

<latexit sha1_base64="k0GQto9cDO5I7Hm3u0XLI97wks8=">AAACIHicbVDLSgMxFM34rPVVdekmWAQXUmZErMuCGwWRCvYBnVIy6W0NZjJDckcsw3yKG3/FjQtFdKdfY/pQfB0IHM45l5t7glgKg6775kxNz8zOzecW8otLyyurhbX1uokSzaHGIxnpZsAMSKGghgIlNGMNLAwkNIKro6HfuAZtRKQucBBDO2R9JXqCM7RSp1D2EW4QMW1kvmSqL4F+KqfZLj3r7O1+CRpkRn09SnUKRbfkjkD/Em9CimSCaqfw6ncjnoSgkEtmTMtzY2ynTKPgErK8nxiIGb9ifWhZqlgIpp2ODszotlW6tBdp+xTSkfp9ImWhMYMwsMmQ4aX57Q3F/7xWgr3DdipUnCAoPl7USyTFiA7bol2hgaMcWMK4FvavlF8yzTjaTvO2BO/3yX9Jfa/kHZS88/1i5WRSR45ski2yQzxSJhVyTKqkRji5JffkkTw5d86D8+y8jKNTzmRmg/yA8/4BCQqkIg==</latexit>

WhL, N2, reli

<latexit sha1_base64="+SHpVY7/ndl8CP7VrUH/jr4ZzrE=">AAACKXicbVDLahtBEJx1/JDll5IcfRksDD4YsSuM7aMgl+QSHLAsgVYsvaOWNHh2dpnplSUW/U4u/hVfErBJcs2PePQw+FUwUFRV09MVZ0pa8v2/3sqH1bX1jdJmeWt7Z3ev8vHTlU1zI7ApUpWadgwWldTYJEkK25lBSGKFrfj6y8xvjdBYmepLmmTYTWCgZV8KICdFlUZIOCaiojUNFeiBQv49qvPQyMGQwJj0ho9AHfNRVD/mT1mjxlMXmcejStWv+XPwtyRYkipb4iKq/A57qcgT1CQUWNsJ/Iy6BRiSQuG0HOYWMxDXMMCOoxoStN1ifumUHzqlx/upcU8Tn6vPJwpIrJ0ksUsmQEP72puJ73mdnPrn3ULqLCfUYrGonytOKZ/VxnvSoCA1cQSEke6vXAzBgCBXbtmVELw++S25qteC01rw46Ta+Laso8T22QE7YgE7Yw32lV2wJhPsJ7tj9+zBu/V+eX+8f4voirec+cxewPv/CI31p3E=</latexit>

WhN2 ! val, v2, rlxi

Session ⌧1<latexit sha1_base64="EzPSNnjMWmjnFxAOho1SpNrrEV4=">AAACAHicbVC7SgNBFJ31GeMramFhMxgEq7AbBS0DNtpFNA9IlmV2cjcZMvtg5q4YljT+io2FIrZ+hp1/42ySQhMPDBzOOZc79/iJFBpt+9taWl5ZXVsvbBQ3t7Z3dkt7+00dp4pDg8cyVm2faZAiggYKlNBOFLDQl9Dyh1e533oApUUc3eMoATdk/UgEgjM0klc67CI8ImJ2BzoP0XEXWeo5XqlsV+wJ6CJxZqRMZqh7pa9uL+ZpCBFyybTuOHaCbsYUCi5hXOymGhLGh6wPHUMjFoJ2s8kBY3pilB4NYmVehHSi/p7IWKj1KPRNMmQ40PNeLv7ndVIMLt1MREmKEPHpoiCVFGOat0F7QgFHOTKEcSXMXykfMMU4ms6KpgRn/uRF0qxWnLNK9fa8XLuZ1VEgR+SYnBKHXJAauSZ10iCcjMkzeSVv1pP1Yr1bH9PokjWbOSB/YH3+AEIfltc=</latexit>

mo<latexit sha1_base64="F3w2M1H4R+M4+zArbqlTeAqPEWE=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLgRncV7APaoWTSTBuax5BkhDL0M9y4UMStX+POvzGdzkJbDwQO59xLzj1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rczv3OE9WGKflopwkNBR5JFjOCrZN6fYHt2MSZULNBperX/BxolQQFqUKB5qDy1R8qkgoqLeHYmF7gJzbMsLaMcDor91NDE0wmeER7jkosqAmzPPIMnTtliGKl3ZMW5ervjQwLY6YicpN5xGVvLv7n9VIb34QZk0lqqSSLj+KUI6vQ/H40ZJoSy6eOYKKZy4rIGGtMrGup7EoIlk9eJe16Lbis1R+uqo37oo4SnMIZXEAA19CAO2hCCwgoeIZXePOs9+K9ex+L0TWv2DmBP/A+fwDbapGm</latexit>

hbSC
<latexit sha1_base64="3PVX2S7GFA8l6dBfRMFAq8Kx4I4=">AAACAHicbZDLSsNAFIZP6q3WW9SFCzeDRXBVkirostCN7iraC7QhTKaTdujkwsxEKCEbX8WNC0Xc+hjufBunaQRt/WHg4z/nMOf8XsyZVJb1ZZRWVtfWN8qbla3tnd09c/+gI6NEENomEY9Ez8OSchbStmKK014sKA48TrvepDmrdx+okCwK79U0pk6ARyHzGcFKW655NAiwGks/HXuZ+8N3zcw1q1bNyoWWwS6gCoVarvk5GEYkCWioCMdS9m0rVk6KhWKE06wySCSNMZngEe1rDHFApZPmB2ToVDtD5EdCv1Ch3P09keJAymng6c58xcXazPyv1k+Uf+WkLIwTRUMy/8hPOFIRmqWBhkxQovhUAyaC6V0RGWOBidKZVXQI9uLJy9Cp1+zzWv32otq4KeIowzGcwBnYcAkNuIYWtIFABk/wAq/Go/FsvBnv89aSUcwcwh8ZH9+MhZcJ</latexit>

�2 : set v2
<latexit sha1_base64="mAFN+VDkrAAOsZDk4+1b+DcvF7g=">AAACEHicbVC7SgNBFJ31GeMramkzGESrsBsFxUqw0S6CSYRsWGYnN3FwZnaZuSuGJZ9g46/YWChia2nn3zh5FBo9MHA45x7u3BOnUlj0/S9vZnZufmGxsFRcXlldWy9tbDZskhkOdZ7IxFzHzIIUGuooUMJ1aoCpWEIzvj0b+s07MFYk+gr7KbQV62nRFZyhk6LSXpjpDphhPA97TCkWVU9oiHCPiDm1gHRwF1UHUansV/wR6F8STEiZTFCLSp9hJ+GZAo1cMmtbgZ9iO2cGBZcwKIaZhZTxW9aDlqOaKbDtfHTQgO46pUO7iXFPIx2pPxM5U9b2VewmFcMbO+0Nxf+8Vobd43YudJohaD5e1M0kxYQO26EdYYCj7DvCuBHur5TfMMM4ug6LroRg+uS/pFGtBAeV6uVh+fRiUkeBbJMdsk8CckROyTmpkTrh5IE8kRfy6j16z96b9z4enfEmmS3yC97HNwFznTQ=</latexit>

Fig. 7. Potential non-robustness witness in the register
library implementation.

A potential non-robustness witness, consisting
of prefix 𝐸 ′ and the write event ` ′ can become
an actual non-robustness witness if 𝐸 ′ can be
expanded into another prefix 𝐸 ′′ such that the
next event ` ′′ of 𝐸 ′′ accesses the location of ` ′,
` ′ continues to remain the most recent write
to its location, and the non-hb hbSC relation
continues to exist between `𝑤 and ` ′′. For the
potential non-robustness witness of Fig. 7, a
subsequent immediate access to location N1 → val would result in an actual non-robustness
witness. While every potential witness does not necessarily become an actual witness, an actual
witness must have been at some stage a potential witness. For example, the potential non-robustness
witness in our example will never result in an actual witness, since there will be no further access
to the location N1 → val in an SC execution. Intuitively, this is because of the register semantics,
as the effect of a set invocation 𝛾2 “overwrites” the effects of a previous set invocation 𝛾1 through
the write to location L, and the 𝜒GetFrom specification prohibits a get invocation to read from an
older set invocation.

Table 1. Sufficient conditions for establishing robustness inductively.

Φ𝑠𝑟𝑐 (𝐸, ℓ) ∀`𝑚 ∈ 𝐸.𝑀max
W ∪ 𝐸.𝑀max

U . ∀`1, `2 ∈ 𝐸.𝑀. loc(`𝑚) = ℓ∧
∧`𝑚 𝐸.hb?

−−−−→ `1 ∧ `1
𝐸.fr∨𝐸.mo∨𝐸.rf−−−−−−−−−−−−−→ `2 ⇒ ∃`3 ∈ 𝐸.𝑀. `𝑚

𝐸.hb−−−−→ `3 ∧ `3
𝐸.hb?
−−−−→ `2

Φ𝑑𝑠𝑡 (𝐸, ℓ) ∀`𝑚 ∈ 𝐸.𝑀max
W ∪ 𝐸.𝑀max

U . ∀`1, `2 ∈ 𝐸.𝑀. loc(`𝑚) = ℓ ∧ loc(`2) = ℓ

∧`𝑚
𝐸.hbSC−−−−−−→ `1 ∧ `1

𝐸.so−−−→ `2 ⇒ ∃`3 ∈ 𝐸.𝑀. `𝑚
𝐸.hb−−−−→ `3 ∧ `3

𝐸.so−−−→ `2

In order to verify robustness, we then have to ensure that either a potential non-robustness
witness is not formed at all (thus ensuring robustness at the source), or if a potential robustness
witness does form, it does not manifest into an actual non-robustness witness (thus ensuring
robustness at the destination). As shown in Table 1, we present two conditions (Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡) that
ensure the absence of a non-robustness witness by disallowing it at the source and destination,
resp. These conditions are parametric on executions and locations.

We first focus on Φ𝑠𝑟𝑐 , which inductively tries to maintain the non-existence of a potential
non-robustness witness. In order to understand Φ𝑠𝑟𝑐 (𝐸, ℓ), we note that the only difference between
the definitions of hb and hbSC is that the rf relation between relaxed accesses as well as fr and mo
relations between any two accesses induce an hbSC relation, but they do not induce an hb relation.
Hence, whenever hbSC is established due to these relations, we should also be able to establish
hb. Φ𝑠𝑟𝑐 considers a maximal write event `𝑤 to location ℓ in 𝐸. If there exists a hbSC (and hence
inductively hb) relation from `𝑤 to some event `1, and if this hbSC relation were to be extended
to `2 by a fr,mo or rf relation between `1 and `2, then there should also exist a hb relation from
`𝑤 to `2, through some event `3. To illustrate, we refer back to Figure 4, which essentially shows
the different cases to be handled in order to establish Φ𝑠𝑟𝑐 (𝐸, L) for every SC execution 𝐸 of the
register implementation. In particular, for the case depicted in Figure 4(a), using the notation of Φ𝑠𝑟𝑐 ,
`𝑤 = `1 = W⟨ L, _, rel ⟩ and `2 = `3 = R⟨ L, _, acq ⟩. Cases depicted in Figure 4(b)-(d) do not satisfy
the antecedent of Φ𝑠𝑟𝑐 (because there does not exist events `1, `2 with the required relation between
them), while for the case depicted in Figure 4(e), `1 = W⟨ N → val, _, _ ⟩, `2 = R⟨ N → val, _, _ ⟩,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:16 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

and `3 = R⟨ L, N, acq ⟩; `3 is not depicted in the figure, but it would occur before `2 in the same get
invocation. Note that the antecedent of Φ𝑠𝑟𝑐 simply means that `𝑤

hb−−→ `2, but explicitly maintaining
the event `3 which establishes this hb relation helps us in the SMT encoding of Φ𝑠𝑟𝑐 , as we will
explain in the next section.

Now, if Φ𝑠𝑟𝑐 cannot be established, then a potential non-robustness witness may be formed, as
illustrated in Fig. 7. Notice that this means that Φ𝑠𝑟𝑐 (𝐸, N1 → val) does not hold for the execution
𝐸 of Fig. 7. Then, we use the condition Φ𝑑𝑠𝑡 to prevent such a potential non-robustness witness
from turning into an actual witness. In words, this condition considers a scenario when there is a
maximal write event `max𝑤 to location ℓ which occurs hbSC-before event `1, with a later event `2
in the same session accessing the location ℓ . This could lead to an actual non-robustness witness,
with the prefix being the execution corresponding to the trace leading upto the state just before `2.
However, in such a scenario, Φ𝑑𝑠𝑡 enforces the existence of another event `3 before `2 (`3 could be
the same as `1) in the same session, such that `max𝑤 occurs hb-before `3. This would prevent the
formation of an actual non-robustness witness involving `max𝑤 and `2.

To illustrate, we have already established through Fig. 7 that Φ𝑠𝑟𝑐 does not hold for the location
N1 → val. To show Φ𝑑𝑠𝑡 , we let `𝑤 be W⟨ N1 → val, v1, rlx ⟩, while `1 would be some event
which occurs in so-order before `2, which has to be another access to N1 → val. As per the
program structure of the register library, `2 can only be a read event, which must occur in a
get invocation. The scenario exactly corresponds to Fig. 3, where, using the notation of Φ𝑑𝑠𝑡 ,
`𝑤 = W⟨ N → val, v, rlx ⟩, `1 = R⟨ L, N, acq ⟩ and `2 = R⟨ N → val, v, rlx ⟩. However, in this case,
`1 must read from W⟨ L, N, acq ⟩, because there is no another write to L which writes N (guaranteed
by the malloc semantics). Hence, we can instantiate `3 with `1 itself in the consequent of Φ𝑑𝑠𝑡 .

Notice that if Φ𝑠𝑟𝑐 (𝐸, ℓ) holds, then Φ𝑑𝑠𝑡 (𝐸, ℓ) also holds, because hbSC would imply hb from
write events to ℓ , in which case we can take `3 = `1. However, in general, Φ𝑑𝑠𝑡 does not imply Φ𝑠𝑟𝑐

(as we saw for the location N1 → val). The reason we separate out the two conditions is because
for some locations, it is easier to establish Φ𝑠𝑟𝑐 (𝐸, ℓ), since the condition just requires one access to
the location ℓ , as opposed to Φ𝑑𝑠𝑡 (𝐸, ℓ) which requires two accesses. The distinction will become
more clear when we go through our SMT encoding in §7.

To summarize, Φ𝑠𝑟𝑐 (𝐸, ℓ) prevents the formation of a potential non-robustness witness involving
location ℓ , while Φ𝑑𝑠𝑡 (𝐸, ℓ) prevents a potential non-robustness witness involving ℓ from turning
to an actual non-robustness witness. If we can show that ∀ℓ ∈ Location.∀𝐸 ∈ CE𝐿SC. Φ𝑑𝑠𝑡 (𝐸, ℓ) ∨
Φ𝑠𝑟𝑐 (𝐸, ℓ), then we can inductively show execution-graph robustness.

Theorem 4.6. Given a library implementation 𝐿, if ∀ℓ ∈ Location.∀𝐸 ∈ CE𝐿SC. Φ𝑑𝑠𝑡 (𝐸, ℓ) ∨
Φ𝑠𝑟𝑐 (𝐸, ℓ), then 𝐿 is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. Φ𝑑𝑠𝑡 and Φ𝑠𝑟𝑐 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the definition of
a non-robustness witness (Def. 4.3) and the conditions Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 . These conditions merely
ensure that if the maximal write `𝑚 to a location appears hbSC-before the next access to it, it also
appear hb-before it. They do not consider the non-maximal write `𝑤 from Def. 4.3 at all, which
is actually the root cause of the non-robust behavior. In particular, consider the scenario where a
non-maximal write `𝑤 may be in rf relation to an update event, and hence cannot cause a robustness
violation if the next event (say `) to be added is a write/update event to the same location as `𝑤 ,
and the maximal write `𝑚 is in hbSC order to the session containing `. In this case, act(`) ≠ R,
`𝑤 ∈ 𝑑𝑜𝑚(𝐸 ′.rf; [𝐸 ′.𝑀]U) (here 𝐸 ′ is the set of events in the execution, see point(2) in Def. 4.3).
Hence, we do not require `𝑤 and consequently `𝑚 to be hb-before `.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:17

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

Session g2

Session g1

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ⌘1(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

Session g2

Session g1

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of
a non-robustness witness (Def. 4.3) and the conditions �BA2 and �3BC . These conditions merely
ensure that if the maximal write `< to a location appears hbSC-before the next access to it, it also
appear hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which
is actually the root cause of the non-robust behavior. In particular, consider the scenario where a
non-maximal write `F may be in rf relation to an update event, and hence cannot cause a robustness
violation if the next event (say `) to be added is a write/update event to the same location as `F ,
and the maximal write `< is in hbSC order to the session containing `. In this case, act(`) < R,
`F 2 3><(⇢ 0.rf; [⇢ 0."]U) (here ⇢ 0 is the set of events in the execution, see point(2) in Def. 4.3).
Hence, we do not require `F and consequently `< to be hb-before `.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses
CAS operations to determine if a con�ict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in e�ect restarting the entire invocation.
It is clearly ine�ective to establish the robustness of events that are generated by such failed

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

Session g2

Session g1

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Anon.

for some locations, it is easier to establish �BA2 (⇢, ✓), since the condition just requires one access to
the location ✓ , as opposed to �3BC (⇢, ✓) which requires two accesses. The distinction will become
more clearer when we go through our SMT encoding in §7.

To summarize, �BA2 (⇢, ✓) prevents the formation of a potential non-robustness witness involving
location ✓ , while �3BC (⇢, ✓) prevents a potential non-robustness witness involving ✓ from turning
to an actual non-robustness witness. If we can show that 8✓ 2 Location.8⇢ 2 CE!

SC. �3BC (⇢, ✓) _
�BA2 (⇢, ✓), then we can inductively show execution-graph robustness.

T������ 4.6. Given a library implementation !, if 8✓ 2 Location.8⇢ 2 CE!
SC. �3BC (⇢, ✓) _

�BA2 (⇢, ✓), then ! is execution-graph robust.

We note that Theorem 4.6 does not hold in the other direction, i.e. �3BC and �BA2 are not necessary
for ensuring execution-graph robustness. In particular, there is a gap between the de�nition of a
non-robustness witness (4.3) and the conditions �BA2 and �3BC . These conditions merely ensure
that if the maximal write `< to a location appears hbSC-before the next access to it, it also appear
hb-before it. They do not consider the non-maximal write `F from Def. 4.3 at all, which is actually
going to manifest the non-robust behavior. In particular, consider the scenario where a non-maximal
write `F may be in the A 5 relation to a CAS event, and hence cannot cause a robustness violation
if the next event (say `) to be added is a write event to the same location as `F , and the maximal
write `< is in ��(⇠ order to the session containing `. In this case, it is not necessary for `< to come
hb-before the session.

Wh ✓1, 1, rlx i

Uh✓1, 1, 2, rlx, rlxi

Wh ✓2, 1, rlx i

Rh ✓2, 1, rlx i

Wh ✓1, 3, rlx i

Session g3

Session g2

Session g1

5 INDUCED SUBGRAPH ROBUSTNESS
We now discuss the challenges that arise in using our veri�cation strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then �nally stores the result of this computation to the global
state if no other concurrent method invocation has made con�icting changes. The pattern uses

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Fig. 8. Execution illustrating incompleteness of �BA2
and �3BC .

Fig. 8 concretely demonstrates this scenario.
Assume that all the events in the execution
come from some library invocations. The up-
date operation to ✓1 in g2 reads from the write
to ✓1 in g1. The read in g3 to location ✓2 reads
from the write in g2, hence the maximal write
to ✓1 (which is the update in g2) is in hbSC order,
but not in hb order to g3, since the accesses to
✓2 are relaxed. Excluding the write to ✓1 in g3, the execution is a potential non-robustness witness.
Let ⇢ 0 be this execution, with the next event ` = Wh ✓1, 3, rlx i. Following the notation used in
Def. 4.3, we have the maximal write to ✓1, `< = Uh✓1, 1, 2, rlx, rlxi, and a non-maximal write
`F = Wh ✓1, 1, rlx i. Now, ⇢ 0 + ` is not an actual non-robustness witness, because even though `<
is hbSC order and `F is not in hb order to the session g3, `F is in rf order to an update event, and
hence `F does not satisfy point(2) of Def. 4.3.

We note that except scenarios like the one given above, �BA2 and �3BC precisely model the absence
of non-robustness witnesses, i.e. if these conditions are violated, it would imply the presence of
an actual non-robustness witness. A distinguishing property of executions like Fig. 8 is that they
involve at least one update event (generated through CAS operation) to a location. We have observed
that in library implementations, either all writes to a location happen through CAS operations, or
none do (i.e. it doesn’t happen that there is both a CAS and a normal write operation to the same
location). If all accesses to a location are through CASes, our automated veri�cation strategy (given
in §7) uses additional CAS constraints, which helps us avoid any false positives (like the execution
in Fig. 8) arising out of the imprecision of �BA2 and �3BC .

Uh✓1, 1, 2, rlxi

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Fig. 8. Execution illustrating incompleteness of Φ𝑠𝑟𝑐
and Φ𝑑𝑠𝑡 .

Fig. 8 concretely demonstrates this scenario.
Assume that all the events in the execution
come from some library invocations. The up-
date operation to ℓ1 in 𝜏2 reads from the write
to ℓ1 in 𝜏1. The read in 𝜏3 to location ℓ2 reads
from the write in 𝜏2, hence the maximal write
to ℓ1 (which is the update in 𝜏2) is in hbSC order,
but not in hb order to 𝜏3, since the accesses to
ℓ2 are relaxed. Excluding the write to ℓ1 in 𝜏3, the execution is a potential non-robustness witness.
Let 𝐸 ′ be this execution, with the next event ` = W⟨ ℓ1, 3, rlx ⟩. Following the notation used in
Def. 4.3, we have the maximal write to ℓ1, `𝑚 = U⟨ℓ1, 1, 2, rlx, rlx⟩, and a non-maximal write
`𝑤 = W⟨ ℓ1, 1, rlx ⟩. Now, 𝐸 ′ + ` is not an actual non-robustness witness, because even though `𝑚
is hbSC order and `𝑤 is not in hb order to the session 𝜏3, `𝑤 is in rf order to an update event, and
hence `𝑤 does not satisfy point(2) of Def. 4.3.

We note that except scenarios like the one given above, Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 precisely model the absence
of non-robustness witnesses, i.e. if these conditions are violated, it would imply the presence of
an actual non-robustness witness. A distinguishing property of executions like Fig. 8 is that they
involve at least one update event (generated through CAS operation) to a location. We have observed
that in library implementations, either all writes to a location happen through CAS operations, or
none do (i.e. it doesn’t happen that there is both a CAS and a normal write operation to the same
location). If all accesses to a location are through CASes, our automated verification strategy (given
in §7) uses additional CAS constraints, which helps us avoid any false positives (like the execution
in Fig. 8) arising out of the imprecision of Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 .

5 Induced Subgraph Robustness
We now discuss the challenges that arise in using our verification strategy on real-world library
implementations, and the mechanisms we employ to overcome them.

We observe that the notion of execution-graph robustness is often too strong for real-world
library implementations that use low-level synchronization primitives such as compare-and-swap
(CAS). A typical CAS-based synchronization pattern is as follows: a method invocation performs a
number of speculative reads without any synchronization, followed by some computation based
on these speculative reads, and then finally stores the result of this computation to the global
state if no other concurrent method invocation has made conflicting changes. The pattern uses
CAS operations to determine if a conflict exists. If another concurrent invocation has indeed made
changes to the global state, the speculative computation is ignored (since the corresponding CAS
would fail), and the pattern is retried. These speculative computations are often performed using
relaxed accesses, and they may generate an arbitrary number of read/write events. Any non-robust
behavior of such events would result in a failing CAS, in effect restarting the entire invocation.
It is clearly ineffective to establish the robustness of events that are generated by such failed
computation. A concrete example of a library implementation demonstrating this pattern is given
in the supplemental material, §4.

In particular, an RC20 execution of a library implementation may be still be effectively robust
against SC even if it exhibits potentially non-robust actions if all events that actually affect the
return value of any method invocation obey SC semantics. To capture this distinction, we define a
new notion of robustness called induced subgraph robustness that only focuses on the robustness
of events that actually effect the client observable behavior of an invocation. Given an execution
graph 𝐺 = ⟨𝑀, rf,mo, so⟩, 𝐺 ′ = ⟨𝑀 ′, rf ′,mo′, so′⟩ is called an induced subgraph of 𝐺 if 𝑀 ′ ⊆ 𝑀
and rf ′ = rf |𝑀′ , mo′ = mo |𝑀′ , so′ = so |𝑀′ .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:18 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

Definition 5.1. A complete execution 𝐸 = ⟨ 𝑡, Γ,𝐺 ⟩ ∈ CE𝐿RC20 of a library implementation 𝐿 is
induced subgraph robust if there exists a complete execution 𝐸 ′ = ⟨ 𝑡 ′, Γ′,𝐺 ′ ⟩ ∈ CE𝐿SC such that (i)
Γ′ = Γ, (ii) For all invocation events 𝛾1, 𝛾2 ∈ Γ, 𝛾1 occurs before 𝛾2 in trace 𝑡 ⇔ 𝛾1 occurs before 𝛾2 in
trace 𝑡 ′ and (iii) 𝐺 ′ is an induced subgraph of 𝐺 . 𝐿 is induced subgraph robust if all of its complete
executions 𝐸 ∈ CE𝐿RC20 are induced subgraph robust.

Notice that induced subgraph robustness only considers complete executions of the library
implementation. For every RC20 execution, there must exist another complete execution under
SC such that the behavior of the method invocations (i.e. argument and return values) and the
memory events which are responsible for this behavior remains the same as the original RC20
execution. The latter is captured by requiring the execution graph 𝐺 ′ of the SC execution to be an
induced subgraph of the RC20 execution. Referring back to the CAS based pattern used in libraries,
the motivation behind requiring 𝐺 ′ to be an induced subgraph of 𝐺 is that 𝐺 ′ would presumably
only contain the events of 𝐺 corresponding to the computation which resulted in a successful CAS,
while the remaining events in 𝐺 corresponding to failing speculative computation can be ignored.
This is ensured by the fact that the behavior of the method invocation events remains the same.
The client of the library need not care about the non-robustness of events which do not affect the
observable behavior.

While induced subgraph robustness is a more useful correctness criterion for real-world library
implementations, our verification strategy of the previous section aims to show execution-graph
robustness. In order to connect these two notions, we consider a pre-processing step that transforms
the implementation so that it does not generate those events which have no impact on an invoca-
tion’s return value. Our goal is to ensure that all events remaining in the transformed program
will have an effect on a method’s return values. Induced subgraph robustness of the original imple-
mentation is then reduced to checking execution-graph robustness of the new implementation.
Formally, we define a robustness-preserving transformation as follows:

Definition 5.2. A robustness-preserving program transformation is a function 𝜌 that takes as
input a library implementation 𝐿 and outputs another library implementation 𝜌 (𝐿) that obeys the
following two conditions:

(1) For every complete RC20 execution 𝐸 = ⟨ 𝑡, Γ,𝐺 ⟩ ∈ CE𝐿RC20 of 𝐿, there exists a complete
RC20 execution 𝐸 ′ = ⟨ 𝑡 ′, Γ′,𝐺 ′ ⟩ ∈ CE𝜌 (𝐿)RC20 of 𝜌 (𝐿) such that (i) Γ′ = Γ, (ii) the order of
invocation events is the same in both the traces 𝑡 and 𝑡 ′ and (iii) 𝐺 ′ is an induced subgraph
of 𝐺 .

(2) CE𝜌 (𝐿)SC ⊆ CE𝐿SC.

The first condition in the above definition allows executions of 𝜌 (𝐿) to not contain all the events
in executions of 𝐿, as long as the observable behavior of invocation events remains the same. The
second condition ensures that the transformation does not add any new behaviors. If we can show
that the transformed implementation 𝜌 (𝐿) is execution graph robust, then this would imply that the
original implementation is induced subgraph robust. We can directly apply our induction strategy
of Section 4 on 𝜌 (𝐿) to determine its execution-graph robustness.

Theorem 5.3. Given a library implementation 𝐿 and a robustness-preserving transformation 𝜌 , if
𝜌 (𝐿) is execution-graph robust, then 𝐿 is induced subgraph robust.

While checking whether a transformation is robustness preserving would be hard in general–
since it requires comparing all RC20 executions of two implementations–applying the definition to
the CAS based synchronization pattern used in libraries is quite straightforward. In particular, we
consider the transformation 𝜌𝐶𝐴𝑆 , which focuses on loops whose loop condition is based on the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:19

success of a cas instruction, and which only generates read events in iterations where the CAS
fails. In such cases, only the last iteration of the loop where the cas succeeds actually matters, and
all previous iterations generate benign read events whose robustness can be ignored. The 𝜌𝐶𝐴𝑆
transformation is implemented as a simple syntactic analysis in the following manner: For every
while loop whose loop constraint is a cas operation, we first check that only read operations are
performed in any iteration. Following that, we unroll the loop once in the original implementation,
and check for any dependencies (through local variables) from read operations in the first iteration
to write operations, return value of the method, or any operation in the second iteration. If there are
no such dependencies, we conclude that the loop iterations are independent, and only the events in
the last iteration need to be preserved. In this case, we remove the while loop, and replace the cas
operation with a bcas. In such cases, it eliminates the loop, and replaces the cas with a blocking cas
(bcas) with the same parameters [38]. The bcas operation blocks until its compare is successful,
ensuring that only the events in the last iteration of the loop in the original implementation will be
generated.

Lemma 5.4. The transformation 𝜌𝐶𝐴𝑆 is a robustness-preserving transformation.

Intuitively, for any RC20 execution 𝐸 of the original implementation 𝐿, we can construct a RC20
execution 𝐸 ′ of 𝜌𝐶𝐴𝑆 (𝐿) because all the write operations in 𝐸 can be directly replicated in 𝐸 ′, since
the only events that will occur in 𝐸 but not 𝐸 ′ will be read events who do not have any dependences
on the write events. Even though these read events can potentially induce more hb relations in 𝐸,
this only restricts the behavior of other events which are preserved from 𝐸 to 𝐸 ′, and hence this
behavior can be replicated in 𝐸 ′ where 𝐸 ′.hb ⊆ 𝐸.hb.

Finally, we note that the notion of induced subgraph robustness is closely related to the previously
proposed notion of observational robustness [43], which also allows benign non-robust events
without any outgoing dependencies. The major difference is that we explicitly maintain the induced
subgraph property, and the fact that invocation events retain the same behavior. Further, in heap
manipulating programs, it often happens that the location to be read by a subsequent read operation
depends on the value read from a previous read (as in the get implementation in the register library).
In such a scenario, observational robustness would then enforce robustness of the earlier read
(because there is an outgoing dependency), but in our case, induced subgraph robustness may allow
both reads to be non-robust if there is no outgoing dependency to the return value/global state.

6 Compositionality
As discussed in the introduction, individual library robustness as defined in Def. 3.1 or Def. 5.1 is
not sufficient for establishing robustness of executions involving multiple libraries. The issue is
that robustness of a library itself does not provide enough synchronization guarantees that would
be required to establish whole execution robustness. To compensate for this, we consider adding an
SC-fence when crossing libraries within every thread. The store buffering example involving the
two register libraries clearly demonstrates that we need SC-fences when crossing libraries within
every thread, but the question is whether this is sufficient in general for any execution involving
any robust library implementations? We answer this in the positive, and formally prove that for
executions composed of calls to multiple robust libraries, if there is an SC-fence within each thread
when crossing different libraries, then the overall execution is guaranteed to be robust.

In the following, we assume each pair of libraries L1 and L2 are disjoint, i.e. there is no common
method that belongs to both libraries. We also require that the sets of memory locations that may
be accessed by each library are also disjoint from each other, which is enforced by the ownership
assumption mentioned at the beginning of §3. We denote an SC fence (i.e. the three instruction
program fence(acq); fadd(𝑓 , 0, acqrel); fence(rel)) by fence(sc). Note that the hb relation will

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:20 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

Invk

I(𝜏) = ⟨𝛾 ′,⊥⟩ 𝑚 = _ 𝑥.𝑠 ∈ L
(𝛾 ′ = Invk⟨_,𝑚′, _, _, 𝜏 ⟩ ∧𝑚′ ∈ L) ∨ 𝛾 ′ = ⊥

𝜚 ′ = 𝜚 [𝜏 ↦→ 𝜚 (𝜏) [𝑥 ↦→ 𝑣𝑎]]
𝑖 unique 𝛾 = Invk⟨𝑖,𝑚, 𝑣𝑎, 𝑣𝑟 , 𝜏 ⟩

I′ = I[𝜏 ↦→ ⟨𝛾, 𝑠 ⟩]
⟨𝜚, I⟩ 𝛾

=⇒ ⟨𝜚 ′, I′⟩

InvkF

I(𝜏) = ⟨𝛾 ′,⊥⟩ 𝛾 ′ = Invk⟨_,𝑚′′, _, _, 𝜏 ⟩ 𝑚′′ ∉ L
𝑚 = _ 𝑥.𝑠 ∈ L 𝑚′ = _ 𝑥.fence(sc) ; 𝑠

𝜚 ′ = 𝜚 [𝜏 ↦→ 𝜚 (𝜏) [𝑥 ↦→ 𝑣𝑎]]
𝑖 unique 𝛾 = Invk⟨𝑖,𝑚, 𝑣𝑎, 𝑣𝑟 , 𝜏 ⟩

I′ = I[𝜏 ↦→ ⟨𝛾, 𝑠 ⟩]
⟨𝜚, I⟩ 𝛾

=⇒ ⟨𝜚 ′, I′⟩

Fig. 9. New Global Reduction Rules of ΩL
be total among all the update events that are generated by the fadd instructions, due to the acqrel
annotation, while the acq and rel fences are required to synchronize with any corresponding
fences (if present) in the library implementations.

Given a set of libraries L = {L1, . . . ,L𝑛}, we define a LTS ΩL, which is almost exactly the same
as the LTS ΩL that was defined in §3 for a single library L. Similar to ΩL , each state of ΩL also
consists of a thread-local environment per active session, and the current invocations indexed by
session id, except that now, these invocations can come from any of the libraries in L. The transition
rules also remain the same, except the Invk rule in Fig. 6, which is replaced by the two new rules
given in Fig. 9.

The new Invk rule is used to invoke a method 𝑚 of library L ∈ L if the method preceding it
in its session belonged to the same library; otherwise, in order to invoke a method following one
from a different library, the InvkF rule must be used. In this case the method call is preceded with
an SC-fence statement but the rest of the rule is the same as Invk.

Because of the altered Invk rules, executions of ΩL×MS𝑋 , for𝑋 = SC or RC20, will always have
an SC-fence at the boundary when crossing from a method of one library to a method of a different
library in session order. Notice that there is no SC-fence between invocations of methods from
the same library. Intuitively, the executions generated by ΩL ×MS𝑋 maintain a well-fencedness
property: in any (complete or partial) execution, if there is an event 𝑒1 generated by a method
belonging to L1 preceding an event 𝑒2 generated by a method belonging to a different library L2
in session order, then there must be an SC-fence in between them. Let CEL𝑋 denote the set all
complete executions generated by ΩL ×MS𝑋 for the memory system 𝑋 .

Theorem 6.1. Given a set of libraries L, if each library in L is execution-graph robust, then all
executions in CELRC20 are also execution graph robust.

We prove the above theorem by contradiction, starting with a non-robust execution in CELRC20
and inspecting the shape of a minimal hbSC cycle that must be present in the execution graph. We
construct an execution comprising solely of events within a single library L ∈ L in which the
hbSC cycle is preserved, thus providing a contradiction to the guarantee of robustness of L. In the
case where the original cycle involves events from multiple libraries, we use the presence of SC
fences between libraries to infer hb synchronization, and we construct an RC20-execution of L by
converting these hb relations to so by changing the assignment of invocations to sessions.

We can also extend the above result for induced subgraph robustness, using the same definition
as given in Def. 5.1 for complete executions in CELRC20.

Theorem 6.2. Given a set of libraries L, if each library in L is induced subgraph robust, then all
executions in CELRC20 are also induced subgraph robust.

Intuitively, there may be benign non-robustness in executions of individual libraries, which
does not affect its observable behavior. In such a scenario, for multi-library executions, this non-
robustness would still exist in the overall execution. Hence, we may not be able to show the overall
execution is execution-graph robust, but instead, we can safely remove the non-robustness of each

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:21

individual library to show induced subgraph robustness of the entire execution. This preserves the
observable behavior of each invocation.

Our formulation thus far still does not allow a client to also perform atomic RC20 accesses.
However, it is possible to view the client program as a library itself, with every program segment
in every session between two library calls encapsulated as a separate method in this artificially
generated client library. Then, Theorems 6.1 and 6.2 allow us to decompose the overall robustness
problem into proving robustness for the actual libraries and the (synthetic) client library. In
particular, as a special case, we can consider a client program which does not access any shared
variable (i.e., leaves all the shared memory operations to the libraries), or a client program which
only accesses shared memory inside locks. Such client programs will be robust according to our
definition (i.e., the artificially generated client library will be robust), and hence composing them
with robust libraries guarantee overall robustness.

We note that the usage of the SC fences is as important as the robustness of the individual
libraries to guarantee overall robustness of the composite execution. If a library L can generate a
(non-benign) non-robust execution on its own, it is obvious that we can orchestrate a composite
execution involving multiple libraries along with L which would also be non-robust. A reader may
wonder whether we can perhaps place more SC fences to perhaps not require individual library
robustness, e.g. before and after every library invocation, regardless of whether the surrounding
invocations belonged to the same library or not. However, this would also not work, because we
can consider a library which has two methods corresponding to the two sessions involved in the
store buffering anomaly, i.e. each method has two memory events, a store followed by load to
different location, with opposite order of locations in the two methods. Essentially, each method
performs the memory operations of one of the sessions involved in the store buffering anomaly.
Then, in an execution where each of the methods is called in a separate session, even with the
presence of SC fences before and after the invocations, store buffering is still possible.

7 Automated Verification
Our automated verification strategy relies on discovering violations of Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 , which essen-
tially corresponds to discovering potential and actual non-robustness witnesses. Towards this end,
we model memory events using FOL domains, executions as relations between events and then
we generate FOL queries that instantiate memory events involved in establishing Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 .
For example, referring back to Table 1, violations of Φ𝑠𝑟𝑐 would require us to instantiate events
`𝑤, `1, `2 satisfying the antecedent of Φ𝑠𝑟𝑐 , while the negation of the consequent can be simplified
as ¬(`𝑤 hb−−→ `2).

In addition to memory events which are directly involved in Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 , for the library method
containing these events, the FOL query also instantiates an event for every program statement
present in the implementation of the method. We call the entire set of instantiated events as a partial
execution, which is essentially the non-robust core of an actual execution. If such a non-robust
core cannot be instantiated, then no potential or actual non-robustness witnesses can exist. Thus,
if the generated FOL formulae are not satisfiable, we can conclude that Φ𝑠𝑟𝑐 or Φ𝑑𝑠𝑡 hold, implying
robustness of the library implementation.

Next, we require that the partial execution must be a part of a valid SC execution. To ensure this,
we encode the constraints on the executions in terms of FOL formula obtained from the 𝜒𝑏𝑎𝑠𝑒 and
𝜒𝑆𝐶 constraints of §3.2. For each relation 𝑅 ∈ {rf,mo, fr, sw, so, hb, hbSC}, we encode constraints
that ensure or prohibit their presence between pairs of events. For instance, all events belonging to
the same invocation must be related by so, two events writing to the same location must be related

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:22 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

by mo, there must be a rf between a unique write event to a location and a read event returning
the same value, etc. We also encode how derived relations depend on the base relations.

Note that Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 need to be checked individually for every location used in any execution
of the implementation. While an implementation can allocate and access an unbounded number of
locations on the heap during executions, to generate our encoding, we use a fixed, finite number of
location classes. We define a location class for every shared global variable and every field (for record
types allocated on the heap). For example, the location classes for the register implementation of
Fig. 2 are the global variable L and the field val.

Input :Library Implementation 𝐿, Specification
axioms ΨD

𝐿′ ← 𝜌𝐶𝐴𝑆 (𝐿)
ΨAnalysis ← ConstraintAnalysis (𝐿′,ΨD)
Ψ← Ψ𝑏𝑎𝑠𝑒 ∧ Ψ𝑆𝐶 ∧ ΨAnalysis

foreach ℓ ∈ LocClass(𝐿′) do
if ¬ Check-Φ𝑠𝑟𝑐 (Ψ, 𝐿′, ℓ) then

if ¬ Check-Φ𝑑𝑠𝑡 (Ψ, 𝐿′, ℓ) then
return 𝐿 may be non-robust

end
end

end
return 𝐿 is robust

Fig. 10. Main Algorithm

Instantiating partial executions with a fixed, fi-
nite number of events may result in a number of
false positives, i.e. partial executions that would
not be a part of any complete execution. To prune
these false positives, we introduce an analysis phase
before checking Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 that derives useful
constraints obeyed by any SC execution of the li-
brary implementation. These constraints are then
expressed as universally quantified FOL formulae
and added to the encoding. The derived constraints
can be broadly classified into two classes: (1) pro-
gram structure constraints that are derived by a static
analysis of the implementation and (2) specification
constraints that are directly obtained from the spec-
ification of the implemented data structure (as described in §3.3). Since we assume that the library
implementation is correct under SC, we can directly incorporate these specification constraints.4
We find these derived constraints to be effective in helping to establish robustness conditions over
low-level memory events.

For each library implementation, we generate (i) a set of access constraints from the provided
implementation code and the library specification that e.g., identify locations written to at most once
in an execution, are always written to within the same invocation, etc., or (ii) CAS constraints that
identify locations exclusively modified using acqrel CAS operations and thus are totally ordered
under the hb relation, etc. We additionally extract (iii) specification constraints from the axiomatic,
declarative specification of the data structure to generate additional hb edges. For example, for the
register implementation shown in Figure 1 we add the specifications 𝜒GetSet and 𝜒GetUNDEF, which
state that a get should return the value from another set and if a get returns UNDEF, then no set
method should have been executed before it.

Figure 10 depicts the algorithm for checking robustness, combining the various components
discussed above. The algorithm takes as input a library implementation 𝐿, along with the specifica-
tion axioms (ΨD) of the implemented data structure D. We first perform a robustness-preserving
CAS-to-BCAS transformation 𝜌𝐶𝐴𝑆 (shown in 5.4) to obtain the modified implementation 𝐿′. We
then populate the constraint set ΨAnalysis as described above. We then iterate through all the location
classes, and check if either Φ𝑠𝑟𝑐 or Φ𝑑𝑠𝑡 hold for each location class. Each check for Φ𝑠𝑟𝑐 or Φ𝑑𝑠𝑡 will
check the feasibility of instantiating a partial execution involving a violation to the corresponding
condition, in the presence of the constraints Ψ. This feasibility check is reduced to checking the
satisfiability of a FOL formula.

4Complete details about the SMT encoding and the derived constraints are provided in the supplemental material, §D.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:23

Table 2. Results of applying RoboCop to RC20 concurrent data structure libraries. All benchmarks were
verified to be robust.

Benchmark Time (s) Locs RLX RA Tot
Atomic Reference Counter [20] 10.21 3 2 4 6

Singleton [5] 8.43 4 0 6 6
Read Copy Update [39] 9.20 4 0 8 8

Spinlock [47] 12.54 2 2 4 6
Seqlock [10] 10.82 4 4 4 8

Ticketlock [47] 4.54 2 1 3 4
Lamport Mutex [42] 9.78 5 0 12 12
Peterson Lock [43] 6.54 3 3 3 6
Dekkers Mutex [54] 8.22 3 8 2 10
Treiber Stack [53] 13.67 3 5 3 8

Herlihy-Wing Queue [30] 12.39 2 0 4 4
TwoLock Queue [45] 18.12 6 7 7 14
Lockfree Queue [45] 24.55 4 5 7 12

SPSC Queue [50] 11.05 3 4 4 8
MPMC Bounded Queue [44] 18.45 4 2 8 10

MPMC Unbounded Queue [26] 25.74 6 4 12 16
Non-blocking Set [29] 19.42 3 6 6 12

Work-stealing Queue [17] 28.40 3 10 4 14

8 Evaluation
We have implemented a tool called RoboCop to test our methodology on real-world benchmarks.
RoboCop takes a library of methods written in C11 and produces a result that indicates if the
library is robust under RC20. RoboCop directly implements the algorithm of Figure 10. RoboCop
parses the provided inputs, performs the 𝜌𝐶𝐴𝑆 robustness transformation (5.4), and generates the
necessary SMTLIB encoding needed to specify constraints (§7), which is then discharged by Z3.

Our evaluation considers a number of real-world benchmarks adapted from the literature and
open-source repositories. All these implementations have SC specifications which have been proven
to be correct, but their robustness under RC20 has not been established automatically prior to this
work. All experiments were executed on an Intel® CoreTM i5-7200U CPU @ 2.50 GHz, Ubuntu
18.04 machine using Z3 4.8.10. Table 2 summarizes key results. Column Loc denotes the number
of location classes considered for verification. Columns RLX, RA, and Tot denote the number of
relaxed accesses, release-acquire operations (accesses and fences), and total operations performed,
which includes accesses to location classes and fence operations in the library source code. As these
numbers indicate, most of the benchmarks make meaningful use of relaxed and release-acquire
operations. Our benchmarks cover the following commonly occuring access patterns in real-world
libraries - static locations, dynamically allocated locations and locations accessed by an offset into
an array.

Next, we describe situations where the derived constraints aid the automated verification proce-
dure. We note that removing any of these constraints either produces a robustness violation that is
a false-positive or the solver loops until timeout, trying to unroll and instantiate memory events.

Access Constraints. The Treiber stack, Lockfree queue, MPMC Unbounded queue and Non-
blocking set follow the pattern of creating a new node on a push/add operation and then linking it

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:24 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

to the main data structure. Thus, the updates to the fields of these new nodes can only be performed
inside these methods and removing this constraint generates false-positive memory events where
two writes may update this field and lead to a non-robustness witness, if observed by a read.

In the case of the SPSC bounded queue, MPMC bounded and unbounded queues and Chase-Lev
deque, the threads access an underlying array, using integer indices. The access constraint-generated
states that writes to different indices are made by different threads, ensuring that a read cannot
potentially read from two different writes, leading to a non-robustness witness.

CAS Constraints: Since all the data structures are written to be lock-free, they make use of a
CAS update to a designated location to update the data structure and retrying if the CAS fails. In
the Treiber stack, this is the head of the stack and in the Lockfree queue, these are the head and tail
of the queues. Similarly, the indices signalling where to write into the array for the SPSC bounded
queue, MPMC bounded queue and MPMC unbounded queue are updated using fetch-and-add
instructions, ensuring that a unique thread gets access to the index element. The CAS constraints
ensure that two events are not instantiated that read from different orderings to these locations,
since the CAS’s impose a total order.

Specification constraints: For each benchmark, we add the specification constraint and map
it to the internal program statements of the benchmarks. For example, the AddRem constraint for
stacks, queues and sets ensures that in the respective implementations, there is an hb edge between
a push and a pop that have matching argument and return values. This is translated to an hb edge
between the program points in the method invocations where the method executes, in the SC order.

In the case of the libraries that create and link nodes, such as Treiber stack and Lockfree queue,
this ensures that a pop operation always reads from a unique push operation (thus ruling out
a non-robust witness, where a pop may read from two different push operations). Similarly, for
implementations which use indexing, this also ensures that there is a single push operation at a
certain index, that the pop operation reads from.

To demonstrate that our approach can also detect robustness violations, we systematically relaxed
memory access statements in these benchmarks to create a non-robust implementation. RoboCop
was successfully able to provide counter-examples in the form of partial executions that serve as a
witness to the violation for all modified benchmarks.5

Finally, we performed an experiment to understand the impact of the SC-fence insertion overhead
in the presence of multiple instances of a stack or queue library. We create a benchmark scenario
where there are 𝑁 producers, 𝑁 consumers and 𝑁 intermediaries. The producers add messages to
a queue and the intermediaries remove messages from this queue. Then, the intermediaries push
these messages to another queue and finally the consumers remove messages from the second
queue. This benchmark models a message bus or pipeline, observed in real-world software. To
ensure compositionality, the intermediaries need to insert a fence after the pop from the first queue
and before the push to the second queue. We measure how long it takes to complete a fixed number
of operations, from producers to consumers. We run the experiments on a c7g.metal AWS instance,
that has 64 ARMv8.4 cores. We run the benchmarks for 1M operations by each thread, over 𝑁 = 16
consumers (𝑁 = 1 for SPSC queue), producers and intermediaries. We run the benchmark for 3 cases,
where in each benchmark the intermediary data structures are set to be the Boost 1.74 libraries
for SPSC queue, MPMC queue and MPMC stack and observe 4.79%, 7.39% and 3.69% increase in
runtime when SC fences (DMB ISH) are inserted between pop and push operations.

5Additional details are provided in the supplemental material.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:25

9 Related Work and Conclusion
There has been substantial prior work on determining robustness against hardware models [3, 4,
12, 19], with the x86-TSO memory model being particularly well-studied [11, 48]. Guaranteeing
data-race freedom (DRF-SC) [2, 21] is a well-known instantiation of robustness applicable to a
language’s concurrency semantics. The notion of execution graph robustness closely resembles
the DRF-SC property, and indeed prior work [43] has formally proved a correspondence between
the two. However, in this work, our main contribution is a fully automated approach for verifying
this property in the context of library implementations in the presence of the most general client.
As discussed earlier, [38] presents a method to verify execution-graph robustness against the C11
release-acquire concurrency semantics, implementing their procedure using a model-checker that
operates over programs with a finite data domain. [43] extends this result to additionally support
relaxed accesses and release/acquire fences. Their approach also takes into account speculative
actions as part of their robustness formulation, similar to our definition of effect robustness, but as
described earlier, our notion of robustness is weaker and better suited for library implementations.
Other works [34–36] have also proposed model-checking based techniques for verifying programs
under weak memory that cannot, however, be soundly used for verifying library implementations
in the presence of a most-general client.

A number of prior works have also considered the specification and verification problem of
libraries in a relaxed memory setting [6, 13, 22, 24, 31, 49, 52]; these efforts, however, do not consider
automated verification tooling or robustness arguments in their proof methodology. [14, 16, 27,
28, 32] also propose correctness notions that are weaker than linearizability - we consider the
incorporation of these ideas as a topic for future research.

Recent work [18, 44, 49] has developed new proof techniques to modularly reason about clients
that interact with libraries which often have weaker specifications that expose relaxed memory
behavior. We focus on an orthogonal problem in this paper - establishing the robustness of library
implementations that internally use relaxed memory primitives. As we have shown here, libraries
that internally use relaxed accesses may have enough synchronization to make them robust,
enabling a pathway to automated verification. Having said that, we also believe that synchronization
specifications of libraries as proposed by these other efforts would be useful in addition to robustness
guarantees, since they would allow an optimal SC fence placement strategy for guaranteeing
robustness of executions involving multiple libraries.

This paper presents a modular verification strategy for verifying robustness of programs using
library implementations. Our verification strategy adapts the notion of execution-graph robust-
ness to the library setting, and exploits specification axioms of the library under SC, to generate
constraints sufficient to imply a suitable inductive robustness invariant. We also show how to
effectively compose robustness guarantees of multiple libraries. We have successfully demonstrated
our technique on a number of challenging real-world concurrent data structure implementations
that meaningfully exploit sophisticated weak memory behavior. Our results suggest that automated
robustness proofs can be effectively applied to ascertain whether concurrent libraries, specified
assuming sequential consistency, can be safely refined to exploit relaxed atomics.

Data-Availability Statement
The software that supports Section. 8 is available on Zenodo [46].

Acknowledgments
This material is based in part upon work supported by the National Science Foundation under
grant CCF-FMiTF 2019263. The first author is also supported by a grant from the Tezos Foundation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:26 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

References
[1] Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. 2013. An Integrated Specification

and Verification Technique for Highly Concurrent Data Structures. In TACAS.
[2] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering—a New Definition. SIGARCH Comput. Archit. News 18, 2SI (may

1990), 2–14. https://doi.org/10.1145/325096.325100
[3] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’t Sit on the Fence: A Static Analysis

Approach to Automatic Fence Insertion. ACM Trans. Program. Lang. Syst. 39, 2 (2017), 6:1–6:38. https://doi.org/10.
1145/2994593

[4] Jade Alglave and Luc Maranget. 2011. Stability in Weak Memory Models. In Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science,
Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 50–66. https://doi.org/10.1007/978-3-642-22110-
1_6

[5] Helge Bahmann and Tim Blechmann. 2012. https://www.boost.org/doc/libs/1_85_0/libs/atomic/doc/html/atomic/
usage_examples.html. Accessed 31-07-2024.

[6] Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library Abstraction for C/C++ Concurrency. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing
Machinery, 235–248.

[7] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and Compiling
C/C++ Concurrency: from C++11 to POWER. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, (POPL 2012), Philadelphia, Pennsylvania, USA, January 22-28, 2012. 509–520.
https://doi.org/10.1145/2103656.2103717

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55–66. https://doi.org/10.1145/1926385.
1926394

[9] Hans-Juergen Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-Of-Thin-Air Results. In Proceedings of
the workshop on Memory Systems Performance and Correctness, MSPC ’14, Edinburgh, United Kingdom, June 13, 2014,
Jeremy Singer, Milind Kulkarni, and Tim Harris (Eds.). ACM, 7:1–7:6. https://doi.org/10.1145/2618128.2618134

[10] Hans-J. Boehm. 2012. Can seqlocks get along with programming language memory models?. In Proceedings of the 2012
ACM SIGPLAN Workshop on Memory Systems Performance and Correctness (Beijing, China) (MSPC ’12). Association for
Computing Machinery, New York, NY, USA, 12–20. https://doi.org/10.1145/2247684.2247688

[11] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In
Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 533–553.
https://doi.org/10.1007/978-3-642-37036-6_29

[12] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence: Checking Consistency of Concurrent
Data Types on Relaxed Memory Models. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley
(Eds.). ACM, 12–21. https://doi.org/10.1145/1250734.1250737

[13] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012. Concurrent Library Cor-
rectness on the TSO Memory Model. In European Symposium on Programming, Helmut Seidl (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 87–107.

[14] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types: specification,
verification, optimality. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014. 271–284. https://doi.org/10.1145/2535838.2535848

[15] C11 Last Accessed Nov 9 2022. C11 Memory Model (std::memory_order). https://en.cppreference.com/w/cpp/atomic/
memory_order.

[16] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Specifying Concurrent Problems: Beyond Lineariz-
ability and up to Tasks. In Distributed Computing, Yoram Moses (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
420–435.

[17] David Chase and Yossi Lev. 2005. Dynamic Circular Work-Stealing Deque. In Proceedings of the Seventeenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures (Las Vegas, Nevada, USA) (SPAA ’05). Association for
Computing Machinery, New York, NY, USA, 21–28. https://doi.org/10.1145/1073970.1073974

[18] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.
2022. Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic. In PLDI ’22:
43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

https://doi.org/10.1145/325096.325100
https://doi.org/10.1145/2994593
https://doi.org/10.1145/2994593
https://doi.org/10.1007/978-3-642-22110-1_6
https://doi.org/10.1007/978-3-642-22110-1_6
https://www.boost.org/doc/libs/1_85_0/libs/atomic/doc/html/atomic/usage_examples.html
https://www.boost.org/doc/libs/1_85_0/libs/atomic/doc/html/atomic/usage_examples.html
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/2535838.2535848
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://doi.org/10.1145/1073970.1073974

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:27

USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 792–808. https://doi.org/10.1145/3519939.3523451
[19] Egor Derevenetc and Roland Meyer. 2014. Robustness Against POWER is PSpace-Complete. In Automata, Languages,

and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 8573), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias (Eds.). Springer, 158–170. https://doi.org/10.1007/978-3-662-43951-7_14

[20] Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In Programming
Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 448–475.

[21] Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 242–255. https:
//doi.org/10.1145/3192366.3192421

[22] Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Armstrong. 2018. On Abstraction and Compositionality
for Weak-Memory Linearisability. In Verification, Model Checking, and Abstract Interpretation (VMCAI). Springer
International Publishing, 183–204.

[23] Michael Emmi and Constantin Enea. 2018. Sound, Complete, and Tractable Linearizability Monitoring for Concurrent
Collections. Proc. ACM Program. Lang. 2, POPL (2018), 25:1–25:27. https://doi.org/10.1145/3158113

[24] Michael Emmi and Constantin Enea. 2019. Weak-Consistency Specification via Visibility Relaxation. Proc. ACM
Program. Lang. 3, POPL, Article 60 (Jan 2019), 28 pages. https://doi.org/10.1145/3290373

[25] Michael Emmi, Constantin Enea, and Jad Hamza. 2015. Monitoring Refinement via Symbolic Reasoning. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 260–269. https://doi.org/10.1145/2737924.2737983

[26] Folly Last Accessed Nov 9 2022. Meta Folly MPMC Queue. https://github.com/facebook/folly/blob/main/folly/
MPMCQueue.h.

[27] Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz, Hannes Payer, Ali
Sezgin, Ana Sokolova, and Helmut Veith. 2016. Local Linearizability for Concurrent Container-Type Data Structures.
In 27th International Conference on Concurrency Theory (CONCUR 2016) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 59), Josée Desharnais and Radha Jagadeesan (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 6:1–6:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

[28] Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular Verification of Concurrency-Aware Linearizability.
In Distributed Computing, Yoram Moses (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 371–387.

[29] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[30] M Herlihy and J Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. In ACM TOPLAS, 12(3).
[31] Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely. 2013. Quarantining Weakness. In European Symposium

on Programming, Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 492–
511.

[32] Radha Jagadeesan and James Riely. 2014. Between Linearizability and Quiescent Consistency. In Automata, Languages,
and Programming, Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 220–231.

[33] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for
Relaxed-Memory Concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (Paris, France) (POPL 2017). Association for Computing Machinery, New York, NY, USA, 175–189. https:
//doi.org/10.1145/3009837.3009850

[34] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Effective stateless model
checking for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL (2018), 17:1–17:32. https://doi.org/10.1145/3158105

[35] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. 2022. Truly Stateless, Optimal
Dynamic Partial Order Reduction. Proc. ACM Program. Lang. 6, POPL (2022), 1–28. https://doi.org/10.1145/3498711

[36] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 96–110. https:
//doi.org/10.1145/3314221.3314609

[37] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL
’16). Association for Computing Machinery, New York, NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

[38] Ori Lahav and Roy Margalit. 2019. Robustness Against Release/Acquire Semantics. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 126–141. https://doi.org/10.1145/3314221.3314604

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3158113
https://doi.org/10.1145/3290373
https://doi.org/10.1145/2737924.2737983
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604

362:28 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

[39] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages,
and Programming, Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 311–323.

[40] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency
in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618–632. https:
//doi.org/10.1145/3062341.3062352

[41] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Computers 28, 9 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[42] Leslie Lamport. 1987. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5, 1 (jan 1987), 1–11. https:
//doi.org/10.1145/7351.7352

[43] Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness Against a C11-style Memory Model. Proc. ACM
Program. Lang. 5, POPL (2021), 1–33. https://doi.org/10.1145/3434285

[44] Glen Mével and Jacques-Henri Jourdan. 2021. Formal Verification of a Concurrent Bounded Queue in a Weak Memory
Model. Proc. ACM Program. Lang. 5, ICFP, Article 66 (aug 2021), 29 pages. https://doi.org/10.1145/3473571

[45] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia, Pennsylvania, USA, May 23-26, 1996, James E. Burns and Yoram Moses (Eds.). ACM, 267–275. https:
//doi.org/10.1145/248052.248106

[46] Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan. 2024. Artifact - Automated Robustness
Verification of Concurrent Data Structure Libraries Against Relaxed Memory Models. https://doi.org/10.5281/zenodo.
13626195

[47] Scott Owens. 2010. Reasoning about the Implementation of Concurrency Abstractions on x86-TSO. In European
Conference on Object-Oriented Programming. https://api.semanticscholar.org/CorpusID:28735505

[48] Scott Owens. 2010. Reasoning about the Implementation of Concurrency Abstractions on x86-TSO. In ECOOP 2010 -
Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 478–503. https://doi.org/10.1007/978-3-642-14107-2_23

[49] Azalea Raad, Marko Doko, Lovro Rozic, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness Under Weak
Memory Consistency: Specifying and Verifying Concurrent Libraries Under Declarative Consistency Models. PACMPL
3, POPL (2019), 68:1–68:31. https://doi.org/10.1145/3290381

[50] Boris Schling. 2011. The Boost C++ Libraries. XML Press.
[51] Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO:

A Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22:1–22:50. https://doi.org/10.1145/
2487241.2487248

[52] Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed Memory
Concurrency. Proc. ACM Program. Lang. 7, POPL (2023), 1542–1572. https://doi.org/10.1145/3571246

[53] R.K. Treiber. 1986. Systems programming: Coping with Parallelism. Technical Report RJ-5118. Technical Report. IBM
Almaden Research Center.

[54] Anthony Williams. Last Accessed Nov 9, 2022. Implementing Dekker’s algorithm with fences. https://www.
justsoftwaresolutions.co.uk/threading/implementing_dekkers_algorithm_with_fences.html.

A Program Semantics
The two step rules (StepLocal and StepMem) encapsulate the behavior of the library and differ
only with respect to the event label recorded in its transition. They both rely on an auxiliary
relation (→) that specifies the behavior of the library. The salient rules comprising its definition,
which loosely follow prior operational formulations of similar systems (e.g., [38, 43]) are shown
in Figure 12. The StepLocal rule applies when an invocation takes a step that does not involve
access or updates to memory (𝜖−→𝜏); this action is recorded as a silent step in the global trace. The
StepMem rule applies when an invocation performs a memory action step (𝛼−→𝜏).

The local reduction rules are mostly standard, as shown in Fig. 12; the rules use a local en-
vironment 𝜌 to hold bindings for local variables, and local evaluation relation ({) to evaluate
expressions. Its most notable aspect is that load operations on shared locations are unconstrained,
and can return any arbitrary value. Later, we will define a memory system to generate valid traces
of memory events following the C11 relaxed memory model. We will then construct a combined

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/7351.7352
https://doi.org/10.1145/3434285
https://doi.org/10.1145/3473571
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://doi.org/10.5281/zenodo.13626195
https://doi.org/10.5281/zenodo.13626195
https://api.semanticscholar.org/CorpusID:28735505
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1145/3290381
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3571246
https://www.justsoftwaresolutions.co.uk/threading/implementing_dekkers_algorithm_with_fences.html
https://www.justsoftwaresolutions.co.uk/threading/implementing_dekkers_algorithm_with_fences.html

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:29

𝑀 ′ = 𝑀 ∪ {`} rf ′ =

{
rf ∪ {(𝑤, `)} 𝑖 𝑓 type(`) = R or U
rf 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

so′ = so ∪ {(` ′, `) | ` ′ ∈ 𝐺.𝑀 ∧ sess(` ′) = 𝜏} mo′ =

mo ∪ {(𝑤 ′, `) | mo(𝑤 ′,𝑤) ∨ (𝑤 ′ = 𝑤)}
∪{(`,𝑤 ′′) | mo(𝑤,𝑤 ′′)} 𝑖 𝑓 type(`) = W or U
mo 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Fig. 11. The definition of add(𝐺, 𝑖, 𝜏, 𝛼,𝑤).

transition system by taking the product of the program semantics and the memory system, such
that the transitions in the two systems agree on every memory event. We will also define a memory
system for Sequential Consistency (SC), which when combined with the program semantics will
describe the behavior of the library implementation under SC.

We now present the memory systems for the SC and RC20 memory models. We define a common
parameterized system that can be instantiated with either 𝜒SC or 𝜒RC20. The labeled transition
system for memory model 𝑋 is given by MS𝑋 = ⟨G,MemEvt,→𝑋 ⟩. Here, G is the set of all
execution graphs, MemEvt are memory events as defined earlier, and→𝑋⊆ G ×MemEvt × G are
labeled transitions. We define an initial execution graph 𝐺⊥ = ⟨𝑀⊥, ∅, ∅, ∅⟩, where 𝑀⊥ contains an
initial write event W⟨ ℓ, 𝑣⊥ℓ , rlx ⟩ to every location ℓ .

Each transition of the memory system adds a new memory event to the execution graph. Given
𝐺 = ⟨𝑀, rf,mo, so⟩, we define a function add(𝐺, 𝑖, 𝜏, 𝛼,𝑤), shown in Figure 11, to compute the new
execution graph 𝐺 ′ = ⟨𝑀 ′, rf ′,mo′, so′⟩, which adds the new memory event ` = Mem⟨ 𝑖, 𝜏, 𝛼 ⟩ in
session 𝜏 performing the operation 𝛼 . Note that 𝑤 ∈ 𝑀W,loc(`) ∪𝑀U,loc(`) is a write/update event to
the location of `.

The transition of the memory system can now be defined using the add function:

𝜏 ∈ SessionId 𝛼 ∈ Action 𝑖 unique
` = Mem⟨ 𝑖, 𝜏, 𝛼 ⟩ 𝑤 ∈ 𝐺.𝑀W,loc(`) ∪𝐺.𝑀U,loc(`)
𝐺 ′ = add(𝐺, 𝑖, 𝜏, 𝛼,𝑤) 𝜒base (𝐺 ′) 𝜒𝑋 (𝐺 ′)

𝐺
`−→𝑋 𝐺 ′

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:30 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

bind
𝜌, 𝑒 {∗ 𝑣 𝜌 ′ = 𝜌 [x ↦→ 𝑣]
⟨𝜌, 𝑥 = 𝑒⟩ 𝜖−→𝜏 ⟨𝜌 ′, skip⟩

load
𝜌 (𝑥) = ℓ

⟨𝜌, load(𝑥, 𝑜R)⟩
R⟨ℓ,𝑣,𝑜R ⟩−−−−−−−→ ⟨𝜌, skip⟩

store
𝜌, 𝑒 {∗ 𝑣 𝜌 (𝑥) = ℓ

⟨𝜌, store(𝑥, 𝑒, 𝑜W)⟩
W⟨ℓ,𝑣,𝑜W ⟩−−−−−−−→ ⟨𝜌, skip⟩

casTrue
𝜌, 𝑒1 {∗ 𝑣1 𝜌, 𝑒2 {∗ 𝑣2 𝜌 (𝑥) = ℓ

⟨𝜌, cas(𝑥, 𝑒1, 𝑒2, 𝑜RMW)⟩
U⟨ℓ,𝑣1,𝑣2,𝑜RMW ⟩−−−−−−−−−−−−→ ⟨𝜌, true⟩

casFalse
𝜌, 𝑒1 {∗ 𝑣 ′ 𝑣 ′ ≠ 𝑣 𝜌 (𝑥) = ℓ

⟨𝜌, cas(𝑥, 𝑒1, 𝑒2, 𝑜RMW)⟩
R⟨ℓ,𝑣,𝑜RMW ⟩−−−−−−−−−→ ⟨𝜌, false⟩

fence

⟨𝜌, fence(𝑜F)⟩
F⟨𝑜F ⟩−−−−−→ ⟨𝜌, skip⟩

seq

⟨𝜌, 𝑠1⟩ 𝜔−→ ⟨𝜌′, 𝑠′1⟩
⟨𝜌, 𝑠1; 𝑠2⟩ 𝜔−→ ⟨𝜌′, 𝑠′1; 𝑠2⟩

seqq

⟨𝜌, 𝑠1⟩ 𝜔−→ ⟨𝜌 ′, skip⟩
⟨𝜌, 𝑠1; 𝑠2⟩ 𝜔−→ ⟨𝜌 ′, 𝑠2⟩

ifTrue
𝑒 {∗ true

⟨𝜌, if 𝑒 then 𝑠1 else 𝑠2⟩ 𝜖−→ ⟨𝜌, 𝑠1⟩

ifTrue
𝑒 {∗ false

⟨𝜌, if 𝑒 then 𝑠1 else 𝑠2⟩ 𝜖−→ ⟨𝜌, 𝑠2⟩
whileTrue

𝑒 {∗ true

⟨𝜌,while 𝑒 do 𝑠⟩ 𝜖−→ ⟨𝜌, 𝑠; while 𝑒 do 𝑠⟩

whileFalse
𝑒 {∗ false

⟨𝜌,while 𝑒 do 𝑠⟩ 𝜖−→ ⟨𝜌, skip⟩

Fig. 12. Selected local reduction rules.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:31

B Proofs
Theorem 4.4 Given a library implementation 𝐿, if every prefix 𝐸 ′ of every complete execution
𝐸 ∈ CE𝐿SC is not a non-robustness witness, then 𝐿 is execution-graph robust.

Proof. We will show that if 𝐿 is not execution-graph robust, then there exists a complete
execution 𝐸 which has a prefix 𝐸 ′ which is non-robustness witness satisfying Definition 4.3.

If 𝐿 is not execution-graph robust, then by definition, there exists a complete execution which
is in CE𝐿RC20 but not in CE𝐿SC. We consider such an execution 𝐸 ∈ CE𝐿RC20 which has the smallest
prefix (in terms of number of events) 𝐸 ′ such that 𝐸 ′ ∉ E𝐿SC. We will show that this prefix 𝐸 ′ and its
next event ` = next(𝐸 ′, 𝐸) form a non-robustness witness.

Suppose the event ` accesses the location ℓ and is present in session 𝜏 . Then, 𝐸 ′.𝑤max
ℓ ∈

𝑑𝑜𝑚(𝐸 ′.hb?
SC; [𝐸.𝑀𝜏]). This is because otherwise, there exists a shorter execution 𝐸 ′′ which does

not contain 𝐸.𝑤max
ℓ and all other events in 𝐸 ′ which occurs hbSC-after it, but contains all the other

events in 𝐸 ′. All the other events remain the same, and hence the next event in 𝐸 ′′ will also be `.
Now, 𝐸 ′′ + ` becomes a shorter prefix that is not in E𝐿SC, thus contradicting our assumption that 𝐸 ′
is the shortest such prefix.

Since 𝐸.𝑤max
ℓ ∈ 𝑑𝑜𝑚(𝐸 ′.hb?

SC; [𝐸 ′.𝑀𝜏]), this satisfies the first criterion of Definition 4.3. Now, we
consider different cases based on the type of the event `:

Case act(`) = R: Let 𝐸 ′′ = 𝐸 ′+`. Consider the event `𝑤 such that `𝑤
𝐸′′.rf−−−→ `. Then, `𝑤 cannot be

𝐸 ′.𝑤max
ℓ , because otherwise,𝐸 ′+` ∈ E𝐸SC. We will now show that `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.mo;𝐸 ′.rf?;𝐸 ′.hb?; [𝐸 ′.𝑀]𝜏)

by contradiction.
We will show that 𝐸 ′′ cannot be in E𝐿RC20. Suppose there exists ` ′ such that `𝑤

𝐸′.mo−−−−→ ` ′ and
` ′

𝐸′.hb−−−−→ ` ′′ where ` ′′ ∈ 𝐸 ′.𝑀𝜏 . Then, ` ′ 𝐸′′.hb−−−−→ `. We also have `
𝐸′′.fr−−−→ ` ′. This implies that

𝐸 ′′.fr;𝐸 ′′.hb is not irreflexive, which contradicts the first condition in the definition of RC20
consistency.

Suppose `𝑤
𝐸′.mo−−−−→ ` ′ and ` ′

𝐸′.rf−−−→ ` ′′, where ` ′′ ∈ 𝐸 ′.𝑀𝜏 . Now, ` ′′ 𝐸′′.hb−−−−→ `, and `
𝐸′′.fr−−−→ ` ′. This

implies that 𝐸 ′′.fr;𝐸 ′′.rf;𝐸 ′′.hb is not irreflexive, which again contradicts the first condition the
definition of RC20 consistency.

Suppose `𝑤
𝐸′.mo−−−−→ ` ′ and ` ′ ∈ 𝐸 ′.𝑀𝜏 . In this case. ` ′ 𝐸′′.hb−−−−→ ` and `

𝐸′′.fr−−−→ ` ′, which implies that
𝐸 ′′.fr;𝐸 ′′.hb is not irreflexive. This concludes the proof that `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.mo;𝐸 ′.rf?;𝐸 ′.hb?; [𝐸 ′.𝑀]𝜏).

Case act(`) = W: Consider the event `𝑤 ∈ 𝐸 ′.𝑀 such that `𝑤
𝐸′′.mo−−−−−→ ` and ` is the immediate

successor of `𝑤 according to the 𝐸 ′′.mo ordering. First, suppose that there exists ` ′ ∈ 𝐸 ′.𝑀U such
that `𝑤

𝐸′.rf−−−→ ` ′. Then, we must have `𝑤
𝐸′.mo−−−−→ ` ′, because otherwise, 𝐸 ′.mo;𝐸 ′.rf would become

reflexive.
Now, from `𝑤

𝐸′.mo−−−−→ ` ′ and ` being the immediate successor of `𝑤 in the mo ordering, we get that
`

𝐸′′.mo−−−−−→ ` ′. We also have ` ′
𝐸′′.fr−−−→ `. This implies that 𝐸 ′′.fr;𝐸 ′′.mo is not irreflexive, which contra-

dicts the third condition in the definition of RC20 consistency. Hence, `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.rf; [𝐸 ′.𝑀]U)
We will now show that `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.mo;𝐸 ′.rf?;𝐸 ′.hb?; [𝐸 ′.𝑀]𝜏) by contradiction. Suppose there

exists ` ′ such that `𝑤
𝐸′.mo−−−−→ ` ′ and ` ′

𝐸′.hb−−−−→ ` ′′ where ` ′′ ∈ 𝐸 ′.𝑀𝜏 . This implies that ` ′ 𝐸′′.hb−−−−→ `,
and since ` is the immediate mo-successor of `𝑤 , we have `

𝐸′′.mo−−−−−→ ` ′. Now, 𝐸 ′′.mo;𝐸 ′′.hb is not
irreflexive, which contradicts the second condition in the definition of RC20 consistency.

Suppose there exists ` ′ such that `𝑤
𝐸′.mo−−−−→ ` ′ and ` ′

𝐸′.rf−−−→ ` ′′ where ` ′′ ∈ 𝐸 ′.𝑀𝜏 . Then,
that ` ′′ 𝐸′′.hb−−−−→ `, and since ` is the immediate mo-successor of `𝑤 , we have `

𝐸′′.mo−−−−−→ ` ′. Now,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:32 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

𝐸 ′′.mo;𝐸 ′′.rf;𝐸 ′′.hb is not irreflexive, which contradicts the second condition in the definition of
RC20 consistency. This concludes the proof that `𝑤 ∉ 𝑑𝑜𝑚(𝐸 ′.mo;𝐸 ′.rf?;𝐸 ′.hb?; [𝐸 ′.𝑀]𝜏).

Case act(`) = U: Similar reasoning to the case act(`) = R. □

Theorem 4.6. Given a library implementation 𝐿, if ∀ℓ ∈ Location.∀𝐸 ∈ CE𝐿SC . Φ𝑑𝑠𝑡 (𝐸, ℓ) ∨
Φ𝑠𝑟𝑐 (𝐸, ℓ), then 𝐿 is execution-graph robust.

Proof. For any execution 𝐸 ∈ CE𝐿SC, we will show that the following is an inductive invariant
over the trace of the execution:

For execution 𝐸 ∈ CE𝐿SC, for prefix 𝐸 ′ of 𝐸, ∀`𝑤 ∈ 𝐸 ′.𝑀max
W ∪ 𝐸 ′.𝑀max

U .∀` ∈ 𝐸 ′.𝑀.

Φ𝑑𝑠𝑡 (𝐸, loc(`𝑤)) ∨ (`𝑤 𝐸′.hbSC−−−−−→ ` ∧ Φ𝑠𝑟𝑐 (𝐸, loc(`𝑤)) ⇒ `𝑤
𝐸.hb−−−→ `)

This in turn would imply that no prefix of an execution can be a non-robustness witness, which
by Theorem 4.4, would imply that 𝐿 is execution-graph robust.

The base case is trivial as the set of memory events is empty.
For the inductive case, consider a prefix 𝐸 ′ of 𝐸 and its next event `2. Let 𝐸 ′′ = 𝐸 ′ + `2. Con-

sider some write event `𝑤 ∈ 𝐸 ′′.𝑀max
W ∪ 𝐸 ′′.𝑀max

U . If Φ𝑑𝑠𝑡 (𝐸, loc(`𝑤)) holds, then the required
condition is established for all ` ∈ 𝐸 ′′.𝑀 . Hence, suppose ¬Φ𝑑𝑠𝑡 (𝐸, loc(`𝑤)). Then, we must have
Φ𝑠𝑟𝑐 (𝐸, loc(`𝑤)).

Now, by the inductive hypothesis, the required condition holds for all ` ∈ 𝐸 ′.𝑀 . Hence, we only
need to consider the case where `𝑤

𝐸′′.hbSC−−−−−−→ `2. For this to happen, either `𝑤
𝐸′′.rf∨𝐸′′.fr∨𝐸′′.mo∨𝐸′′.so−−−−−−−−−−−−−−−−−−−→

`2 or there exists another event `1 ∈ 𝐸 ′.𝑀 such that `𝑤
𝐸′.hbSC−−−−−→ `1 and `1

𝐸′′.rf∨𝐸′′.fr∨𝐸′′.mo∨𝐸′′.so−−−−−−−−−−−−−−−−−−−→ `2.
In the first case, from the definition of Φ𝑠𝑟𝑐 , there exists another event `3 which ensures that

`𝑤
𝐸′′.hb−−−−→ `. In the second case, since `𝑤

𝐸′.hbSC−−−−−→ `1, from the inductive hypothesis, `𝑤
𝐸′.hb−−−−→ `1.

From Φ𝑠𝑟𝑐 , we can then deduce that there must exist `3 which ensures that `𝑤
𝐸′′.hb−−−−→ `. □

Theorem 5.3. Given a library implementation 𝐿 and a robustness-preserving transformation 𝜌 ,
if 𝜌 (𝐿) is execution-graph robust, then 𝐿 is induced subgraph robust.

Proof. Consider an execution 𝐸 ∈ CE𝐿RC20. By the definition of a robustness-preserving trans-
formation, there exists 𝐸 ′ ∈ CE𝜌 (𝐿)RC20 such that the invocations, their ordering and the final values of
all locations are the same in both executions. Further the execution graph𝐺 ′ in 𝐸 ′ would also be an
induced graph of 𝐺 . Since 𝜌 (𝐿) is execution-graph robust, 𝐸 ′ ∈ CE𝜌 (𝐿)SC . Finally, by the definition
of a robustness-preserving transformation, an SC execution of 𝜌 (𝐿) is also an SC execution of 𝐿,
hence, 𝐸 ′ ∈ CE𝐿SC. Thus, 𝐸 ′ is the SC execution of 𝐿 which has the same invocations, ordering and
final values of all locations as 𝐸. Hence, 𝐿 is induced subgraph-robust. □

Lemma 5.5. The transformation 𝜌𝐶𝐴𝑆 is a robustness-preserving transformation.

Proof. Let 𝐿 be a library implementation, and let 𝐿′ = 𝜌𝐶𝐴𝑆 (𝐿). We first prove condition-1.
Consider an execution 𝐸1 = ⟨ 𝑡, Γ,𝐺 ⟩ ∈ CE𝐿RC20. We will use induction on the length of the trace 𝑡
to construct an execution 𝐸2 ∈ CE𝐿′RC20 which obeys the constraints of condition-1. For a prefix 𝐸

′
1

of 𝐸1, the inductive invariant we will use is:
∃𝐸′2 ∈ E𝐿

′
RC20.((∀`𝑤 ∈ 𝐸

′
1.𝑀. act(`𝑤) ∈ {W, U} ⇒ `𝑤 ∈ 𝐸′2.𝑀)

∧∀𝛾 ∈ 𝐸′1 .Γ. 𝛾 ∈ 𝐸
′
2 .Γ ∧ 𝐸

′
2.𝐺 is an induced subgraph of 𝐸′1.𝐺

The base case corresponding to trace of length 0 is straightforward as both 𝐸
′
1 .𝑀 and 𝐸

′
1.Γ are

empty, while both 𝐸
′
1.𝐺 and 𝐸

′
2.𝐺 consists of the initialization events. Consider a prefix 𝐸

′
1 and the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:33

next event `. If ` is a local event or an invocation event, then the condition holds trivially. Since
𝜌𝐶𝐴𝑆 only removes read events from while loops, it is clear that if ` is a write/update event, from
the inductive invariant, the condition can be directly established by simply performing the same
event ` from the trace corresponding to 𝐸

′
2. Note that since read events which lead to a write event

to a global location/return value are preserved by the transformation 𝜌𝐶𝐴𝑆 , the same write event `
can be performed in execution 𝐸

′
2, since the values of the local variables which contribute to the

write event would be the same.
If ` is a read event which is removed by the transformation (i.e. if ` corresponds to an event in

any iteration-but-the-last), then ` is not performed in 𝐸
′
2. If ` is a read event which is preserved by

the transformation, suppose `𝑤
𝐸
′
1 .rf−−−→ `. Let sess(`) = 𝑠 . We know by the inductive invariant that

`𝑤 ∈ 𝐸′2.𝑀 . For ` to occur in 𝐸
′
2, we have to show that ¬(`𝑤

𝐸
′
2 .mo;𝐸′2 .hb?

−−−−−−−−−−→ [𝐸′2.𝑀]𝑠). Since 𝐸
′
2 may

not contain read events in session 𝑠 which would be present in 𝐸
′
1, 𝐸′2.hb ⊆ 𝐸

′
1.hb |𝐸′2 .𝑀 . Since the

mo relation would be the same in both the executions, and since ¬(`𝑤
𝐸
′
1 .mo;𝐸′1 .hb?

−−−−−−−−−−→ [𝐸′1.𝑀]𝑠), we
have the required condition. Hence, ` can read from the same write event in 𝐸

′
2. This concludes the

inductive step.
Condition-2 is straightforward to show, as given an execution 𝐸 ∈ CE𝐿′SC, the same execution 𝐸

also belongs to CE𝐿SC. □

Theorem 6.1. Given a set of libraries L, if each library in L is execution graph robust, then all
executions in CELRC20 are also execution graph robust.

Proof. First, consider the case with L = {L1,L2}. We work with a single arbitrary execution
belonging to CELRC20. It is labelled as 𝐸 = ⟨𝑡, Γ,𝐺⟩ where 𝑡 is a trace of ΩL ×MSRC20, Γ is the set
of all method invocation events generated in the trace, and 𝐺 is the execution graph in the final
state of the trace. To prove that 𝐺 is execution-graph robust, we assume the contrary i.e. 𝐺 is not
SC-consistent, and 𝐺.hbSC is not irreflexive. Thus, take a cycle 𝐶 made up of (so, rf,mo, fr) edges
(hbSC = (so, rf,mo, fr)+) which has a minimal number of memory events (we call this an hbSC cycle
for convenience). Now consider cases on the nature of this cycle (viewing relations on the events
in 𝐺 as labelled edges in a directed graph).

Case All the memory events in the cycle were generated by methods of L1 (this can be checked
by looking at the trace: for any relevant memory event ` = Mem⟨𝑖, 𝜏, 𝛼⟩ in a session 𝜏 , we locate it
in the trace using the unique label 𝑖 and note the method in the most recent invocation event 𝛾).
Clearly, this denotes an instance of non-robustness in the library L1, and we prove a contradiction
by creating a new execution in ΩL1 ×MSRC20 which would generate a non-robust execution graph
(i.e. having an hbSC cycle).

In particular, we construct 𝐸 ′ = ⟨𝑡 ′, Γ′, 𝑔′⟩, an execution belonging to CEL1
RC20. The transitions

in 𝑡 ′ are taken to be, in order, exactly the transitions in 𝑡 which correspond to invocations of a
method of L1 or events generated by reductions due to statements corresponding to an invocation
𝛾 of af method of L1. This specifically excludes any fences added by the InvkF reduction, allowing
the trace to be generated by ΩL1 ×MSRC20. For the state ⟨𝑠,𝐺⟩ at each step, the LTS state 𝑠 is
determined straightforwardly by the transition system where the environment now only contains
variables local to methods of L1 and thus follows the states in 𝑡 , except that EnvLocal of invocations
within L2 are replaced by the relevant environment of the current invocation in each session. The
partial execution graph at every step is a subgraph of the corresponding execution graph of the
state in 𝑡 , generated by taking only the memory events that were created by L1 methods. This
graph is obviously valid and RC20-consistent since, at every step, an RC20 consistency violation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:34 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

would have implied an RC20 inconsistency in the original graph in the trace 𝑡 . Finally Γ′ is the
corresponding set of L1 method invocations and 𝐺 ′ is the final execution graph obtained in the
trace.

Now, 𝐺 ′ must have the same hbSC cycle that was present in 𝐺 since every edge was so, rf, mo
or fr and since each of the memory events in the cycle are present, the mo and rf relations are
between the same events and fr is derived from rf and mo.

Case All the memory events were generated by methods of L2. This case is symmetric.
Case The cycle consists of events of L1 as well as L2; this is the general case where fences are

made use of. Pick any L1 event and and consider the next contiguous set of L2 events in the cycle
followed by another L1 event (which may be the same). Suppose these are 𝑒1, . . . , 𝑒𝑛 between 𝑑1
and 𝑑2. Now since 𝑑1 and 𝑒1 are events of different libraries, they cannot access the same memory
location and can thus only be related by a so edge; and by the well-fenced criterion, must include
an SC-fence in order i.e. 𝑑1

so−→ 𝑓1
so−→ 𝑒1. Note that 𝑓1 is a representation for three memory events

in so, namely those generated by the acquire fence, CAS and release fence. Similarly we must have
𝑑2

so−→ 𝑓2
so−→ 𝑒2 where 𝑓1 and 𝑓2 are both SC-fences.

The U events in the fences 𝑓1 and 𝑓2 are totally ordered in hb, and we hereafter refer to this as
an hb ordering on the fences as a whole. We prove a lemma 6.11 separately that thehb-ordering
between the two must be 𝑓1

hb−−→ 𝑓2 (in particular, obeying the direction of the hbSC chain in
𝑓1 → 𝑒1 → · · · → 𝑒𝑛 → 𝑓2) using the robustness of L2. This implies that the original cycle 𝐶

can be modified to remove the L2 events, having 𝑑1
so−→ 𝑓1

hb−−→ 𝑓2
so−→ 𝑑2 i.e. 𝑑1

hb−−→ 𝑑2. We can
similarly continue this process until all L2 events are removed from the cycle, replacing them with
hb-synchronization.

The cycle 𝐶 is now left with so, rf, mo, fr edges as well as hb edges which appeared through
indirect synchronization; thus it is not always possible to retain the cycle after removing L2 events
from 𝐺 to obtain an induced subgraph. We instead construct a new execution of L1 where the
relevant memory events appear in so instead of hb, recreating the hbSC cycle in an RC20-consistent
execution and contradicting the robustness of L1.

Consider the order of the memory events 𝑑𝑖 in 𝐶 appearing in the trace 𝑡 . In the new execution,
the trace will again have all the transitions corresponding to events in methods of the library
L1, in the same order; however we will change the session IDs of these events in order to move
invocations to different threads from the original while still maintaining validity. In particular,
we will move every single invocation event into its own thread, in order to remove any of the
unnecessary synchronization through so, except in the instances we actually require to maintain
so, which is exactly only between events in so and hb in the modified cycle 𝐶 . This is what allows
us to convert the hb edges back to so to gain a legitimate cycle without causing branching or other
such conflicts.

As a preliminary, consider some invocation 𝛾 which has memory events in the cycle. Since all
such possible events are ordered by so, it is easy to see that any 𝛾 can have atmost two memory
events in the cycle, in immediate succession to each other through so.

The new trace 𝑡 ′ is constructed from 𝑡 as follows. Firstly, for every memory event transition in
the trace, we can locate the invocation it was a part of, since it is uniquely identified by 𝑖 (so we
look at the Invk event 𝛾 current active in the same session 𝜏). Suppose the infinite set of possible
sessions is 𝜏1, We start by adding the first event in 𝑡 which must be some method invocation,
and thus eventually all the events of that particular method invocation, into the first session 𝜏1 in
𝑡 ′ (by taking the same transition but replacing the session ID with 𝜏1). This changes the state from

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:35

the initial state to that in which the first invocation has occurred in one session which is equivalent
to the first state reached after the event in 𝑡 .

For each of the next events, we consider the invocation 𝛾 associated with it. If the event is not
the invocation itself, then the invocation must already be present in some session and the event
must have been generated in the same session. For adding a new invocation event 𝛾 , we check if
there is some memory event associated with 𝛾 which is in the modified cycle 𝐶 , and then whether
the edge immediately preceding this event was so from a memory event of a different invocation
say 𝛾 ′. Therefore in the original execution, 𝛾 must have been called in the same session after 𝛾 ′, and
similarly for the new execution 𝐸 ′ we place the invocation event for 𝛾 in the same session as that
of 𝛾 ′ (which must already have been placed, following the trace ordering of 𝑡). Again if a memory
event associated with 𝛾 in the modified cycle was immediately preceded by an hb from an event of
a different invocation 𝛾 ′, we place the invocation event of 𝛾 in the same session as that of 𝛾 ′. 𝛾 ′
must already be present since the hb in the cycle was propagated through a pair of SC-fences: one
placed after 𝛾 ′ and one before 𝛾 and thus appearing in that order in 𝑡 . Crucially, since 𝛾 can have
atmost one memory event so or hb after a different method’s memory event in the cycle, there is
never a conflict about which session to place 𝛾 into.

We need to determine the relations between the memory events in the execution graphs being
created in the trace also. For every partial execution graph 𝑔′ in 𝑡 ′, the set of memory events is a
subset of the set of memory events of some graph in 𝑡 (and in fact, of the final execution graph in
𝐸, namely 𝐺). We set the relations in 𝑔′ as follows: for every pair of memory events in 𝑔′, uniquely
identified as say 𝑖1 and 𝑖2 (since each event has an identifier), if (𝑖1, 𝑖2) ∈ 𝐺.rf then (𝑖1, 𝑖2) ∈ 𝑔′.rf
and if (𝑖1, 𝑖2) ∈ 𝐺.mo then (𝑖1, 𝑖2) ∈ 𝑔′.mo. As each memory event reads from the same access as in
the original trace or writes the same values, within each invocation the control flow is unaffected
and the local environment is simply derived from the corresponding environment in the original
trace. We now need to show that the intermediate graphs 𝑔′ are in fact well-formed execution
graphs (i.e. rf, mo follow some basic properties) and are all consistent under RC20; all this will give
us a valid trace of L1-only events. The well-formedness follows directly from the well-formedness
of 𝐺 for every criterion (so we do not go into detail). For consistency, we show that 𝑔′.hb ⊆ 𝐺.hb.
𝑔′.hb ≜ (𝑔′.so ∪ 𝑔′.sw)+ and if (𝑎, 𝑏) ∈ so in 𝑔′ then in 𝐺 we must have had (𝑎, 𝑏) ∈ (so ∪ hb)+

in 𝐺 (since the only invocations in the same session are those which had events in the cycle related
by so or hb). Thus 𝑔′.so ⊆ 𝐺.hb.

Any sw edge in 𝑔′ is of the form
[𝑔′.𝑀⊒rel]; ([𝑔′.𝑀F,⊒rel];𝑔′.so)?;𝑔′.rf+; (𝑔′.so; [𝑔′.𝑀F,⊒acq])?; [𝑔′.𝑀⊒acq]. In the case where the form
simplifies to [𝑔′.𝑀⊒rel];𝑔′.rf+; [𝑔′.𝑀⊒acq] since the same rf edges were present in 𝐺 , the sw edge
in 𝑔′ was also present in 𝐺.sw. Similarly for fence synchronization through so edges, if the sw

edge is of the form 𝑓⊒rel
so−→ 𝑎

rf+−−→ 𝑏
so−→ 𝑔⊒acq where 𝑓 and 𝑔 are fences (which are events in

invocations of L1, along with 𝑎 and 𝑏) and the so edges in 𝑔′ were between events in 𝐺 which
were also in so; then again we have the sw edge was also present in 𝐺 between the same library
events. However, the possibility remains that the so edge was added by converting hb edges in 𝐺
(through synchronization outside L1) into so edges; we would have in 𝐺 the 𝑓 → 𝑎 edge being
some combination of 𝑓 so−→ 𝑎1

hb−−→ 𝑎2 → . . . 𝑎𝑛
hb/so−−−−→ 𝑎 edges. We consider the last such hb edge

introduced through external SC-fence synchronization. If 𝑎𝑛
hb−−→ 𝑎 for memory events in L1, where

the hb was added through the introduced SC-fences, then clearly in 𝐺 the synchronization was
in fact of the form 𝑎𝑛

so−→ 𝑓1
rf/hb−−−−→ 𝑓2

so−→ 𝑎 where 𝑓1 and 𝑓2 were the fences added at the interface.
Similarly, if 𝑏 so−→ 𝑔 in 𝑔′ then we have 𝑏 so−→ 𝑔1

rf/hb−−−−→ 𝑔2
so−→ 𝑏1

so−→ 𝑏2
hb−−→ 𝑏3 → · · · → 𝑏𝑛 → 𝑔

where 𝑔1 and 𝑔2 were SC-fences in the interface (and 𝑏1 as well as 𝑔 being events of L1). In

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:36 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

particular, we have 𝑓2
so−→ 𝑎

rf+−−→ 𝑏
so−→ 𝑔1 and therefore 𝑓2

sw−−→ 𝑔1 by the same pattern in 𝐺 .
(Here, SC-fences are of the form fence(acq); 𝑓 .cas(0, 0, acqrel, rlx); fence(rel) and specifically
the F⟨rel⟩𝑓 so−→ 𝑎

rf+−−→ 𝑏
so−→ F⟨acq⟩ forms the relevant pattern.) Now for all the other hb and so

edges, they were all included in 𝐺.hb so the sw edge in 𝑔′ also corresponds to an hb edge in 𝐺 .
Thus:

𝑔′.so ⊆ 𝐺.hb

𝑔′.sw ⊆ 𝐺.hb

(𝑔′.so ∪ 𝑔′.sw)+ ⊆ 𝐺.hb+

𝑔′.hb ⊆ 𝐺.hb

This relation allows us to declare RC20-consistency of 𝑔′ in terms of RC20-consistency of 𝐺 . The
conditions are:
• 𝑔′.mo;𝑔′.rf?;𝑔′.hb? is irreflexive: Since these are all subsets (as relations) of the original

relation over 𝐺 , any event in 𝑔′ which showed this reflexivity would do the same in 𝐺 , thus
making 𝐺 RC20-inconsistent (a contradiction).
• 𝑔′.fr;𝑔′.rf?;𝑔′.hb is irreflexive; 𝑔′.fr;𝑔′.mo is irreflexive: The same argument as above.
• 𝑔′.so∪𝑔′.rf is acyclic: Again,𝑔′.rf ⊆ 𝐺.rf. Also,𝑔′.so is a subset of (so∪hb)+ in𝐺 but 𝑎1

hb−−→ 𝑎2

is a sequence of either so edges or sw edges, where sw edges are again
(

so−→
)? (rf−→

)+ (so−→
)?

so 𝑔′.so ⊆ 𝐺.so ∪𝐺.rf and thus cyclicity in 𝑔′ would imply cyclicity in 𝐺 .
Intuitively, this construction maintains consistency since it only allows more behaviours without
restricting any; and it makes the validity of 𝑔′ easier to construct by removing the necessity to
maintain so edges between unimportant library events (which may interfere with the movement
into new sessions). Thus we can construct all the intermediate execution graphs of the new trace 𝑡 ′
and it is easy to see that under ΩL1 ×MSRC20 the relevant transitions do in fact allow the chosen
sequence of states (which include the local environments moved to the appropriate sessions).

The final execution 𝐸 ′ = ⟨𝑡 ′, Γ′,𝐺 ′⟩ where 𝐺 ′ is the final execution graph and Γ′ is just the set
of L1 invocation events in 𝑡 ′. Since all of the events of the modified cycle 𝐶 are in 𝐺 ′ (they are
L1 events only); rf, mo and fr events are maintained while hb edges are converted to so; the hbSC
cycle is recreated in the L1-only system which is a contradiction to the robustness of L1.

Lemma 6.11 For a minimal hbSC cycle which involves a contiguous sequence of events of L2
sandwiched between events of L1, the hb between the relevant fences at the outermost events
must follow the direction of the chain.

Proof. That is, given the execution 𝐸 with final graph 𝐺 in the new semantics, whenever
𝑑1

so−→ 𝑓1
so−→ 𝑒1 → · · · → 𝑒𝑛

so−→ 𝑓2
so−→ 𝑑2 for 𝑑1, 𝑑2 events of L1, 𝑒1, . . . , 𝑒𝑛 events of L2 and 𝑓1, 𝑓2

SC-fences placed by the modification in semantics; if L2 is robust we must have 𝑓1
hb−−→ 𝑓2. To the

contrary, assume 𝑓2
hb−−→ 𝑓1 in order to obtain an hbSC cycle 𝑓1

so−→ 𝑒1 → · · · → 𝑒𝑛
so−→ 𝑓2

hb−−→ 𝑓1 i.e.
𝑒1 → · · · → 𝑒𝑛

hb−−→ 𝑒1. This is a minimal modified cycle in L2 events only, and we go through
exactly the same process as previously with L2 instead in order to obtain a contradiction to the
robustness of L2. □

Finally, we extend this straightforwardly to the case where L = {L1, . . . ,L𝑛}. We observe that
we can consider any library, say L1, as the primary library and attempt to reduce any ℎ𝑏𝑠𝑐 cycle in
𝐺 to an execution in L1 events only by considering contiguous sequences of events in every other

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:37

library separately, unless one of the hb edges between the SC-fences is in a contradictory direction.
In this case we get a modified cycle using events of that library only, and continue as normal. □

Theorem 6.2. Given a set of libraries L, if each library in L is induced subgraph robust, then all
executions in CELRC20 are also induced subgraph robust.

Proof. Again suppose L = {L1,L2} and take a single arbitrary execution generated by ΩL ×
MSRC20, involving L1 and L2 which are induced subgraph robust, labelled 𝐸 = ⟨𝑡, Γ,𝐺⟩. We need
to construct a new execution 𝐸 = ⟨𝑡, Γ̂,𝐺⟩ which has the same invocation events as 𝐸 whose order
is respected in the trace, and for which 𝐺 is an induced subgraph of 𝐺 .

We employ a similar strategy to the previous. Taking a minimal hbSC cycle in 𝐸 with respect to
number of events in the cycle, we try to reduce it to a cycle in only L1 or L2 events in an execution
of the corresponding transition system. Suppose we worked with L1. Now with this non-robust
execution in CEL1

RC20, we can use induced subgraph robustness of L1 to get a new execution which
maintains the ordering of invocation events in the trace and in which the events form an induced
subgraph, but which is now robust. What we would like to do is mimic the pattern of calling of
the events within the new execution’s trace, back in the original trace 𝑡 . Being able to retrofit the
robust CEL1

RC20 in this way would allow us to generate an execution in CELRC20 which is an induced
subgraph of the original execution, but missing the hbSC cycle we were working with. We can then
repeat this process to remove hbSC cycles one by one since new cycles are not introduced.

Consider such a minimal hbSC cycle 𝐶 in 𝐸. The first thing we do is locate sequentially in 𝐶 ,
every successive pair of events 𝑎 and 𝑏 such that 𝑎 was generated by a method of L1, and 𝑏 by a
method of L2. As previously, the edge between 𝑎 and 𝑏 must be so and by well-fencedness, they
must be separated by an SC-fence 𝑓 i.e. 𝑎 so−→ 𝑓

so−→ 𝑏. We insert this fence 𝑓 into the cycle between
𝑎 and 𝑏. We continue to do this between every pair of events in the cycle.

At the end, we obtain the modified cycle 𝐶 in which every contiguous sequence of L1 events,
bounded by L2 events, is also bounded by fences (and vice versa). Now in the execution 𝐸, the U
events within the fences are totally ordered in hb so any pair of the SC-fences has some hb ordering
between them.

Consider, in the total ordering in hb over the fences, the first fence present in the cycle say 𝑓1. We
follow the outgoing edge of 𝑓1 to the next event say of library L2, and continue along successive
events say 𝑒1 → · · · → 𝑒𝑛 until we reach a second fence 𝑓2 (clearly if there is a fence, there at at
least 2 SC-fences in𝐶 , with the second placed after the contiguous sequence of L2 events). Consider
the ordering between 𝑓1 and 𝑓2: If it is in the direction 𝑓2

hb−−→ 𝑓1, then we have a cycle in L2 events
only i.e. 𝑓1 → 𝑒1 → · · · → 𝑒𝑛 → 𝑓2

hb−−→ 𝑓1 i.e. 𝑒1 → · · · → 𝑒𝑛
hb−−→ 𝑒1 which involves hb as well.

Therefore we can now perform the same procedure as previously, in order to create an execution
using L2 events only, in which the hbSC cycle is recreated and the order of the events of L2 in 𝑡
are maintained using so, rf, mo, fr, only; call it 𝐸 ′ = ⟨𝑡 ′, Γ′,𝐺 ′⟩. The case in which the hbSC cycle
was involving events of one library only is now subsumed by this.

Now if the hb between the fences was in the direction of the hbSC chain i.e. 𝑓1
hb−−→ 𝑓2, we would

locate the next fence successively until we found a pair of fences which were in the opposite
direction. This would allow us to create again an execution using events of one library only in
which the hbSC cycle is recreated. The remaining case in which such a pair is never found. Suppose
there are 𝑚 fences 𝑓1, . . . , 𝑓𝑚 , and we have 𝑓1

hb−−→ 𝑓2
hb−−→ · · · hb−−→ 𝑓𝑚 . There is a contiguous set

of events say 𝑒1, . . . , 𝑒𝑛 of a single library (L1, if the library between 𝑓1 and 𝑓2 was L2) in the
cycle 𝐶 following 𝑓𝑚 and ending with 𝑓1, then we have 𝑓1

hb−−→ 𝑓𝑚
so−→ 𝑒1 → · · · → 𝑒𝑛

so−→ 𝑓1 i.e.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:38 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

𝑒1 → · · · → 𝑒𝑛
hb−−→ 𝑒1 (where as usual, the hb is between the update events generated by the fences).

We can thus again make an execution 𝐸 ′ using events of that library only, which preserves the
hbSC cycle and the order of L1 events in 𝑡 .

Without loss of generality, suppose we are working with a cycle in library L1. From the property
of induced subgraph robustness of L1 we get a different execution of L1, 𝐸 ′ = ⟨𝑡 ′, Γ̂′,𝐺 ′⟩ which is
robust and in which𝐺 ′ is an induced subgraph of𝐺 ′. We need to be able to integrate this execution
back into 𝐸, in order to obtain a new execution 𝐸 which does not contain the hbSC cycle 𝐶 .

We follow the original trace 𝑡 to construct 𝑡 . Note that the order of invocations of L1 events
in both the traces 𝑡 and 𝑡 ′ is exactly the same. Intuitively, whenever we obtain an L1 event in a
session, we will follow the transitions in 𝑡 ′ with respect to adding non-memory events belonging
to that session, advancing the local state until some other memory event in 𝑡 ′ is reached (which
represents potential conflicts with 𝑡 , and thus has to be added according to the order in 𝑡).

If the first transition of 𝑡 involves an invocation of L2 in some session 𝜏 , we follow the same
transition in the new trace 𝑡 , invoking the corresponding L2 event and following the states in the
trace 𝑡 . For successive L2 events and SC-fences, we continue in the same manner. At this stage,
the local environments and partial execution graphs ⟨𝜚,𝐺⟩ making up the state in 𝑡 follows the
state in 𝑡 . On encountering an L1 invocation in 𝑡 say 𝛾 , we place it in the appropriate session and
consider 𝑡 ′. The same invocation appeared at some position in 𝑡 ′ in some session 𝜏1, and we follow
𝑡 ′ adding transitions in 𝑡 ′ which correspond to non-memory events i.e. change only the local state
of the environment in 𝜏1 and ignoring events which did not take place in 𝜏1. We continue to do this
until we reach a memory event in 𝜏1 (or the invocation of 𝛾 ends in 𝜏1). At this point we return to 𝑡
where we left. This is possible since the validity of all of these transitions only depends on the local
environment of 𝜏1 and is thus synchronized with the local environment of 𝜏1 in 𝑡 ′, and does not
make any changes to the partial execution graph of the states in 𝑡 .

For local transitions and memory events generated by invocations of L2, we continue to follow
𝑡 until we again encounter an invocation or memory event of a method of L1. Now if this memory
event say 𝑒 does not appear in the L1-only trace 𝑡 ′ (which we can check using the unique identifiers
of the memory events) then we ignore it and continue, unless it is an SC fence introduced artificially
due to the InvkF rule. In this case we follow the trace 𝑡 add the relevant event. Otherwise the
memory event appears in 𝑡 ′, and we look at the relevant session in 𝐸 ′ say 𝜏2 again. In this session,
we have inductively conducted local transitions so that the next memory event in 𝜏2 is available,
and by the property of 𝐺 ′ being a subgraph of 𝐺 , 𝐸 ′ inherits the total order of memory events in
so within 𝜏2 from the corresponding session in 𝐸. Therefore it is possible to take the transition
corresponding to adding the memory event encountered, and we need to make sure that the rf, mo
edges to be added in the partial execution graph synchronize with the same memory events as in 𝑡 ′.
This is possible since we are following the order of events in 𝑡 , and the event 𝑒 must synchronize
with the same events it did in 𝐸 using the induced subgraph property. Thus the transition in 𝑡 ′ can
be taken in 𝑡 , and we again perform local transitions in the same session 𝜏2 until the next memory
event before returning to 𝑡 .

Once all the transitions in 𝑡 have been taken, we have an execution 𝐸 which is a complete
execution since all the events corresponding to L2 events were performed in order while for L1
events, all the memory events in 𝑡 ′ were present in 𝑡 and thus taken while local events were taken
afterwards. At each step, the local state corresponds to an environment of a state in either 𝑡 or 𝑡 ′
depending on the active invocation while the partial execution graph is a subgraph of the original
execution graph 𝐺 . The final execution graph 𝐺 is obtained from the final state of the trace and the
set of invocation events clearly follows that in Γ. However in 𝐸, the hbSC cycle that we originally
considered can no longer be present, since the chain that was in L1 events has been removed by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:39

the robustness of 𝐸 ′ (explicitly, consider the two events 𝑒1 and 𝑒2 generated by L1 methods in hb
through SC-fence synchronization. These were in so in the execution 𝐸 ′, so any hbSC chain from 𝑒2
to 𝑒1 cannot have been present in 𝐸 ′ since this would contradict its robustness. Now any hbSC chain
in 𝐸 from 𝑒2 to 𝑒1 must be reflected in 𝐸 ′ and therefore cannot exist. Thus the original minimal
hbSC cycle, which contained the 𝑒2 → · · · → 𝑒1 events, must not exist in 𝐸).

The process above allows us to take an execution in CELRC20 and generate an execution in which
at least one of the hbSC cycles has been removed and in which the final execution graph is an
induced subgraph of the original. It also does not add any, since any cycle present in 𝐺 must have
been present in 𝐺 also; thus we can repeat this process a finite amount of times until the resulting
execution 𝐸 has a graph which has no hbSC cycles at all, and is in fact robust. Thus we obtain for
any complete execution 𝐸 of ΩL ×MSRC20, a corresponding robust execution 𝐸 which proves that
all executions in CELRC20 are induced subgraph robust. □

C Example demonstrating the need for induced subgraph robustness

method𝑚1 (𝑧1) = store(ℓ2, 𝑧1, rlx)
method𝑚2 (𝑧2) = while true do

𝑥1 = load(ℓ1,rlx)
𝑦1 = load(ℓ2,rlx)
if cas(ℓ1, 𝑥1, 𝑦1,acqrel))
then return 𝑥1 else skip

Memhi2, �2,Rh`2, v, rlxii
<latexit sha1_base64="fufZIYPTLsUhKJLFE5bQRkthzWc=">AAACRXicbVBNSwMxFMz6bf2qevQSrIIHKbu96FH04kVQsSp0S3mbvq3BJLskWbEs/XNevHvzH3jxoIhXTdfF74GQYWYeeZkoFdxY37/3RkbHxicmp6YrM7Nz8wvVxaVTk2SaYZMlItHnERgUXGHTcivwPNUIMhJ4Fl3uDf2zK9SGJ+rE9lNsS+gpHnMG1kmdargWSrAXJs4PUA5CAaonkPJOY5OGPZASClZGjj8DIQoxdK6+TC2uB6Eu7PJa61Rrft0vQP+SoCQ1UuKwU70LuwnLJCrLBBjTCvzUtnPQljOBg0qYGUyBXUIPW44qkGjaedHCgK47pUvjRLujLC3U7xM5SGP6MnLJYuXf3lD8z2tlNt5u51ylmUXFPh6KM0FtQoeV0i7XyKzoOwJMc7crZReggVlXfMWVEPz+8l9y2qgHfj04atR2dss6psgKWSUbJCBbZIfsk0PSJIzckAfyRJ69W+/Re/FeP6IjXjmzTH7Ae3sHK/2yFw==</latexit><latexit sha1_base64="fufZIYPTLsUhKJLFE5bQRkthzWc=">AAACRXicbVBNSwMxFMz6bf2qevQSrIIHKbu96FH04kVQsSp0S3mbvq3BJLskWbEs/XNevHvzH3jxoIhXTdfF74GQYWYeeZkoFdxY37/3RkbHxicmp6YrM7Nz8wvVxaVTk2SaYZMlItHnERgUXGHTcivwPNUIMhJ4Fl3uDf2zK9SGJ+rE9lNsS+gpHnMG1kmdargWSrAXJs4PUA5CAaonkPJOY5OGPZASClZGjj8DIQoxdK6+TC2uB6Eu7PJa61Rrft0vQP+SoCQ1UuKwU70LuwnLJCrLBBjTCvzUtnPQljOBg0qYGUyBXUIPW44qkGjaedHCgK47pUvjRLujLC3U7xM5SGP6MnLJYuXf3lD8z2tlNt5u51ylmUXFPh6KM0FtQoeV0i7XyKzoOwJMc7crZReggVlXfMWVEPz+8l9y2qgHfj04atR2dss6psgKWSUbJCBbZIfsk0PSJIzckAfyRJ69W+/Re/FeP6IjXjmzTH7Ae3sHK/2yFw==</latexit><latexit sha1_base64="fufZIYPTLsUhKJLFE5bQRkthzWc=">AAACRXicbVBNSwMxFMz6bf2qevQSrIIHKbu96FH04kVQsSp0S3mbvq3BJLskWbEs/XNevHvzH3jxoIhXTdfF74GQYWYeeZkoFdxY37/3RkbHxicmp6YrM7Nz8wvVxaVTk2SaYZMlItHnERgUXGHTcivwPNUIMhJ4Fl3uDf2zK9SGJ+rE9lNsS+gpHnMG1kmdargWSrAXJs4PUA5CAaonkPJOY5OGPZASClZGjj8DIQoxdK6+TC2uB6Eu7PJa61Rrft0vQP+SoCQ1UuKwU70LuwnLJCrLBBjTCvzUtnPQljOBg0qYGUyBXUIPW44qkGjaedHCgK47pUvjRLujLC3U7xM5SGP6MnLJYuXf3lD8z2tlNt5u51ylmUXFPh6KM0FtQoeV0i7XyKzoOwJMc7crZReggVlXfMWVEPz+8l9y2qgHfj04atR2dss6psgKWSUbJCBbZIfsk0PSJIzckAfyRJ69W+/Re/FeP6IjXjmzTH7Ae3sHK/2yFw==</latexit><latexit sha1_base64="fufZIYPTLsUhKJLFE5bQRkthzWc=">AAACRXicbVBNSwMxFMz6bf2qevQSrIIHKbu96FH04kVQsSp0S3mbvq3BJLskWbEs/XNevHvzH3jxoIhXTdfF74GQYWYeeZkoFdxY37/3RkbHxicmp6YrM7Nz8wvVxaVTk2SaYZMlItHnERgUXGHTcivwPNUIMhJ4Fl3uDf2zK9SGJ+rE9lNsS+gpHnMG1kmdargWSrAXJs4PUA5CAaonkPJOY5OGPZASClZGjj8DIQoxdK6+TC2uB6Eu7PJa61Rrft0vQP+SoCQ1UuKwU70LuwnLJCrLBBjTCvzUtnPQljOBg0qYGUyBXUIPW44qkGjaedHCgK47pUvjRLujLC3U7xM5SGP6MnLJYuXf3lD8z2tlNt5u51ylmUXFPh6KM0FtQoeV0i7XyKzoOwJMc7crZReggVlXfMWVEPz+8l9y2qgHfj04atR2dss6psgKWSUbJCBbZIfsk0PSJIzckAfyRJ69W+/Re/FeP6IjXjmzTH7Ae3sHK/2yFw==</latexit>

fr
so so

Memhi4, �4,Rh`1, vinit , rlxii
<latexit sha1_base64="sX0IRKHfBWMvJo09y13MQQQ4/gY=">AAACVXicbVFNSxxBEO2ZqDEbPzbJMZcmq+BBlhkRzFHMJRfBBFeFnWWo6a1ZG7t7hu4acRnmT3oR/0kuQnrHQY2moOnHe6/oqtdZqaSjKLoPwndLyyvvVz/0Pq6tb2z2P30+c0VlBY5EoQp7kYFDJQ2OSJLCi9Ii6EzheXb1Y6GfX6N1sjCnNC9xomFmZC4FkKfSvtpKNNCly+tj1E2iwMwUcpnu7/JkBlpDizrL7ydDgkql8S6/TutWlFRLI6lpns1W3TSJbe3dtZX2B9Ewaou/BXEHBqyrk7R/m0wLUWk0JBQ4N46jkiY1WJJCYdNLKocliCuY4dhDAxrdpG5Tafi2Z6Y8L6w/hnjLvuyoQTs315l3tiO/1hbk/7RxRfn3id+3rAiNeHworxSngi8i5lNpUZCaewDCSj8rF5dgQZD/iJ4PIX698ltwtjeMo2H8a29weNTFscq+sm9sh8XsgB2yn+yEjZhgt+xPEARhcBc8hEvhyqM1DLqeL+yfCjf/As5EtKU=</latexit><latexit sha1_base64="sX0IRKHfBWMvJo09y13MQQQ4/gY=">AAACVXicbVFNSxxBEO2ZqDEbPzbJMZcmq+BBlhkRzFHMJRfBBFeFnWWo6a1ZG7t7hu4acRnmT3oR/0kuQnrHQY2moOnHe6/oqtdZqaSjKLoPwndLyyvvVz/0Pq6tb2z2P30+c0VlBY5EoQp7kYFDJQ2OSJLCi9Ii6EzheXb1Y6GfX6N1sjCnNC9xomFmZC4FkKfSvtpKNNCly+tj1E2iwMwUcpnu7/JkBlpDizrL7ydDgkql8S6/TutWlFRLI6lpns1W3TSJbe3dtZX2B9Ewaou/BXEHBqyrk7R/m0wLUWk0JBQ4N46jkiY1WJJCYdNLKocliCuY4dhDAxrdpG5Tafi2Z6Y8L6w/hnjLvuyoQTs315l3tiO/1hbk/7RxRfn3id+3rAiNeHworxSngi8i5lNpUZCaewDCSj8rF5dgQZD/iJ4PIX698ltwtjeMo2H8a29weNTFscq+sm9sh8XsgB2yn+yEjZhgt+xPEARhcBc8hEvhyqM1DLqeL+yfCjf/As5EtKU=</latexit><latexit sha1_base64="sX0IRKHfBWMvJo09y13MQQQ4/gY=">AAACVXicbVFNSxxBEO2ZqDEbPzbJMZcmq+BBlhkRzFHMJRfBBFeFnWWo6a1ZG7t7hu4acRnmT3oR/0kuQnrHQY2moOnHe6/oqtdZqaSjKLoPwndLyyvvVz/0Pq6tb2z2P30+c0VlBY5EoQp7kYFDJQ2OSJLCi9Ii6EzheXb1Y6GfX6N1sjCnNC9xomFmZC4FkKfSvtpKNNCly+tj1E2iwMwUcpnu7/JkBlpDizrL7ydDgkql8S6/TutWlFRLI6lpns1W3TSJbe3dtZX2B9Ewaou/BXEHBqyrk7R/m0wLUWk0JBQ4N46jkiY1WJJCYdNLKocliCuY4dhDAxrdpG5Tafi2Z6Y8L6w/hnjLvuyoQTs315l3tiO/1hbk/7RxRfn3id+3rAiNeHworxSngi8i5lNpUZCaewDCSj8rF5dgQZD/iJ4PIX698ltwtjeMo2H8a29weNTFscq+sm9sh8XsgB2yn+yEjZhgt+xPEARhcBc8hEvhyqM1DLqeL+yfCjf/As5EtKU=</latexit><latexit sha1_base64="sX0IRKHfBWMvJo09y13MQQQ4/gY=">AAACVXicbVFNSxxBEO2ZqDEbPzbJMZcmq+BBlhkRzFHMJRfBBFeFnWWo6a1ZG7t7hu4acRnmT3oR/0kuQnrHQY2moOnHe6/oqtdZqaSjKLoPwndLyyvvVz/0Pq6tb2z2P30+c0VlBY5EoQp7kYFDJQ2OSJLCi9Ii6EzheXb1Y6GfX6N1sjCnNC9xomFmZC4FkKfSvtpKNNCly+tj1E2iwMwUcpnu7/JkBlpDizrL7ydDgkql8S6/TutWlFRLI6lpns1W3TSJbe3dtZX2B9Ewaou/BXEHBqyrk7R/m0wLUWk0JBQ4N46jkiY1WJJCYdNLKocliCuY4dhDAxrdpG5Tafi2Z6Y8L6w/hnjLvuyoQTs315l3tiO/1hbk/7RxRfn3id+3rAiNeHworxSngi8i5lNpUZCaewDCSj8rF5dgQZD/iJ4PIX698ltwtjeMo2H8a29weNTFscq+sm9sh8XsgB2yn+yEjZhgt+xPEARhcBc8hEvhyqM1DLqeL+yfCjf/As5EtKU=</latexit>

hb
SC

Memhi1, �1,Uh`1, vinit, v1, rlxii
<latexit sha1_base64="gfUNtkwWdyx/EzbXYCuzt/1U0Io=">AAACWHicbVFNS+RAEK1EXXX2a1aPXhpFWNhlSLysR3EvXgQFR4XJECo9lbGxuxO6O+Iw5L/4mwQP+le82MmM4ldB04/3XtFVr7NSCuui6D4IFxaXviyvrHa+fvv+42f319qpLSrDqc8LWZjzDC1JoanvhJN0XhpClUk6yy7/N/rZFRkrCn3iJiUNFY61yAVH56m0WyQK3YXNp4ek6kSiHktiIo3/smSMSmGL5pb+iyEhKRvlKn3WhBaubohXfiOva5aYecvsTrtbUS9qi30E8Rxs7W0mf24A4Cjt3iajgleKtOMSrR3EUemGUzROcEl1J6kslcgvcUwDDzUqssNpG0zNtj0zYnlh/NGOtezrjikqaycq88525vdaQ36mDSqX7w790mXlSPPZQ3klmStYkzIbCUPcyYkHyI3wszJ+gQa583/R8SHE71f+CE53enHUi499GvswqxXYgE34DTH8gz04gCPoA4c7eAwWg6XgIYRwOVydWcNg3rMObypcewIRXbWW</latexit><latexit sha1_base64="UtG6jd/IOMmVToII0NE4soB6Urs=">AAACWHicbVHLSsQwFE3rY3R8jbp0ExRBUIbWjS4H3bgRFBwVpkO5zdyOwSQtSSoOQ//CLxNc6K+4Me2M4utCyOGcc8m9J0kuuLFB8Or5M7Nz842FxebS8srqWmt949pkhWbYZZnI9G0CBgVX2LXcCrzNNYJMBN4k96eVfvOA2vBMXdlRjn0JQ8VTzsA6Km5lkQR7Z9LxOcoyEqCGAimPwwMaDUFKqNHU0v0yRChEpTzEnxpX3JYV8c2vxWNJIz1tmdxxaydoB3XRvyCcgp3OdrT/9NoZXcSt52iQsUKiskyAMb0wyG1/DNpyJrBsRoXBHNg9DLHnoAKJpj+ugynprmMGNM20O8rSmv3eMQZpzEgmzlnP/FuryP+0XmHT475bOi8sKjZ5KC0EtRmtUqYDrpFZMXIAmOZuVsruQAOz7i+aLoTw98p/wfVhOwza4aVL44RMaoFskW2yR0JyRDrkjFyQLmHkhbx7s96c9+YTv+EvTqy+N+3ZJD/K3/gAGse3HA==</latexit><latexit sha1_base64="UtG6jd/IOMmVToII0NE4soB6Urs=">AAACWHicbVHLSsQwFE3rY3R8jbp0ExRBUIbWjS4H3bgRFBwVpkO5zdyOwSQtSSoOQ//CLxNc6K+4Me2M4utCyOGcc8m9J0kuuLFB8Or5M7Nz842FxebS8srqWmt949pkhWbYZZnI9G0CBgVX2LXcCrzNNYJMBN4k96eVfvOA2vBMXdlRjn0JQ8VTzsA6Km5lkQR7Z9LxOcoyEqCGAimPwwMaDUFKqNHU0v0yRChEpTzEnxpX3JYV8c2vxWNJIz1tmdxxaydoB3XRvyCcgp3OdrT/9NoZXcSt52iQsUKiskyAMb0wyG1/DNpyJrBsRoXBHNg9DLHnoAKJpj+ugynprmMGNM20O8rSmv3eMQZpzEgmzlnP/FuryP+0XmHT475bOi8sKjZ5KC0EtRmtUqYDrpFZMXIAmOZuVsruQAOz7i+aLoTw98p/wfVhOwza4aVL44RMaoFskW2yR0JyRDrkjFyQLmHkhbx7s96c9+YTv+EvTqy+N+3ZJD/K3/gAGse3HA==</latexit><latexit sha1_base64="QWsYi9f7PdhaQgIU9U68uy1H0ak=">AAACWHicbVFNS8QwEE3r9/q16tFLcBE8yNJ60aPoxYug4KqwXco0O12DSVqSdHFZ+icFD/pXvJh2q/g1EPJ47w2ZeUlywY0NglfPn5tfWFxaXmmtrq1vbLa3tm9NVmiGPZaJTN8nYFBwhT3LrcD7XCPIROBd8nhe6Xdj1IZn6sZOchxIGCmecgbWUXE7iyTYB5NOL1GWkQA1Ekh5HB7SaARSQo0aS+/LEKEQlTKOPzWuuC0r4ptfi6eSRrppmd1xuxN0g7roXxA2oEOauorbz9EwY4VEZZkAY/phkNvBFLTlTGDZigqDObBHGGHfQQUSzWBaB1PSfccMaZppd5SlNfu9YwrSmIlMnLOe+bdWkf9p/cKmJwO3dF5YVGz2UFoIajNapUyHXCOzYuIAMM3drJQ9gAZm3V+0XAjh75X/gtujbhh0w+ugc3rWxLFMdskeOSAhOSan5IJckR5h5IW8e/PegvfmE3/JX5lZfa/p2SE/yt/+AP7PtA0=</latexit>

fr

Memhi3, �3,Wh`2, v2, rlxii
<latexit sha1_base64="YmYfTWIuGzxP3TKQsX+y39NDLXI=">AAACRnicbVDBbhMxEJ1NKZSUQoAjF6sVUiWiaDc9wLFqL1yQikSaStnVataZTaza3pXtrRqt8i/8Sy8999ZP4MIBhLjibAKChJHseXrvjTx+WSmFdWF4H7S2Hmw/fLTzuL37ZO/ps87zF+e2qAynAS9kYS4ytCSFpoETTtJFaQhVJmmYXZ4u9OEVGSsK/cnNSkoUTrTIBUfnqbSTxArd1Ob1B1LzWKKeSGIiPeqyeIJKYYNWluEfQ0xSpv0uu/LXb9XI6zmLzcqw7GnnIOyFTbFNEK3AwfF+/OYzAJylnbt4XPBKkXZcorWjKCxdUqNxgkuat+PKUon8Eic08lCjIpvUTQxz9tozY5YXxh/tWMP+PVGjsnamMu9sdl7XFuT/tFHl8ndJLXRZOdJ8+VBeSeYKtsiUjYUh7uTMA+RG+F0Zn6JB7nzybR9CtP7lTXDe70VhL/ro0ziBZe3AK9iHQ4jgLRzDeziDAXC4gS/wDb4Ht8HX4Efwc2ltBauZl/BPteAXQGuzGQ==</latexit><latexit sha1_base64="yCAH+IhTW4VDhTLjE/zlmGjtmfQ=">AAACRnicbVBNaxsxEJ11vxL3y22PvQibQqHB7KaH5GjaSy6FBOrY4F2WWXnWEZG0i6QNNYv/Rf5RLj3nlp/QSw8tIdfIa6e0Tgekebz3Bo1eVkphXRheBa0HDx89frK13X767PmLl51Xr49tURlOQ17IwowztCSFpqETTtK4NIQqkzTKTj8v9dEZGSsK/dXNS0oUzrTIBUfnqbSTxArdic3rL6QWsUQ9k8RE+nGHxTNUChu0toz+GGKSMt3dYWf+ulON/LZgsVkbVj3t9MJ+2BS7D6I16A268Yfzq8H8MO1cxtOCV4q04xKtnURh6ZIajRNc0qIdV5ZK5Kc4o4mHGhXZpG5iWLB3npmyvDD+aMca9u+JGpW1c5V5Z7PzprYk/6dNKpfvJ7XQZeVI89VDeSWZK9gyUzYVhriTcw+QG+F3ZfwEDXLnk2/7EKLNL98Hx7v9KOxHRz6NT7CqLXgLXXgPEezBAA7gEIbA4QJ+wC/4HXwPfgbXwc3K2grWM2/gn2rBLUnVtJ8=</latexit><latexit sha1_base64="yCAH+IhTW4VDhTLjE/zlmGjtmfQ=">AAACRnicbVBNaxsxEJ11vxL3y22PvQibQqHB7KaH5GjaSy6FBOrY4F2WWXnWEZG0i6QNNYv/Rf5RLj3nlp/QSw8tIdfIa6e0Tgekebz3Bo1eVkphXRheBa0HDx89frK13X767PmLl51Xr49tURlOQ17IwowztCSFpqETTtK4NIQqkzTKTj8v9dEZGSsK/dXNS0oUzrTIBUfnqbSTxArdic3rL6QWsUQ9k8RE+nGHxTNUChu0toz+GGKSMt3dYWf+ulON/LZgsVkbVj3t9MJ+2BS7D6I16A268Yfzq8H8MO1cxtOCV4q04xKtnURh6ZIajRNc0qIdV5ZK5Kc4o4mHGhXZpG5iWLB3npmyvDD+aMca9u+JGpW1c5V5Z7PzprYk/6dNKpfvJ7XQZeVI89VDeSWZK9gyUzYVhriTcw+QG+F3ZfwEDXLnk2/7EKLNL98Hx7v9KOxHRz6NT7CqLXgLXXgPEezBAA7gEIbA4QJ+wC/4HXwPfgbXwc3K2grWM2/gn2rBLUnVtJ8=</latexit><latexit sha1_base64="TGyDnrzqtKNiLJsr+jd3en7OIWA=">AAACRnicbVBNT9tAEB2HfkBoS0qPvawaIfWAIhsOcETthQsSlRqCFFvWeDMOK3bX1u4aNbLy63rhzI2fwKWHVhVXNo5BFDrS7jy990Y7+7JSCuvC8DrorLx4+er16lp3/c3bdxu995sntqgMpyEvZGFOM7QkhaahE07SaWkIVSZplJ1/XeijCzJWFPq7m5WUKJxqkQuOzlNpL4kVujOb10ek5rFEPZXERLq7zeIpKoUNai2jB0NMUqY72+zCX/eqkT/mLDatYdnTXj8chE2x5yBqQR/aOk57V/Gk4JUi7bhEa8dRWLqkRuMElzTvxpWlEvk5TmnsoUZFNqmbGOZsyzMTlhfGH+1Ywz6eqFFZO1OZdzY7P9UW5P+0ceXy/aQWuqwcab58KK8kcwVbZMomwhB3cuYBciP8royfoUHufPJdH0L09MvPwcnOIAoH0bewf/CljWMVPsIn+AwR7MEBHMIxDIHDT7iB3/AnuAx+BX+D26W1E7QzH+Cf6sAdLeyxkA==</latexit>

Invkhi1,m2, , , ⌧1i ⌘ �1 Invkhi2,m2, , , ⌧1i ⌘ �2

Invkhi3,m1, , , ⌧2i ⌘ �3 Invkhi4,m2, , , ⌧2i ⌘ �4
<latexit sha1_base64="d1yR2v/XpXb1RCVY9q95ZiWlPoU=">AAADDXiclVJLaxsxENZu+kjdR5z02IuoKfQQzGpjaI6BXtpbCnUSsMwyK2sdYUm70cNgFv+BXvJXcumhIfTae2/9N5XtPbSOXejAwMc3M59mRpNXUliXJL+ieOfBw0ePd5+0nj57/mKvvX9wZktvGO+zUpbmIgfLpdC874ST/KIyHFQu+Xk+eb+In0+5saLUn92s4kMFYy0KwcAFKtuPOi2qwF3aov6op5M5laDHkmORkUOssvQQ06xxBz4j1KzilF95McV0DEpBRjC98jDaJpX+h1SKKd2mc7TQIWs66Wado3+31NvU0hapXtbuJN1kafg+IA3ooMZOs/ZPOiqZV1w7JsHaAUkqN6zBOMEkn7eot7wCNoExHwSoQXE7rJe/OcdvAjPCRWmCa4eX7J8VNShrZyoPmcvZ1mMLclNs4F1xPKyFrrzjmq0eKrzErsSL08AjYThzchYAMCNCr5hdggHmwgG1whLI+sj3wVnaJUmXfOp1To6bdeyiV+g1eosIeodO0Ad0ivqIRV+im+hbdBtfx1/ju/j7KjWOmpqX6C+Lf/wG9a3yWg==</latexit><latexit sha1_base64="d1yR2v/XpXb1RCVY9q95ZiWlPoU=">AAADDXiclVJLaxsxENZu+kjdR5z02IuoKfQQzGpjaI6BXtpbCnUSsMwyK2sdYUm70cNgFv+BXvJXcumhIfTae2/9N5XtPbSOXejAwMc3M59mRpNXUliXJL+ieOfBw0ePd5+0nj57/mKvvX9wZktvGO+zUpbmIgfLpdC874ST/KIyHFQu+Xk+eb+In0+5saLUn92s4kMFYy0KwcAFKtuPOi2qwF3aov6op5M5laDHkmORkUOssvQQ06xxBz4j1KzilF95McV0DEpBRjC98jDaJpX+h1SKKd2mc7TQIWs66Wado3+31NvU0hapXtbuJN1kafg+IA3ooMZOs/ZPOiqZV1w7JsHaAUkqN6zBOMEkn7eot7wCNoExHwSoQXE7rJe/OcdvAjPCRWmCa4eX7J8VNShrZyoPmcvZ1mMLclNs4F1xPKyFrrzjmq0eKrzErsSL08AjYThzchYAMCNCr5hdggHmwgG1whLI+sj3wVnaJUmXfOp1To6bdeyiV+g1eosIeodO0Ad0ivqIRV+im+hbdBtfx1/ju/j7KjWOmpqX6C+Lf/wG9a3yWg==</latexit><latexit sha1_base64="d1yR2v/XpXb1RCVY9q95ZiWlPoU=">AAADDXiclVJLaxsxENZu+kjdR5z02IuoKfQQzGpjaI6BXtpbCnUSsMwyK2sdYUm70cNgFv+BXvJXcumhIfTae2/9N5XtPbSOXejAwMc3M59mRpNXUliXJL+ieOfBw0ePd5+0nj57/mKvvX9wZktvGO+zUpbmIgfLpdC874ST/KIyHFQu+Xk+eb+In0+5saLUn92s4kMFYy0KwcAFKtuPOi2qwF3aov6op5M5laDHkmORkUOssvQQ06xxBz4j1KzilF95McV0DEpBRjC98jDaJpX+h1SKKd2mc7TQIWs66Wado3+31NvU0hapXtbuJN1kafg+IA3ooMZOs/ZPOiqZV1w7JsHaAUkqN6zBOMEkn7eot7wCNoExHwSoQXE7rJe/OcdvAjPCRWmCa4eX7J8VNShrZyoPmcvZ1mMLclNs4F1xPKyFrrzjmq0eKrzErsSL08AjYThzchYAMCNCr5hdggHmwgG1whLI+sj3wVnaJUmXfOp1To6bdeyiV+g1eosIeodO0Ad0ivqIRV+im+hbdBtfx1/ju/j7KjWOmpqX6C+Lf/wG9a3yWg==</latexit><latexit sha1_base64="d1yR2v/XpXb1RCVY9q95ZiWlPoU=">AAADDXiclVJLaxsxENZu+kjdR5z02IuoKfQQzGpjaI6BXtpbCnUSsMwyK2sdYUm70cNgFv+BXvJXcumhIfTae2/9N5XtPbSOXejAwMc3M59mRpNXUliXJL+ieOfBw0ePd5+0nj57/mKvvX9wZktvGO+zUpbmIgfLpdC874ST/KIyHFQu+Xk+eb+In0+5saLUn92s4kMFYy0KwcAFKtuPOi2qwF3aov6op5M5laDHkmORkUOssvQQ06xxBz4j1KzilF95McV0DEpBRjC98jDaJpX+h1SKKd2mc7TQIWs66Wado3+31NvU0hapXtbuJN1kafg+IA3ooMZOs/ZPOiqZV1w7JsHaAUkqN6zBOMEkn7eot7wCNoExHwSoQXE7rJe/OcdvAjPCRWmCa4eX7J8VNShrZyoPmcvZ1mMLclNs4F1xPKyFrrzjmq0eKrzErsSL08AjYThzchYAMCNCr5hdggHmwgG1whLI+sj3wVnaJUmXfOp1To6bdeyiV+g1eosIeodO0Ad0ivqIRV+im+hbdBtfx1/ju/j7KjWOmpqX6C+Lf/wG9a3yWg==</latexit>

Fig. 13. A non-robust but benign execution of a library implementation 𝐿. For simplicity, we directly record
the shared memory locations ℓ1 and ℓ2 accessed by the methods in the program text. Only relevant edges are
shown in the execution. The dashed blue edge captures a benign dependency that does not contribute to the
final return value of its corresponding source invocation.

To illustrate the need of induced subgraph-robustness for library implementations, consider the
implementation 𝐿 shown in Figure 13, which is synthetically constructed but exhibits an execution
pattern common in existing implementations. The implementation consists of two methods 𝑚1
and𝑚2, and involves accesses to two global locations ℓ1 and ℓ2. The method𝑚1 simply stores its
input argument to the location ℓ1, while the method𝑚2 speculatively reads ℓ1 and ℓ2, and updates
ℓ1 through a CAS operation. Next to the implementation, we show a snippet of an execution of this
library involving 4 different invocations (𝛾1, 𝛾2, 𝛾3, 𝛾4) across two sessions (𝜏1, 𝜏2). For clarity, we
have also indicated the invocation of each memory event in its description. This execution is an
instance of the classical store-buffering anomaly, manifesting here through interactions between
events in multiple invocations. In this execution, invocation 𝛾1, executed by session 𝜏1, successfully
performs the CAS operation on ℓ1 in method𝑚2. Subsequently, invocation 𝛾2 initiates another call
to𝑚2 in session 𝜏1 that performs a load on ℓ2. This load does not read from the store performed
by invocation 𝛾3 in session 𝜏2 , resulting in an fr edge between these two events. Combined with
obvious session ordering among operations in different invocations executing within the same
session, these edges establish a path that induces an hbSC ordering between the store to ℓ1 by the
CAS operation in 𝛾1 and the store to ℓ2 by 𝛾3. However, there is no hb ordering between these
two events, and hence using the terminology from the previous section, this is a potential non-
robustness witness involving the location ℓ1. This potential witness will turn into an actual witness
by the subsequent read to ℓ1 by invocation 𝛾4, which reads initializing value 𝑣init , ignoring the value
𝑣1.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:40 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

Neither Φ𝑠𝑟𝑐 nor Φ𝑑𝑠𝑡 can be established for this execution, and hence we may conclude that this
implementation is not robust. However, even though this execution is non-robust, its behavior is
actually not problematic. This is because the CAS operation that subsequently follows the load
of ℓ1 in 𝛾4 would fail since ℓ1 has been updated by the earlier CAS in invocation 𝛾1 (two update
operations cannot read the same value). Consequently, the non-robust read in invocation 𝛾4 would
be ignored since the loop, when re-executed, would initiate a reload of location ℓ1. In other words,
the non-robust read event does not effect the shared state or the return value of invocations in any
fashion. In fact, only the read event in the last iteration affects the return value of the invocation,
and this event is guaranteed to be robust, due to the fact that its behavior has to match the behavior
of the final succeeding CAS. Induced subgraph robustness allows us to ignore all such non-robust
reads, and in this particular case, consider only the robustness of events in the last iteration of
the loop, allowing us to conclude that the implementation is effectively robust. This illustrates
a pattern common in many implementations: synchronizing CAS operations ensure robustness of
events that actually affect observable library behavior.

D SMT Encoding Details
Our encoding uses finite uninterpreted domains E, V and I to represent memory events, values and
invocations, resp. Uninterpreted functions typ, loc,wval, rval : E→ V are used to encode various
memory event properties such as access type, access location, read and write values respectively.
Binary predicates so,mo, rf, fr, sw : E × E→ B relate various memory events, as discussed earlier.
We also define predicates hbsc and hb, corresponding to the derived relations hbSC and hb.

Let Ψ𝑏𝑎𝑠𝑒 denote the encoding of various well-formedness constraints that must be obeyed by
the binary relations between events across all executions. Ψ𝑏𝑎𝑠𝑒 is a direct encoding of the 𝜒𝑏𝑎𝑠𝑒
constraints mentioned in Section 3.2. Ψ𝑆𝐶 encodes the constraint that hbSC is irreflexive.

Along with memory events, the encoding also instantiates invocations from the domain I.
Functions arg, ret : I→ V are used to denote the arguments and return values corresponding to
an invocation and meth : I→ M assigns a method type to each invocation. Further, the predicates
so𝐼 , hb𝐼 : E×E→ B are used to encode session order and happens-before (hbinv) relations between
invocations.

To encode the relation between invocations and memory events, we first introduce some nota-
tion. Assuming the library implementation 𝐿 consists of methodsM, 𝐿(𝑚, 𝑙) yields the program
statement that has label 𝑙 in method𝑚 ∈ M. Let Labels𝐿 (𝑚) denote the set of labels present in the
implementation of method𝑚 in 𝐿. Additionally, while an implementation can allocate and access
an unbounded number of locations on the heap during executions, to generate our encoding, we

use a fixed, finite number of location classes. We have a location class for every shared global
variable and every field type (for nodes allocated on the heap). Given a location class ℓ , we use the
notation Acc𝐿 (ℓ) to denote all possible set of pairs (𝑚, 𝑙) such that the expression with label 𝑙 in
method𝑚 accesses ℓ . Similarly, Acc𝐿W (ℓ) denotes the set of labels that perform a store operation on
ℓ . Let LocClass𝐿 denote the set of all location classes in 𝐿. For example, the location classes for the
register implementation of §2 in the main paper are L, val, while Acc𝐿 (val) = {(set, 3), (get, 9)}},
if we interpret line numbers to serve as labels. Note that even though there is only one location
class per field type, accesses to the same field in different node instances are encoded as accesses
to different locations. Given an invocation 𝑖 ∈ I of method type 𝑚 = meth(𝑖), the encoding
Ψ𝐿
𝑚 (𝑖, 𝑙) instantiates the memory event [(𝑖, 𝑙) generated by the label 𝑙 in method𝑚. This encoding

essentially assigns the location, access type, read/write value, etc. for the event [(𝑖, 𝑙). For example,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:41

Function Check-Φ𝑠𝑟𝑐(Ψ, 𝐿, ℓ):
foreach (𝑚, 𝑙) ∈ Acc𝐿W (ℓ) do

foreach ℓ ′ ∈ LocClass(𝐿) ∧ (𝑚1, 𝑙1), (𝑚2, 𝑙2) ∈ Acc𝐿 (ℓ ′) do
𝜑 ← ∃𝑖𝑤 , 𝑖1, 𝑖2 ∈ I. Ψ𝐿

𝑚 (𝑖𝑤) ∧ Ψ𝐿
𝑚1 (𝑖1) ∧ Ψ𝐿

𝑚2 (𝑖2) ∧ hb([(𝑖𝑤 , 𝑙), [(𝑖1, 𝑙1)) ∧ (rf ∨ fr ∨
mo) ([(𝑖1, 𝑙1), [(𝑖2, 𝑙2)) ∧ ¬hb([(𝑖𝑤 , 𝑙), [(𝑖2, 𝑙2))

if CheckSAT(Ψ ∧ 𝜑) then
return FALSE

end
end

end
return TRUE

End Function
Fig. 14. Algorithm to check Φ𝑠𝑟𝑐

the following rule describes the encoding of a store operation:
𝐿(𝑚, 𝑙) = store(𝑥, 𝑒, 𝑜W)

Ψ𝐿
𝑚 (𝑖, 𝑙) ≜ ∃` ∈ E. typ(`) = W ∧ loc(`) = LocClass(𝑥) ∧wval(`) = J𝑒K ∧ [(𝑖, 𝑙) = `

Here, LocClass(𝑥) gives the location class for 𝑥 , while J𝑒K denotes the encoding of the expression
𝑒 . For operations inside the body of if-then-else statements or while-statements, we also encode
the corresponding conditionals in Ψ𝐿

𝑚 .
The encoding of an invocation consists of encoding of all the statements in the method: Ψ𝐿

𝑚 (𝑖) =∧
𝑙 ∈Labels𝐿 (𝑚) Ψ

𝐿
𝑚 (𝑖, 𝑙). Figure 14 presents the algorithm to check Φ𝑠𝑟𝑐 for a given location class ℓ

in a library implementation 𝐿. Ψ contains constraints from Ψ𝑏𝑎𝑠𝑒 and Ψ𝑆𝐶 along with the derived
constraints. Informally, any execution of the library 𝐿 must obey the constraints in Ψ.

Check-Φ𝑠𝑟𝑐 then considers every program statement writing to location class ℓ , and constructs
the FOL encoding of ¬Φ𝑠𝑟𝑐 in the formula 𝜑 . Recall that Φ𝑠𝑟𝑐 involves a write event to ℓ , along with
two events (both related by either rf,mo or fr) to the same location. 𝜑 instantiates these events,
along with every other event in the enclosing invocations (using the Ψ𝐿

𝑚 formulae). Referring back to
the notation used in Table 1 in the main paper, [(𝑖𝑤, 𝑙) takes the place of `𝑤 , while [(𝑖1, 𝑙1), [(𝑖2, 𝑙2)
take the place of `1, `2 resp. 𝜑 asserts the antecedent of Φ𝑠𝑟𝑐 and ¬`𝑤 hb−−→ `2. An SMT solver is then
called with the conjunction of 𝜑 and Ψ to check its satisfiability. 𝜑 is constructed for all possible
writes to ℓ and every combination of events `1 and `2, and if all CheckSAT calls are unsatisfiable,
we conclude Φ𝑠𝑟𝑐 for ℓ . Referring back to Figure 3 in the main paper, the various cases considered
in that figure correspond to the various SMT queries generated by applying Check-Φ𝑠𝑟𝑐 on the
register library implementation.

In a similar manner, we can construct the encodings for checking Φ𝑑𝑠𝑡 as shown by the algorithm
in Fig 15. We can now check Φ𝑠𝑟𝑐 and Φ𝑑𝑠𝑡 for every location class, and if they hold, conclude that
the implementation is robust.

Figure 15 describes our encoding for checking violations of Φ𝑑𝑠𝑡 involving the location class ℓ in
library implementation 𝐿. Following the notation used in the definition of Φ𝑑𝑠𝑡 in Table 1 in the main
paper, the algorithm consider every write access to location ℓ (`𝑤 = [(𝑖𝑤, 𝑙𝑤)) and every other access
to ℓ (`2 = [(𝑖2, 𝑙2)). The antecedent of Φ𝑑𝑠𝑡 is simplified and encoded as hbSC ([(𝑖𝑤, 𝑙𝑤), [(𝑖2, 𝑙2)). The
negation of the consequent is encoded by considering every event before [(𝑖2, 𝑙2) in the invocation
𝑖2, and asserting that [(𝑖𝑤, 𝑙𝑤) is not in hb order to it.

D.1 Details of derived constraints
As discussed in §6, our analysis also generates derived constraints to aid in verification. These can
be broadly classified into two classes: (1) program structure constraints that are derived by a static
analysis of the implementation and (2) specification constraints that are directly obtained from

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

362:42 Kartik Nagar, Anmol Sahoo, Romit Roy Chowdhury, and Suresh Jagannathan

Function Check-Φ𝑑𝑠𝑡(Ψ, 𝐿, ℓ):
foreach (𝑚𝑤 , 𝑙𝑤) ∈ Acc𝐿W (ℓ) do

foreach (𝑚2, 𝑙2) ∈ Acc𝐿 (ℓ) do
𝜑 ← ∃𝑖𝑤 , 𝑖2 ∈ I. Ψ𝐿

𝑚 (𝑖𝑤) ∧ Ψ𝐿
𝑚2 (𝑖2) ∧ hbSC ([(𝑖𝑤 , 𝑙𝑤), [(𝑖2, 𝑙2)) ∧∧

𝑙 ∈𝐿𝑎𝑏𝑒𝑙𝑠𝐿 (𝑚2) so([(𝑖𝑤 , 𝑙𝑤), [(𝑖2, 𝑙)) ⇒ ¬hb([(𝑖𝑤 , 𝑙𝑤), [(𝑖2, 𝑙))
if CheckSAT(Ψ ∧ 𝜑) then

return FALSE
end

end
end
return TRUE

End Function

Fig. 15. Algorithm to check Φ𝑑𝑠𝑡

the specification of the implemented data structure. Assuming that the library implementation is
correct under SC, we can directly assume the specification constraints. We reap the benefits here of
basing our verification procedure on searching non-robustness witnesses across SC executions and
perhaps surprisingly, we find that these constraints are very effective in pruning false positives.
We now provide more details about the constraints:
Access Constraints. These are program structure constraints that deal with locations allocated on
the heap, which may be written to at most once in any execution, or are always written within the
same invocation, thus ensuring a so relation between all such write events. For example, a unique
write access constraint to a location class ℓ is encoded as follows:

∀`1, `2. loc(`1) = loc(`2) = ℓ ∧ type(`1) = type(`2) = W⇒ `1 = `2

We find that such constraints are common in library implementations that dynamically allocate
memory on the heap, and we derive these constraints using a simple static analysis that looks for
store operations to locations dynamically allocated using new(). As an example, in the register
implementation, the unique write access constraint holds for the field val.
CAS Constraints: These are program structure constraints that deal with locations exclusively
modified using acqrel CAS operations. Due to CAS semantics, we can then guarantee that the
hb relation among all the update events to the location is total. Intuitively, this happens because
every update to the location must then read from another update, and because two updates cannot
read from the same CAS (U) event, this results in a total order among all updates. This constraint is
encoded as follows:
∀`1, `2 . loc(`1) = loc(`2) = ℓ ∧ type(`1) = type(`2) = U⇒ `1 = `2 ∨ hb(`1, `2) ∨ hb(`2, `1)

As an example, the CAS constraint holds for the location ℓ1 in Figure 13.
Specification constraints: Since we assume the library implementation is correct under SC, these
constraints are directly obtained from the axiomatic, declarative specification of the implemented
data structure. These specifications only deal with the method type, argument or return values of
invocations as well as their happens-before ordering. We use the specifications for stack, queue, set
and register data structures as defined in previous works ([23, 25]).
Linearization point constraints. Optionally, if the correctness specifiction is equivalent to
linearizability, we can also derive useful constraints from the linearization points involved in the
proof of linearizability. In linearizability proofs, every method implementation is statically associated
with a linearization point (LP), which is nothing but a program statement where an invocation of
the method takes actual effect. It is then natural that there would be some correlation between the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

Automated Robustness Verification of Concurrent Data Structure Libraries against Relaxed Memory Models 362:43

hbinv ordering between invocations and the hb ordering between the events corresponding to their
LPs. We leverage this observation to determine hb relations that must exist between the LPs of
different invocations. The constraints are derived from specification constraints by replacing the
hbinv order between invocations with the hb order between LPs of invocations.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 362. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 RC20 Memory Model and Robustness
	2.2 Verifying Robustness

	3 Preliminaries
	3.1 Syntax and Program Semantics
	3.2 Memory system
	3.3 Robustness and Library Correctness under SC

	4 Induction for Robustness
	5 Induced Subgraph Robustness
	6 Compositionality
	7 Automated Verification
	8 Evaluation
	9 Related Work and Conclusion
	Acknowledgments
	References
	A Program Semantics
	B Proofs
	C Example demonstrating the need for induced subgraph robustness
	D SMT Encoding Details
	D.1 Details of derived constraints

