
Automatically Verifying Replication-Aware Linearizability

VIMALA SOUNDARAPANDIAN, IIT Madras, India

KARTIK NAGAR, IIT Madras, India

ASEEM RASTOGI,Microsoft Research, India

KC SIVARAMAKRISHNAN, IIT Madras, India and Tarides, India

Data replication is crucial for enabling fault tolerance and uniform low latency in modern decentralized

applications. Replicated Data Types (RDTs) have emerged as a principled approach for developing replicated

implementations of basic data structures such as counter, flag, set, map, etc. While the correctness of RDTs

is generally specified using the notion of strong eventual consistency–which guarantees that replicas that

have received the same set of updates would converge to the same state–a more expressive specification

which relates the converged state to updates received at a replica would be more beneficial to RDT users.

Replication-aware linearizability is one such specification, which requires all replicas to always be in a state

which can be obtained by linearizing the updates received at the replica. In this work, we develop a novel

fully automated technique for verifying replication-aware linearizability for Mergeable Replicated Data Types

(MRDTs). We identify novel algebraic properties for MRDT operations and the merge function which are

sufficient for proving an implementation to be linearizable and which go beyond the standard notions of

commutativity, associativity, and idempotence. We also develop a novel inductive technique called bottom-up

linearization to automatically verify the required algebraic properties. Our technique can be used to verify

both MRDTs and state-based CRDTs. We have successfully applied our approach to a number of complex

MRDT and CRDT implementations including a novel JSON MRDT.

CCS Concepts: • Software and its engineering → Formal software verification; • Computing method-
ologies → Distributed programming languages.

Additional Key Words and Phrases: MRDTs, Eventual consistency, Automated verification, Replication-aware

linearizability

ACM Reference Format:
Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan. 2025. Automatically

Verifying Replication-Aware Linearizability. Proc. ACM Program. Lang. 9, OOPSLA1, Article 111 (April 2025),
27 pages. https://doi.org/10.1145/3720452

1 Introduction
Modern decentralized applications often employ data replication across geographically distributed

locations to enhance fault tolerance, minimize data access latency, and improve scalability. This

practice is crucial for mitigating the impact of network failures and reducing data transmission

delays to end users. However, these systems encounter the challenge of concurrent conflicting data

updates across different replicas.

Recently, Mergeable Replicated Data Types (MRDTs) [11, 12, 23] have emerged as a systematic

approach to the problem of ensuring that replicas remain eventually consistent despite concurrent

conflicting updates. MRDTs draw inspiration from the Git version control system, where each

Authors’ Contact Information: Vimala Soundarapandian, IIT Madras, Chennai, India, cs19d750@cse.iitm.ac.in; Kartik Nagar,

IIT Madras, Chennai, India, nagark@cse.iitm.ac.in; Aseem Rastogi, Microsoft Research, Bangalore, India, aseemr@microsoft.

com; KC Sivaramakrishnan, IIT Madras, Chennai, India and Tarides, Chennai, India, kcsrk@cse.iitm.ac.in.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART111

https://doi.org/10.1145/3720452

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0001-9987-7491
HTTPS://ORCID.ORG/0000-0002-0679-226X
HTTPS://ORCID.ORG/0000-0003-3283-8011
HTTPS://ORCID.ORG/0000-0002-3491-1780
https://doi.org/10.1145/3720452
https://orcid.org/0000-0001-9987-7491
https://orcid.org/0000-0002-0679-226X
https://orcid.org/0000-0003-3283-8011
https://orcid.org/0000-0002-3491-1780
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720452
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

111:2 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

update creates a new version, and any two versions can be merged explicitly through a user-defined

merge function. merge is a ternary function that takes as input the two versions to be merged and

their Lowest Common Ancestor (LCA), i.e., the most recent version from which the two versions

diverged. As opposed to Conflict-Free Replicated Data Types (CRDTs)[22], which may have to carry

around causal context metadata to ensure consistency, MRDTs can rely on the underlying system

model to provide the causal context through the LCA. This results in implementations that are

comparatively simpler and also more efficient. For example, if we consider state-based CRDTs, which

are the closest analogue to the MRDTmodel, then any counter CRDT implementation would require

𝑂 (𝑛) space, where 𝑛 is the number of replicas (a lower bound proved by [4]), whereas a counter

MRDT implementation only requires𝑂 (1) space. The states maintained by CRDT implementations

need to form a join semi-lattice, with all CRDT operations restricted to being monotonic functions

and merge restricted to the lattice join. While these restrictions simplify the task of reasoning about

correctness [5, 13, 18], crafting correct and efficient CRDT implementations itself becomes much

harder.

MRDTs do not require any of the above restrictions, which helps in developing implementations

with better space and time complexity. However, reasoning about correctness now becomes harder.

Indeed, the MRDT system model allows arbitrary replicas to merge their states at arbitrary points

in time, and this can result in subtle bugs requiring a very specific orchestration of merge actions.

As part of this work, we discovered such subtle bugs in MRDT implementations claimed to be

verified by previous works [23] (more details can be found in §5.2). The MRDT state as well as the

implementation of data type operations and the merge function have to be cleverly designed to

ensure strong eventual consistency. That is, despite concurrent conflicting updates and arbitrary

ordering of merges, all replicas will eventually converge to the same state. Further, we would

also like to show that an MRDT satisfies the functional behavior of the data type, along with the

user-defined conflict resolution policy for concurrent conflicting updates (e.g., for a set data type,

an add-wins policy that favors the add operation over a concurrent remove of the same element at

different replicas). There have been a few works [11, 12, 23] that have looked at the problem of

specifying and verifying MRDTs. However, they either restrict the system model by disallowing

concurrent merges [12], focus only on convergence as the correctness specification [11, 12], or do

not support automated verification [23].

In this work, we couch the correctness of MRDTs using the notion of Replication-Aware Lin-
earizability (RA-linearizability) [28], which says that the state at any replica must be obtained by

linearizing (i.e., constructing a sequence of) update operations that have been applied at the replica.

As a first contribution, we adapt RA-linearizability to the MRDT system model (§3), and develop

a simple specification framework for MRDTs based on conflict resolution policy for concurrent

update operations. We show that an MRDT implementation can be linearized only under certain

technical constraints on the conflict resolution policy and if the merge operation satisfies a weaker

notion of commutativity called conditional commutativity. By ensuring that the linearization order

obeys the conflict resolution policy for concurrent update operations and it remains the same across

all replicas, we guarantee both strong eventual consistency and adherence to the user-provided

specification.

Next, we propose a sound but not complete technique for proving RA-linearizability for MRDT

implementations. The main challenge lies in showing that the merge function generates a state

which is a linearization of its inputs. We develop a technique called bottom-up linearization, which
relies on certain simple algebraic properties of the merge function to prove that it generates the

correct linearization. We then design an induction scheme to automatically verify the required

algebraic properties of merge for an arbitrary MRDT implementation. Our main insight here is

to leverage the fact that the merge inputs are themselves linearizations, and hence, we can use

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:3

induction over their operation sequences. We extract a set of verification conditions (VCs) that are

amenable to automated reasoning, and prove that if an MRDT implementation satisfies the VCs, it

is linearizable (§4). While our development is focussed on MRDTs, our technique can be directly

applied on state-based CRDTs. State-based CRDTs also have a merge-based system model which is

slightly simpler than MRDTs as the merge function does not require any LCA.

Finally, we develop a framework in the F
★
[27] programming language that allows implementing

MRDTs and automatically mechanically proving the VCs required by our technique. The framework

provides several advantages over previous works. First, we require the programmer to specify only

the MRDT operations, the merge function, and the conflict resolution policy, in contrast to the

earlier work that also requires proof constructs such as abstract simulation relations [23]. Second,

the VCs are simple enough that in all the case studies we have done, including data types such

as counter, set, map, boolean flag, and list, they are automatically discharged by F
★
. Finally, we

extract the verified implementations to OCaml using the F
★
extraction pipeline and run them (§5).

We have also implemented and verified a few state-based CRDTs using our framework. In the next

section, we present the main ideas of our work informally through a series of examples.

2 Overview
2.1 System Model
The MRDT system model resembles a distributed version control system, such as Git [6], with

replication centred around versioned states in branches and explicit merges. A replicated data store

handles multiple objects independently [9, 19]; in our presentation, we focus on modeling a store

with a single object. The state of the object is replicated across multiple replicas 𝑟1, 𝑟2, . . . ∈ R in

the store. Clients interact with the store by performing query or update operations on one of the

replicas, with update operations modifying its state. These replicas operate concurrently, allowing

independent modifications without synchronization. They periodically (and non-deterministically)

exchange updates with each other through a process called merge. Due to concurrent operations

happening at multiple replicas, conflicts may arise, which must be resolved by the merge operation

in an appropriate and consistent manner. An object has a type 𝜏 ∈ 𝑇𝑦𝑝𝑒 , whose type signature

⟨𝑂𝜏 , 𝑄𝜏 ,𝑉𝑎𝑙𝜏 ⟩ contains the set of supported update operations 𝑂𝜏 , query operations 𝑄𝜏 and their

return values 𝑉𝑎𝑙𝜏 .

Definition 2.1. AnMRDT implementation for a data type 𝜏 is a tupleD𝜏 = ⟨Σ, 𝜎0, do,merge, query,
rc⟩, where:

• Σ is the set of states, 𝜎0 ∈ Σ is the initial state.

• do : Σ × T × R × 𝑂𝜏 → Σ implements all update operations in 𝑂𝜏 , where T is the set of

timestamps.

• merge : Σ × Σ × Σ → Σ is a three-way merge function.

• query: Σ ×𝑄𝜏 → 𝑉𝑎𝑙𝜏 implements all query operations in 𝑄𝜏 , returning a value in 𝑉𝑎𝑙𝜏 .

• rc ⊆ 𝑂𝜏 ×𝑂𝜏 is the conflict resolution policy to be followed for concurrent update operations.

An MRDT D𝜏 provides implementations of do,merge and query which will be invoked by the

data store appropriately. A client request to perform an update operation𝑜 ∈ 𝑂𝜏 at a replica 𝑟 triggers

the call do(𝜎, 𝑡, 𝑟, 𝑜). This takes as input the current state 𝜎 ∈ Σ of 𝑟 , a unique timestamp 𝑡 ∈ T and

produces an updated state which is then installed at 𝑟 . The data store ensures that timestamps are

unique across all operations (which can be achieved through e.g. Lamport timestamps [14]).

Replicas can also receive states from other replicas, which are merged with the receiver’s state

using merge. The merge function is called with the current states of both the sender and receiver

replicas and their lowest common ancestor (LCA), which represents the most recent common state

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:4 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

from which the two replicas diverged. Clients can query the state of the MRDT using the query
method. This takes a MRDT state 𝜎 ∈ Σ and a query operation as input and produces a return

value. Note that a query operation cannot change the state at a replica.

1: Σ = N
2: 𝑂 = {inc}
3: 𝑄 = {rd}
4: 𝜎0 = 0

5: do(𝜎, _, _, inc) = 𝜎 + 1

6: merge(𝜎⊤, 𝜎1, 𝜎2) = 𝜎1 + 𝜎2 − 𝜎⊤
7: query(𝜎, 𝑟𝑑) = 𝜎

8: rc = ∅

Fig. 1. Counter MRDT implementation

While merging, it may happen that conflicting update oper-

ations may have been performed on the two states, in which

case, the implementation also provides a conflict resolution

policy rc. The merge function should make sure that this

policy is followed while computing the merged state. To il-

lustrate, we now present a couple of MRDT implementations:

an increment-only counter and an observed-remove set.

The counter MRDT implementation is given in Fig. 1. The

state space of the counter MRDT is simply the set of natural

numbers, and it allows clients to perform only one update

operation (inc) which increments the value of the counter. For merging two counter states 𝜎1
and 𝜎2, whose lowest common ancestor is 𝜎⊤, intuitively, we want to find the total number of

increment operations across 𝜎1 and 𝜎2. Since 𝜎⊤ already accounts for the effect of the common

increments in 𝜎1 and 𝜎2, we need to count the newer increments and then add them to 𝜎⊤. This is
achieved by adding 𝜎1 − 𝜎⊤ and 𝜎2 − 𝜎⊤ to 𝜎⊤, which simplifies to the merge definition in Fig. 1.

For example, suppose we have replicas 𝑟1 and 𝑟2 whose initial state was 𝜎⊤ = 2. Now, if there are 2

inc operations at 𝑟1 and 3 inc operation at 𝑟2, their states will be 𝜎1 = 4 and 𝜎2 = 5. On merging

𝑟2 at 𝑟1, merge(𝜎⊤, 𝜎1, 𝜎2) will return 7, which reflects the total number of increments. The query
method simply returns the current state of the counter. Finally, the increment operation commutes

with itself, so there is no need to define a conflict resolution policy.

1: Σ = P(E × T)
2: 𝑂 = {add𝑎, rem𝑎 | 𝑎 ∈ E}
3: 𝑄 = {rd}
4: 𝜎0 = {}
5: do(𝜎, 𝑡, _, add𝑎) = 𝜎 ∪ { (𝑎, 𝑡) }
6: do(𝜎, _, _, rem𝑎) = 𝜎\{ (𝑎, 𝑖) | (𝑎, 𝑖) ∈ 𝜎 }
7: merge(𝜎⊤, 𝜎1, 𝜎2) =

(𝜎⊤ ∩ 𝜎1 ∩ 𝜎2) ∪ (𝜎1\𝜎⊤) ∪ (𝜎2\𝜎⊤)
8: query(𝜎, 𝑟𝑑) = {𝑎 | (𝑎, _) ∈ 𝜎 }
9: rc = { (rem𝑎, add𝑎) | 𝑎 ∈ E}

Fig. 2. OR-set MRDT implementation

An observed-remove set (OR-set) [22] is an implemen-

tation of a set data type that employs an add-wins conflict-

resolution strategy, prioritizing addition in cases of con-

current addition and removal of the same element. Fig. 2

shows the OR-set MRDT implementation. This implemen-

tation is quite similar to the operation-based (op-based)

CRDT implementation of OR-set [21]. The state of the

OR-set is a set of element-timestamp pairs, with the ini-

tial state being an empty set. Clients can perform two

operations for every element 𝑎 ∈ E: add𝑎 and rem𝑎 . The

add𝑎 method adds the element 𝑎 along with the (unique)

timestamp at which the operation was performed. The

rem𝑎 method removes all entries in the set corresponding to the element 𝑎. An element 𝑎 is

considered to be present in the set if there is some (𝑎, 𝑡) in the state.

Themergemethod takes as input the LCA set 𝜎⊤ and the two sets 𝜎1 and 𝜎2 to be merged, retains

elements of 𝜎⊤ that were not removed in both sets, and includes the newly added elements from

both sets. Since 𝜎⊤ is the most recent state from which the two sets diverged, the intersection of

all three sets is the set of elements that were not removed from 𝜎⊤ in either branch, while the

difference of either set with the 𝜎⊤ corresponds to the newly added elements. The query operation

𝑟𝑑 returns all the elements in the set. The conflict resolution relation rc orders rem𝑎 before add𝑎 of

the same element in order to achieve the add-wins semantics. Note that all other pairs of operations

(add_ and add_, rem_ and rem_, and add𝑥 and rem𝑦 with 𝑥 ≠ 𝑦) commute with each other, hence

rc does not specify their ordering. We now consider whether the merge operation adheres to the

conflict resolution policy.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:5

2.2 RA-Linearizability for MRDTs
Wewould like to verify that anMRDT implementation is correct, in the sense that in every execution,

(a) replicas which have observed the same set of update operations converge to the same state, and

(b) this state reflects the semantics of the implemented data type and the conflict resolution policy.

Note that an update operation 𝑜 is considered to be visible to a replica 𝑟 either if 𝑜 is directly applied

by a client at 𝑟 , or indirectly through merge with another replica 𝑟 ′ on which 𝑜 was visible. To

specify MRDT correctness, we propose to use the notion of RA-linearizability [28]: the state at any

replica during any execution must be achievable by applying a sequence (or linearization) of the

update operations visible to the replica. Further, this linearization should obey the user-specified

conflict resolution policy for concurrent operations, and the local replica order for non-concurrent

operations.

Our definition of RA-linearizability allows viewing the state of an MRDT replica as a sequence

of update operations applied on the initial state, thus abstracting over the merge function and how

it handles concurrent operations. Consequently, any formal reasoning (e.g. assertion checking,

functional correctness, equivalence checking etc.) can now essentially forget about the presence of

merges, and only focus on update operations, with the additional guarantee that operations would

have been correctly linearized, taking into account the conflict resolution policy and local replica

ordering.

Proving RA-linearizability for MRDTs is straightforward when there is only a single replica on

which all operations are performed, since there is no interleaving among operations on a single

replica. Complexity arises when update operations happen concurrently across replicas, which

are then merged. For a merge operation, we need to show that the output can be obtained by

applying a linearization of update operations witnessed by both replicas being merged. However,

the states being merged would have been obtained after an arbitrary number of update operations

or even other merges. Further, the MRDT framework maintains only the states, but not the update

operations leading to those states, thus requiring the verification technique to somehow infer the

update operations leading to a state, and then show that merge constructs the correct linearization.

We break down this difficult problem gradually with a series of observations. We will start with

an intuitively correct approach, show how it could be broken through examples, and gradually

refine it to make it work. As a starting point, we first observe that we can leverage the following

algebraic properties of the MRDT update operations and the merge function: (i) commutativity

of merge and update operations, (ii) commutativity of merge, (iii) idempotence of merge, and (iv)

commutativity of update operations. To motivate this, we first introduce some terminology. An

event 𝑒 = ⟨𝑡, 𝑟, 𝑜⟩ is generated for every update operation instance, where 𝑡 is the event’s timestamp

and 𝑟 is the replica on which the update operation 𝑜 is applied. Applying an event 𝑒 on a replica with

state 𝜎 changes the replica state to 𝑒 (𝜎) = do(𝜎, 𝑡, 𝑟, 𝑜) using the implementation of the operation 𝑜 .

Given a sequence of events 𝜋 = 𝑒1𝑒2 . . . 𝑒𝑛 , we use the notation 𝜋 (𝜎) to denote 𝑒𝑛 (. . . (𝑒2 (𝑒1 (𝜎)))).
Now, the properties described above can be formally defined as follows (forall 𝜎⊤, 𝜎1, 𝜎2, 𝑒, 𝑒′):

(P1) merge(𝜎⊤, 𝑒 (𝜎1), 𝜎2) = 𝑒 (merge(𝜎⊤, 𝜎1, 𝜎2))
(P2) merge(𝜎⊤, 𝜎1, 𝜎2) = merge(𝜎⊤, 𝜎2, 𝜎1)
(P3) merge(𝜎⊤, 𝜎⊤, 𝜎⊤) = 𝜎⊤
(P4) 𝑒 (𝑒′ (𝜎)) = 𝑒′ (𝑒 (𝜎))

As per our proposed definition of RA-linearizability, we need to show that there exists a lineariza-

tion of events visible at the replica such that the state of the replica can be obtained by applying

this linearization. As mentioned earlier, an event can become visible at a replica either by a direct

client application, or by merging with another replica. To illustrate this, consider the scenario

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:6 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

𝜎!

𝜎"𝜎#

𝜎$

𝜋# 𝜋"

Fig. 3. Linearizing a merge oper-
ation

shown in Fig. 3 where two replicas with states 𝜎1 and 𝜎2 are be-

ing merged. These states were obtained by applying a sequence

of events 𝜋1 and 𝜋2 respectively on the LCA state 𝜎⊤. We call the

events in 𝜋1 and 𝜋2 as local to their respective replicas. Now, when

the two states are merged to create a new state 𝜎𝑚 wewould need to

show that the state 𝜎𝑚 (= merge(𝜎⊤, 𝜎1, 𝜎2)) can be obtained by lin-

earizing all the events in 𝜋1 and 𝜋2, and applying this linearization

on the state 𝜎⊤.
To show that the merge function constructs a linearization, we

can take advantage of properties (P1)-(P4). In particular, commu-

tativity of merge and update operation application (P1) allows us to move an event from the

second argument of merge to outside, and we can then repeatedly apply this property to peel

off all the events in 𝜋1. More formally, by performing induction on the sequence 𝜋1 and using

(P1), we can show that merge(𝜎⊤, 𝜋1 (𝜎⊤), 𝜎2) = 𝜋1 (merge(𝜎⊤, 𝜎⊤, 𝜎2)). We can then use commu-

tativity of merge (P2) to swap the last two arguments of merge, and then apply (P1) again to

peel off all the events in 𝜋2, thus establishing that merge(𝜎⊤, 𝜎⊤, 𝜋2 (𝜎⊤)) = 𝜋2 (merge(𝜎⊤, 𝜎⊤, 𝜎⊤)).
Finally, using merge idempotence (P3), and combining all the previous results, we can infer that

merge(𝜎⊤, 𝜎1, 𝜎2) = 𝜋2 (𝜋1 (𝜎⊤)). Commutativity of update operations (P4) ensures that all lineariza-

tions of events in 𝜋1 and 𝜋2 lead to the same state, thus ratifying the specific linearization order

𝜋1𝜋2 that we constructed using properties P1-P3. We call this process as bottom-up linearization,

since we built the sequence from end through property (P1), linearizing one event at a time.

{}

{}

𝑒!: (2, r!, rem")

𝑣#

𝑣! 𝑣${(a,1)}

{(a,1)} 𝑣%

𝑒$: (1, r$, add")

Fig. 4. OR-set execution

It is also easy to see that the counter MRDT implementation

in Fig. 1 satisfies (P1)-(P4). In particular, commutativity of

integer addition and subtraction essentially gives us (P1)-(P4)

for free. While this strategy works for the counter MRDT,

commutativity of all update operations is in general a very

strong requirement, and would fail for other datatypes. For

example, the OR-set MRDT of Fig. 2 does not satisfy (P4), as

the add𝑎 and rem𝑎 operations do not commute.

In the presence of non-commutative update operations, the

property (P1) now needs to be altered, as we need to consider

the conflict resolution policy to decide the replica from which

an event needs to be peeled off. To illustrate this, consider an OR-set execution depicted in Fig. 4.

We show the version graph of the execution, where each oval represents a version. The state of

the version is depicted inside the oval. The versions 𝑣1 and 𝑣2 are obtained by applying rem𝑎 and

add𝑎 operations to the version 𝑣⊤ on two different replicas (𝑟1 and 𝑟2). Each edge is labeled with

the event corresponding to the application of an operation. Let 𝜎⊤ = {} denote the state of the
LCA 𝑣⊤. The versions 𝑣1 and 𝑣2 are then merged at 𝑟2 which gives rise to a new version 𝑣𝑚 with

statemerge(𝜎⊤, 𝑒1 (𝜎⊤), 𝑒2 (𝜎⊤)). Now, since 𝑒1 and 𝑒2 do not commute, the conflict resolution policy

of OR-set places 𝑒1 (i.e. the remove operation) before 𝑒2 (i.e. the add operation). Hence, we want

the merged version to follow the linearization order 𝑒2 (𝑒1 (𝜎⊤)). This requires us to first peel off

the event 𝑒2 from the third argument of merge. To achieve this, we can alter the property (P1) by

making it aware of the conflict resolution policy as follows:

(P1
′
) (𝑒1, 𝑒2) ∈ rc =⇒ merge(𝜎⊤, 𝑒1 (𝜎1), 𝑒2 (𝜎2)) = 𝑒2 (merge(𝜎⊤, 𝑒1 (𝜎1), 𝜎2))1

1
Note that we are abusing the rc notation slightly, since rc is a relation over operations𝑂 , but we are considering it over

operation instances (i.e. events)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:7

Property (P1
′
) would then allow us to establish the required linearization order. Property (P4)

also needs to be altered due to the presence of non-commutative update operations. We modify

(P4) to enforce commutativity for non-rc related events, which gives us flexibility to include such

events in any order while constructing the linearization sequence:

(P4
′
) (𝑒1, 𝑒2) ∉ rc ∧ (𝑒2, 𝑒1) ∉ rc =⇒ 𝑒1 (𝑒2 (𝜎)) = 𝑒2 (𝑒1 (𝜎))

However, we now face another major challenge: proving (P1
′
) for the OR-set MRDT. For the

counter MRDT, the operations and merge function used integer addition and subtraction, which

commute with each other. But for the OR-set, add𝑎 uses set union, while merge uses set difference
and intersection, which do not commute in general. Hence, (P1

′
) does not hold for arbitrary

𝜎⊤, 𝜎1, 𝜎2.
To illustrate this concretely, consider the same execution of Fig. 4, except assume that the state

𝜎⊤ of the LCA 𝑣⊤ is {(𝑎, 1)}. Let us try to establish (P1
′
) for the merge of versions 𝑣1 and 𝑣2. First,

note that as per the OR-set rc, the antecedent of (P1′) is satisfied, as (𝑒1, 𝑒2) ∈ rc. Now, the RHS
in the consequent must contain the tuple (𝑎, 1), since the event 𝑒2 adds (𝑎, 1) to the result of the
merge. Does the LHS also contain (𝑎, 1)? Expanding the definition of merge in the LHS, (𝑎, 1) will
not be present in (𝜎⊤ ∩ 𝑒1 (𝜎⊤) ∩ 𝑒2 (𝜎⊤)) (because (𝑎, 1) ∉ 𝑒1 (𝜎⊤), as 𝑒1 removes 𝑎). Similarly, since

(𝑎, 1) is in 𝜎⊤, it will not be present in 𝑒2 (𝜎⊤) \ 𝜎⊤. It will not be in 𝑒1 (𝜎⊤) \ 𝜎⊤, as 𝑒1 removes 𝑎. To

conclude, (𝑎, 1) will not be present in the LHS, thus invalidating the consequent of (P1
′
).

However, we note that this particular execution is actually spurious, because the tuple (𝑎, 1) in
the LCA could only have been added by another add𝑎 operation whose timestamp is the same as

𝑒2. But this is not possible as the data store ensures that timestamps are unique across all events. In

the general case, we would not be able to show (P1
′
) for OR-set because the tuple (𝑎, 𝑡) being added

by the add𝑎 operation (event 𝑒2) could also be present in the LCA state. However, this situation

cannot occur.

Thus, it is possible to show (P1
′
) for all feasible states 𝜎⊤, 𝜎1, 𝜎2 that may occur during an actual

execution. In the case of OR-set, there are two arguments which are required to infer this: (i)

timestamps are unique across all events and (ii) if a tuple (𝑎, 𝑡) is present in the state 𝜎 , then there

must have been an add𝑎 operation with timestamp 𝑡 in the history of events leading to 𝜎 . While

the first argument is a property of the data store, the second argument is an invariant linking a

state with the history of events leading to that state. Such arguments are in general hard to infer,

and would also change across different MRDTs. We now present our second major observation

which allows us to automatically verify (P1
′
) for feasible states without requiring invariants like

argument (ii) linking MRDT states and events.

2.3 Verification using Induction on Event Sequences
In order to show property (P1

′
) for anMRDT implementation, we need to consider the feasible states

which would be given as input to the merge function during an actual execution. We observe that

we can leverage the RA-linearizability of the MRDT implementation, and hence characterize these

feasible states by sequences of MRDT update operations (more precisely, events corresponding to

update operation instances). We can now use induction over these sequences to establish property

(P1
′
). Note that the input states to merge may themselves have been obtained through prior merges,

but we can inductively assume that these prior merges resulted in correct linearizations. Since

merge takes as input three states (𝜎⊤, 𝜎1, 𝜎2), we need to consider three sequences that led to these

states and induct on all the three separately.

Concretely, let 𝜋⊤ be a sequence of events which when applied on the initial MRDT state 𝜎0
results in the state 𝜎⊤. Since the LCA state always contains events which are common to the states

𝜎1 and 𝜎2, 𝜋⊤ will be the common prefix of the sequences leading to both 𝜎1 and 𝜎2. We consider

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:8 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

the sequences 𝜋1 and 𝜋2 that consist of the local events which when applied on 𝜎⊤ led to 𝜎1 and 𝜎2
respectively. Fig. 5 depicts the situation. Notice that the last two events on each replica before the

merge are fixed to be 𝑒1 and 𝑒2, which would be related by the rc relation, as per the requirement

of property (P1
′
).

merge(𝜎0, 𝑒1 (𝜎0), 𝑒2 (𝜎0)) = 𝑒2 (merge(𝜎0, 𝑒1 (𝜎0), 𝜎0)) (1)

merge(𝜎⊤, 𝑒1 (𝜎⊤), 𝑒2 (𝜎⊤)) = 𝑒2 (merge(𝜎⊤, 𝑒1 (𝜎⊤), 𝜎⊤))
=⇒ merge(𝑒 (𝜎⊤), 𝑒1 (𝑒 (𝜎⊤)), 𝑒2 (𝑒 (𝜎⊤))) = 𝑒2 (merge(𝑒 (𝜎⊤), 𝑒1 (𝑒 (𝜎⊤)), 𝑒 (𝜎⊤))) (2)

𝜎!

𝜎"𝜎#

𝜎$

𝜋# 𝜋"

𝜎%
𝜋!

𝑒# 𝑒"

Fig. 5. Induction on event se-
quences

We first induct on the sequence 𝜋⊤ which leads to the state 𝜎⊤. For
this, we assume that 𝜋1 = 𝜋2 = 𝜖 , and hence 𝜎⊤ = 𝜎1 = 𝜎2 = 𝜋⊤ (𝜎0).
We also assume the antecedent of property (P1

′
), i.e. (𝑒1, 𝑒2) ∈ rc, and

hence our goal is to show its consequent. For the OR-set, 𝑒1 will be

a rem𝑎 event, while 𝑒2 will be an add𝑎 event (say with timestamp 𝑡).

Eqn. (1) is the base-case of the induction (where 𝜋⊤ = 𝜖), and this

can be now directly discharged since 𝜎0 is an empty set, and hence

clearly won
′
t contain (𝑎, 𝑡). Eqn. (2) is the inductive case, which

assumes that (P1
′
) is true for some LCA state 𝜎⊤, and tries to prove

the property when one more update operation (signified by the event

𝑒) is applied on the LCA (and also on both 𝜎1 and 𝜎2, since LCA

operations are common to both states to be merged). This can also be automatically discharged with

the property that events 𝑒, 𝑒1, 𝑒2 have different timestamps. Intuitively, the inductive hypothesis

establishes that (𝑎, 𝑡) ∉ 𝜎⊤, and since the timestamp of event 𝑒 is different from 𝑒1 and 𝑒2, it

cannot add (𝑎, 𝑡) to the LCA, thus preserving the property that (𝑎, 𝑡) ∉ 𝑒 (𝜎⊤), thereby implying

the consequent. This completes the proof for property (P1
′
) for any arbitrary LCA state 𝜎⊤ that

may be feasible in an actual execution. A similar inductive strategy is used for proving property

(P1
′
) for feasible states 𝜎1 and 𝜎2 (more details in §4).

2.4 Intermediate Merges
In our linearization strategy for merges (given by properties (P1

′
-P4

′
)), we first considered the local

update operations of each branch, linearized them according to the conflict-resolution policy, and

then applied this sequence on the LCA. This effectively orders the update operations that led to the

LCA before the update operations local to each branch.

𝑒1: (2, r", add#)

𝑣$

𝑣" 𝑣%{}

{(a,2)} 𝑣&

𝑒2: (1, r2, rema)
{(a,1)}

{(a,1),(a,2)}

{}

{}

𝑒): (3, r", rem#)

𝑣)

𝑒%𝑒"

𝑒"
𝑒)

𝑒%
𝑒"

𝑒%
𝑒"
𝑒)

Fig. 6. Intermediate merge

However, in a Git-based execution model, due to a phe-

nomenon known as intermediate merges, it may happen that

update operations of the LCA may need to be linearized after

update operations local to a branch. To illustrate this, consider

an execution of the OR-set MRDT as shown in Fig. 6. There are

3 operations and 2 merges being performed in this execution,

with the events 𝑒1, 𝑒3 at replica 𝑟1 and event 𝑒2 at replica 𝑟2.

Instead of merging with the latest version 𝑣3 at replica 𝑟1,

replica 𝑟2 first merges with an intermediate version 𝑣1 to gen-

erate the version 𝑣4. Next, this version 𝑣4 is merged with the

latest version 𝑣3 of replica 𝑟1. However, note that for this merge,

the LCA will be version 𝑣1. This is because the set of events

associated with version 𝑣3 is {𝑒1, 𝑒3}, while for version 𝑣4, it is {𝑒1, 𝑒2}. Hence, the set of common

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:9

events among both versions would be {𝑒1}, which corresponds to the version 𝑣1. Indeed, in the

version graph, both 𝑣1 and 𝑣0 are ancestors of 𝑣3 and 𝑣4, but 𝑣1 is the lowest common ancestor
2
.

In Fig. 6, we have also provided the linearization of events associated with each version. Notice

that for version 𝑣4, which is obtained through a merge of 𝑣1 and 𝑣2, the conflict resolution policy of

the OR-set linearizes 𝑒2 before 𝑒1. Now, for the merge of 𝑣3 and 𝑣4, we have a situation where a local

event (𝑒2 in 𝑣4) needs to be linearized before an event of the LCA (𝑒1 in 𝑣1). This does not fit our

linearization strategy. Let us see why. If we were to try to apply (P1
′
), it would linearize 𝑒1 after 𝑒3,

since these are the last operations in the two states to be merged and the conflict resolution policy

orders add𝑎 (𝑒1) after rem𝑎 (𝑒3). However, in the execution, 𝑒1 and 𝑒3 are causally related, i.e. 𝑒1
occurs before 𝑒3 on the same replica, and hence they should be linearized in that order. Intuitively,

property (P1
′
) does not work because it does not consider the possibility that the last event in one

replica could be visible to the last event in another replica, and hence the linearization must obey

the visibility relation.

In order to handle this situation, we consider another algebraic property (P1-1), which explicitly

forces visibility relation among the last events by making one of them part of the LCA:

(P1-1) merge(𝑒1 (𝜎0), 𝑒3 (𝜎1), 𝑒1 (𝜎2)) = 𝑒3 (merge(𝑒1 (𝜎0), 𝜎1, 𝑒1 (𝜎2)))
Note that events in the LCA are visible to events on both replicas being merged. Hence, by

having the same event 𝑒1 in both the first and third argument to merge in the LHS, 𝑒3 would have

to be linearized after 𝑒1 to respect the visibility order, thus over-riding the rc ordering among them.

Property (P1-1) can be directly applied to the execution in Fig. 6 for the merge of 𝑣3 and 𝑣4 (with 𝜎0
as the state of 𝑣0, 𝜎1 as the state of 𝑣1 and 𝜎2 as the state of 𝑣2), constructing the correct linearization.

We will revisit the example in Fig. 6 and properties (P1
′
) and (P1-1) in a more formal setting in

§4, renaming them as BottomUp-2-OP and BottomUp-1-OP. We will also identify the conditions

under which these properties can guarantee the existence of a correct linearization.

3 Problem Definition
In this section, we formally define the semantics of the replicated data store on top of which the

MRDT implementations operate (§3.1), the notion of RA-linearizability for MRDTs (§3.2), and the

process of bottom-up linearization (§3.3).

3.1 Semantics of the Replicated Data Store
The semantics of the replicated store defines all possible executions of an MRDT implementation.

Formally, the semantics are parameterized by anMRDT implementationD = ⟨Σ, 𝜎0, do,merge, query,
rc⟩ of type 𝜏 = ⟨𝑂𝜏 , 𝑄𝜏 ,𝑉𝑎𝑙𝜏 ⟩ and are represented by a labeled transition system SD = (Φ,→). Each

configuration in Φ maintains a set of versions, where each version is created either by applying an

MRDT operation to an existing version, or by merging two versions. Each replica is associated with

a head version, which is the most recent version seen at the replica. Formally, each configuration𝐶

in Φ is a tuple ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, where:
• 𝑁 : Version ⇀ Σ is a partial function that maps versions to their states (Version is the set of

all possible versions).

• 𝐻 : R ⇀ Version is also a partial function that maps replicas to their head versions. A replica

is considered active if it is in the domain of 𝐻 of the configuration.

• 𝐿 : Version ⇀ P(E) maps a version to the set of events that led to this version. Each event

𝑒 ∈ E is an update operation instance, uniquely identified by a timestamp value (we define

E = T × R ×𝑂).

2
in §3, we will formally prove that the LCA of two versions according to the version graph contains the intersection of

events in both versions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:10 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

[CreateBranch]

𝑟 ∈ 𝑑𝑜𝑚 (𝐻) 𝑟 ′ ∉ 𝑑𝑜𝑚 (𝐻) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁)
𝑁 ′ = 𝑁 [𝑣 ↦→ 𝑁 (𝐻 (𝑟))] 𝐻 ′ = 𝐻 [𝑟 ′ ↦→ 𝑣] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟))] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁) ∪ {𝑣}, 𝐸 ∪ { (𝐻 (𝑟), 𝑣) })

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠)
createBranch(r′,r)
−−−−−−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠)

[Apply]

𝑒 = (𝑡, 𝑟, 𝑜)
𝑜 ∈ 𝑂𝜏 ∀𝑒′ ∈

⋃
𝑟𝑎𝑛𝑔𝑒 (𝐿) . 𝑡𝑖𝑚𝑒 (𝑒′) ≠ 𝑡 𝑟 ∈ 𝑑𝑜𝑚 (𝐻) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁) 𝑁 ′ = 𝑁 [𝑣 ↦→ do(𝑁 (𝐻 (𝑟)), 𝑒)]

𝐻 ′ = 𝐻 [𝑟 ↦→ 𝑣] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟)) ∪ {𝑒 }] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁 ′), 𝐸 ∪ { (𝐻 (𝑟), 𝑣) }) 𝑣𝑖𝑠′ = 𝑣𝑖𝑠 ∪ (𝐿 (𝐻 (𝑟)) × {𝑒 })

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠)
apply(t,r,o)
−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠′)

[Merge]

𝑟1, 𝑟2 ∈ 𝑑𝑜𝑚 (𝐻) 𝑣 ∉ 𝑑𝑜𝑚 (𝑁) 𝑣⊤ = 𝐿𝐶𝐴(𝐻 (𝑟1), 𝐻 (𝑟2)) 𝑁 ′ = 𝑁 [𝑣 ↦→ merge(𝑁 (𝑣⊤), 𝑁 (𝐻 (𝑟1)), 𝑁 (𝐻 (𝑟2))]
𝐻 ′ = 𝐻 [𝑟1 ↦→ 𝑣] 𝐿′ = 𝐿[𝑣 ↦→ 𝐿 (𝐻 (𝑟1)) ∪ 𝐿 (𝐻 (𝑟2))] 𝐺 ′ = (𝑑𝑜𝑚 (𝑁 ′), 𝐸 ∪ { (𝐻 (𝑟1), 𝑣), (𝐻 (𝑟2), 𝑣) })

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠)
merge(r1,r2)−−−−−−−−→ (𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠)

[Query]

𝑟 ∈ 𝑑𝑜𝑚 (𝐻) 𝑞 ∈ 𝑄𝜏 𝑎 = query(𝑁 (𝐻 (𝑟)), 𝑞)

(𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠)
query(r,q,a)
−−−−−−−−→ (𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠)

Fig. 7. Semantics of the replicated datastore

• 𝐺 = (𝑑𝑜𝑚(𝑁), 𝐸) is the version graph, whose vertices represent the versions in the config-

uration (i.e. those in the domain of 𝑁) and whose edges represent a relationship between

different versions (we explain the different types of edges below).

• 𝑣𝑖𝑠 ⊆ E × E is a partial order over events.

Figure 7 gives a formal description of the transition rules. CreateBranch forks a new replica 𝑟 ′

from an existing replica 𝑟 , installing a new version 𝑣 at 𝑟 ′ with the same state as the head version

𝐻 (𝑟) of 𝑟 , and adding an edge (𝐻 (𝑟), 𝑣 ′) in the version graph. Apply applies an update operation 𝑜

on some replica 𝑟 , generating a new event 𝑒 with a timestamp different than all events generated

so far.

⋃
range(𝐿) denotes the set of events witnessed across all versions. A new version 𝑣 is also

created whose state is obtained by applying 𝑜 on the current state of the replica 𝑟 . The version

graph is updated by adding the edge (𝐻 (𝑟), 𝑣). The 𝑣𝑖𝑠 relation as well as the function 𝐿, which

tracks events applied at each version, are also updated. In particular, each event 𝑒′ already applied

at 𝑟 , i.e. 𝑒′ ∈ 𝐿(𝐻 (𝑟)), is made visible to 𝑒: (𝑒′, 𝑒) ∈ 𝑣𝑖𝑠 , while 𝐿′ (𝑣) is obtained by adding 𝑒 to

𝐿(𝐻 (𝑟)).
Merge takes two replicas 𝑟1 and 𝑟2, applies themerge function on the states of their head versions

to generate a new version 𝑣 , which is installed as the new head version at 𝑟1. Edges are added in the

version graph from the previous head versions of 𝑟1 and 𝑟2 to 𝑣 . 𝐿(𝑣) is obtained by taking a union

of 𝐿(𝑟1) and 𝐿(𝑟2), and there is no change in the visibility relation.Query takes a replica 𝑟 and a

query operation 𝑞 and applies 𝑞 to the state at the head version of 𝑟 , returning an output value 𝑎.

Note that theQuery transition does not modify the configuration and the return value of the query

is stored as part of the transition label. While our operational semantics is based on and inspired by

previous works [11, 23], we note that it is more general and precisely captures the MRDT system

model as opposed to previous works. In particular, Kaki et al. [11] place significant restrictions on

the Merge transition, disallowing arbitrary replicas to be merged to ensure that there is a total

order on the merge transitions. While the semantics in the work by Soundarapandian et al. [23]

does allow arbitrary merges, it is more abstract and high-level, and does not even keep track of

versions and the version graph.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:11

Notation: We now introduce some notation that will be used throughout the paper. Given a

configuration 𝐶 , we use 𝑋 (𝐶) to project the component 𝑋 of 𝐶 . For a relation 𝑅, we use 𝑥
𝑅−→ 𝑦 to

signify that (𝑥,𝑦) ∈ 𝑅. We use 𝑅 |𝑆 to indicate the relation as given by 𝑅 but restricted to elements

of the set 𝑆 . Let 𝑅∗
denote the reflexive-transitive closure of 𝑅, and let 𝑅+

denote the transitive

closure of 𝑅. For an event 𝑒 , we use the projection functions op, time, rep to obtain the update

operation, timestamp and replica resp. For a sequence of events 𝜋 , 𝜋 |𝑆 (𝜎) denotes application of

the sub-sequence of 𝜋 restricted to events in 𝑆 . For a configuration 𝐶 , we use 𝑒1 | |𝐶 𝑒2 to denote

that 𝑒1 and 𝑒2 are concurrent, that is ¬(𝑒1
vis(𝐶)
−−−−−→ 𝑒2 ∨ 𝑒2

vis(𝐶)
−−−−−→ 𝑒1). Given a total order over a set of

events E, represented by a sequence 𝜋 , and lo ⊆ E × E, we say that 𝜋 extends lo if lo ⊆ 𝜋 . The

relation rc orders update operations, but for convenience we sometime use it for ordering events,

with the intention that it is actually being applied to the underlying update operations. We use

𝑒1 ≠ 𝑒2 to indicate that time(𝑒1) ≠ time(𝑒2).
We define the initial configuration of SD as 𝐶0 = ⟨𝑁0, 𝐻0, 𝐿0,𝐺0, ∅⟩, which consists of only one

replica 𝑟0. Here, 𝐻0 = [𝑟0 ↦→ 𝑣0], 𝑁0 = [𝑣0 ↦→ 𝜎0], where 𝜎0 is the initial state as given by D𝜏 , while

𝑣0 denotes the initial version and 𝐿0 = [𝑣0 ↦→ ∅]. The graph𝐺0 = ({𝑣0}, ∅) is the initial version graph.
An execution of SD is defined to be a finite sequence of transitions, 𝐶0

𝑡1−→ 𝐶1

𝑡2−→ 𝐶2 . . .
𝑡𝑛−→ 𝐶𝑛 .

Note that the label of a transition corresponds to its type. Let JSDK denote the set of all possible
executions of SD .

Finally, as mentioned earlier, merge is a ternary function, taking as input the states of two

versions to be merged, and the state of the lowest common ancestor (LCA) of the two versions.

Version 𝑣1 ∈ 𝑉 is defined to be a causal ancestor of version 𝑣2 ∈ 𝑉 if and only if (𝑣1, 𝑣2) ∈ 𝐸∗.

Definition 3.1 (LCA). Given a version graph𝐺 = (𝑉 , 𝐸) and versions 𝑣1, 𝑣2 ∈ 𝑉 , 𝑣⊤ ∈ 𝑉 is defined

to be the lowest common ancestor of 𝑣1 and 𝑣2 (denoted by 𝐿𝐶𝐴(𝑣1, 𝑣2)) if (i) (𝑣⊤, 𝑣1) ∈ 𝐸∗ and
(𝑣⊤, 𝑣2) ∈ 𝐸∗, (ii) ∀𝑣 ∈ 𝑉 .(𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗ =⇒ (𝑣, 𝑣⊤) ∈ 𝐸∗.

Note that the version history graph at any point in any execution is guaranteed to be acyclic (i.e.

a DAG), and hence the LCA (if it exists) is guaranteed to be unique. We now present an important

property linking the LCA of two versions with events applied at each version.

Lemma 3.2. Given a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ reachable in some execution 𝜏 ∈ JSDK and
two versions 𝑣1, 𝑣2 ∈ 𝑑𝑜𝑚(𝑁), if 𝑣⊤ is the LCA of 𝑣1 and 𝑣2 in 𝐺 , then 𝐿(𝑣⊤) = 𝐿(𝑣1) ∩ 𝐿(𝑣2)3.

𝑣!

𝑣" 𝑣#

𝑣$ 𝑣%

𝑣&𝑣'

𝑣(

𝑒" 𝑒#

𝑒$ 𝑒%

Fig. 8. Version Graph with no
LCA for 𝑣5 and 𝑣6

Thus, the events of the LCA are exactly those applied at both the

versions. This intuitively corresponds to the fact that 𝐿𝐶𝐴(𝑣1, 𝑣2)
is the most recent version from which the two versions 𝑣1 and 𝑣2
diverged. Note that it is possible that the LCA may not exist for

two versions. Fig. 8 depicts the version graph of such an execution.

Vertices with in-degree 1 (i.e. 𝑣1, 𝑣2, 𝑣3, 𝑣4) have been generated by

applying a new update operation (with the orange edges labeled by

the corresponding events 𝑒1, 𝑒2, 𝑒3, 𝑒4), while vertices with in-degree

2 have been obtained by merging two other versions (depicted by

blue edges). The merge of 𝑣1 and 𝑣4 (leading to 𝑣6) has a unique LCA

𝑣0, similarly, merge of 𝑣2 and 𝑣3 (leading to 𝑣5) also has a unique

LCA 𝑣0. However, if we now want to merge 𝑣5 and 𝑣6, both 𝑣1 and

𝑣2 are ancestors, but there is no LCA. We note that this execution

will actually be prohibited by the semantics of Kaki et al. [11], since the two merges leading to 𝑣5
and 𝑣6 are concurrent.

3
All proofs can be found in Appendix §A of the extended version [25] of the paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:12 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

Notice that 𝐿(𝑣5) = {𝑒1, 𝑒2, 𝑒3}, while 𝐿(𝑣6) = {𝑒1, 𝑒2, 𝑒4}. Hence, by Lemma 3.2, 𝐿(𝐿𝐶𝐴(𝑣5, 𝑣6)) =
{𝑒1, 𝑒2}, but such a version is not generated during the execution. To resolve this issue, we introduce

the notion of potential LCAs.

Definition 3.3 (Potential LCAs). Given a version graph 𝐺 = (𝑉 , 𝐸) and versions 𝑣1, 𝑣2 ∈ 𝑉 ,

𝑣⊤ ∈ 𝑉 is defined to be a potential LCA of 𝑣1 and 𝑣2 if (i) (𝑣⊤, 𝑣1) ∈ 𝐸∗ and (𝑣⊤, 𝑣2) ∈ 𝐸∗, (ii)
¬(∃𝑣 .(𝑣, 𝑣1) ∈ 𝐸∗ ∧ (𝑣, 𝑣2) ∈ 𝐸∗ ∧ (𝑣⊤, 𝑣) ∈ 𝐸∗).

For merging 𝑣1 and 𝑣2, we first find all the potential LCAs, and recursively merge them to obtain

the actual LCA state. For the execution in Fig. 8, the potential LCAs of 𝑣5 and 𝑣6 would be 𝑣1 and 𝑣2
(with 𝐿(𝑣1) = {𝑒1} and 𝐿(𝑣2) = {𝑒2}); merging them would get us the actual LCA. In §A.1 of the

extended version [25] of the paper, we prove that this recursive merge-based strategy is guaranteed

to generate the actual LCA.

3.2 Replication-Aware Linearizability for MRDTs
As mentioned in §2, our goal is to show that the state of every version 𝑣 generated during an

execution is a linearization of the events in 𝐿(𝑣). We use the notation lo to indicate the linearization
relation, which is a binary relation over events. For an execution in SD , we want lo between the

events of the execution to satisfy certain desirable properties: (i) lo between two events should not

change during an execution, (ii) lo should obey the conflict resolution policy for concurrent events

and (iii) lo should obey the replica-local vis ordering for non-concurrent events. This would ensure

that two versions which have observed the same set of events will have the same state (i.e. strong
eventual consistency), and this state would also be a linearization of update operations of the data

type satisfying the conflict resolution policy.

While the lo relation in classical linearizability literature is typically a total order, in our context,

we take advantage of commutativity of update operations, and only define lo over non-commutative

events. As we will see later, this flexibility allows us to have different sequences of events which

extend the same lo relation between non-commutative events, and hence are guaranteed to lead

to the same state. We use the notation 𝑒 ⇄ 𝑒′ to indicate that events 𝑒 and 𝑒′ commute with each

other. Formally, this means that ∀𝜎. 𝑒 (𝑒′ (𝜎)) = 𝑒′ (𝑒 (𝜎)). Two update operations 𝑜, 𝑜 ′ commute

if ∀𝑒, 𝑒′ . op(𝑒) = 𝑜 ∧ op(𝑒′) = 𝑜 ′ =⇒ 𝑒 ⇄ 𝑒′. As mentioned earlier, the rc relation is also only

defined between non-commutative update operations.

Lemma 3.4. Given a set of events E, if lo ⊆ E × E is defined over every pair of non-commutative
events in E, then for any two sequences 𝜋1, 𝜋2 which extend lo, for any state 𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Given a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, let E𝐶 =
⋃

range(𝐿(𝐶)) denote the set of events
witnessed across all versions in C. Then, our goal is to define an appropriate linearization relation

lo𝐶 ⊆ E𝐶 × E𝐶 , which adheres to the rc relation for concurrent events, the vis relation for non-

concurrent events, and for every version 𝑣 ∈ 𝑑𝑜𝑚(𝑁), 𝑁 (𝑣) should be obtained by sequentializing

the events in 𝐿(𝑣), with the sequence extending lo𝐶 . Note that this requires lo+ to be irreflexive
4
.

We now demonstrate that an lo relation with all the desirable properties may not exist for all

executions. Suppose there are MRDT update operations 𝑜, 𝑜 ′ such that 𝑜
rc−→ 𝑜 ′. Fig. 9 contains a part

of the version graph generated during some execution, containing two instances of both 𝑜 and 𝑜 ′.
We use 𝑒𝑖 : 𝑜𝑖 to denote that event op(𝑒𝑖) = 𝑜𝑖 . Notice that 𝑒1 and 𝑒4, 𝑒2 and 𝑒3 are concurrent, while

𝑒1 and 𝑒3, 𝑒2 and 𝑒4 are non-concurrent. Applying the rc ordering on concurrent events, we would

want 𝑒3
lo−→ 𝑒2 and 𝑒4

lo−→ 𝑒1, while applying vis ordering, we would want 𝑒1
lo−→ 𝑒3 and 𝑒2

lo−→ 𝑒4.

4lo need not be transitive, as we only want to define lo between non-commutative events, and non-commutativity is not a

transitive property

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:13

However, this results in a lo-cycle, thus making it impossible to construct a sequence of update

operations for the merge of 𝑣5 and 𝑣6, which adheres to the lo ordering.

𝑣! 𝑣"

𝑣# 𝑣$

𝑣%𝑣&

𝑒!: 𝑜′ 𝑒": 𝑜′

𝑒#: 𝑜 𝑒$: 𝑜

Fig. 9. Example demonstrating
cycle in lo

Notice that the above execution only requires the rc relation to

be non-empty (i.e. there should exist some (𝑜, 𝑜 ′) ∈ rc). If the rc
relation is empty, then all update operations would commute with

each other, and hence the lo relation would also be empty. If rc is
non-empty, rc+ should be irreflexive to ensure irreflexivity of lo+.
Note that rc+ being irreflexive means that for any MRDT update

operation 𝑜 , (𝑜, 𝑜) ∉ rc, and hence 𝑜 must commute with itself,

since rc relation is defined for all pairs of non-commutative update

operations. Furthermore, Fig. 9 shows that even if rc+ is irreflexive,

it may still not be possible to construct an lo relation which can

be extended to a total order and which adheres to the rc relation between all pairs of concurrent

events. To ensure existence of an lo relation such that lo+ is irreflexive when rc+ is irreflexive, we
define it as follows:

Definition 3.5 (Linearization relation). Let 𝐶 be a configuration reachable in some execution in

JSDK. Let E𝐶 be the set of events in 𝐶 . Then, loC is defined as:

∀𝑒1, 𝑒2 ∈ E𝐶 . 𝑒1
loC−−→ 𝑒2 ⇔(𝑒1

vis(C)
−−−−−→ 𝑒2 ∧ ¬𝑒1 ⇄ 𝑒2)

∨ (𝑒1 | |𝐶 𝑒2 ∧ 𝑒1
rc−→ 𝑒2 ∧ ¬(∃𝑒3 ∈ E . 𝑒2

vis(C)
−−−−−→ 𝑒3 ∧ ¬𝑒2 ⇄ 𝑒3))

lo𝐶 follows the visibility relation only between non-commutative events. For concurrent non-

commutative events 𝑒1 and 𝑒2 with 𝑒1
rc−→ 𝑒2, lo𝐶 follows the rc relation only if there is no event

𝑒3 such that 𝑒2 is visible to 𝑒3 and 𝑒2 does not commute with 𝑒3. Applying this definition to the

execution in Fig. 9, for the configuration obtained after merge, we would have neither 𝑒4
lo−→ 𝑒1, nor

𝑒3
lo−→ 𝑒2, thus avoiding the cycle in lo.

Lemma 3.6. For an MRDT D such that rc+ is irreflexive, for any configuration 𝐶 reachable in SD ,
lo+𝐶 is irreflexive.

Going forward, we will assume that rc+ is irreflexive for any MRDT D. We note that restricting

lo to not always obey the rc relation by considering non-commutative update operations happening

locally (and thus related by vis) is also sensible from a practical perspective. For example, in the

case of OR-set, even though we have rem𝑎

rc−→ add𝑎 , if add𝑎 is locally followed by another rem𝑎 ,

it does not make sense to order a concurrent rem𝑎 event before the add𝑎 event. More generally,

if an event 𝑒2 is visible to another event 𝑒3 with which it does not commute, then 𝑒2 is effectively

"overwritten" by 𝑒3, and hence there is no need to linearize a concurrent event 𝑒1 before 𝑒2.

While lo𝐶 is now guaranteed to be irreflexive for any configuration𝐶 , and hence can be extended

to a sequence, it now no longer enforces an ordering among all non-commutative pairs of events.

Thus, there could exist sequences 𝜋1, 𝜋2 extending an lo𝐶 relation which may contain a pair of

non-commutative events in different orders. For example, in Fig. 9, for the configuration𝐶 obtained

after the merge, lo𝐶 = {(𝑒1, 𝑒3), (𝑒2, 𝑒4)}, resulting in sequences 𝜋1 = 𝑒1𝑒2𝑒3𝑒4 and 𝜋2 = 𝑒1𝑒3𝑒2𝑒4
which both extend lo𝐶 , but contain the non-commutative events 𝑒2 and 𝑒3 in different orders. Thus,

Lemma 3.4 can no longer be applied, and it is not guaranteed that 𝜋1 and 𝜋2 would lead to the

same state. Notice that in the sequences 𝜋1 and 𝜋2 above, even though 𝑒2 and 𝑒3 appear in different

orders, 𝑒4 always appears after both. Indeed, 𝑒4 must appear after 𝑒2 due to visibility relation, and

since 𝑒3 and 𝑒4 commute with each other (since both correspond to the same operation 𝑜), it is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:14 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

enough to consider sequences where 𝑒4 appears after 𝑒3. Based on the above observation, we now

introduce a notion called conditional commutativity to ensure that sequences such as 𝜋1, 𝜋2 would

lead to the same state:

Definition 3.7 (Conditional Commutativity). Events 𝑒 and 𝑒′ are said to conditionally com-

mute with respect to event 𝑒′′ (denoted by 𝑒
𝑒′′

⇄ 𝑒′) if ∀𝜎 ∈ Σ. ∀𝜋 ∈ E∗ . 𝑒′′ (𝜋 (𝑒 (𝑒′ (𝜎)))) =

𝑒′′ (𝜋 (𝑒′ (𝑒 (𝜎)))).

Update operations 𝑜 and 𝑜 ′ conditionally commute w.r.t. update operation 𝑜 ′′ if ∀𝑒, 𝑒′, 𝑒′′ .op(𝑒) =

𝑜∧op(𝑒′) = 𝑜 ′∧op(𝑒′′) = 𝑜 ′′ ⇒ 𝑒
𝑒′′

⇄ 𝑒′. For example, for the OR-setMRDT of Fig. 2, add𝑎
rem𝑎

⇄ rem𝑎 .

Even though add and remove operations of the same element do not commute with each other, if

there is guaranteed to be a future remove operation, then they do commute. For the execution in

Fig. 9, if 𝑒2 and 𝑒3 conditionally commute w.r.t. 𝑒4, then both the sequences 𝜋1 and 𝜋2 will lead to

the same state. For non-commutative update operations that are not ordered by lo, we enforce their
conditional commutativity through the following property:

cond-comm(D) ≜ ∀𝑜1, 𝑜2, 𝑜3 ∈ 𝑂. (𝑜1
rc−→ 𝑜2 ∧ ¬𝑜2 ⇄ 𝑜3) ⇒ 𝑜1

𝑜3
⇄ 𝑜2

cond-comm(D) is a property of an MRDT D, enforcing conditional commutativity of update

operations 𝑜1 and 𝑜2 w.r.t. 𝑜3 if 𝑜2 does not commute with 𝑜3. Connecting this with the definition

of linearization relation, if there are events 𝑒1, 𝑒2, 𝑒3 performing operations 𝑜1, 𝑜2, 𝑜3 resp., and if

𝑒1
rc−→ 𝑒2, 𝑒2

vis−−→ 𝑒3 and ¬𝑒2 ⇄ 𝑒3, then there will not be a linearization relation between 𝑒1 and 𝑒2.

However, cond-comm(D) would then ensure that the ordering of 𝑒1 and 𝑒2 will not matter, due to

the presence of the event 𝑒3. We also formalize the requirement of an rc relation between all pairs

of non-commutative update operations:

rc-non-comm(D) ≜ ∀𝑜1, 𝑜2 ∈ 𝑂.¬𝑜1 ⇄ 𝑜2 ⇔ 𝑜1
rc−→ 𝑜2 ∨ 𝑜2

rc−→ 𝑜1

Lemma 3.8. For an MRDT D which satisfies rc-non-comm(D) and cond-comm(D), for any
reachable configuration𝐶 in SD , for any two sequences 𝜋1, 𝜋2 over E𝐶 which extend lo𝐶 , for any state
𝜎 , 𝜋1 (𝜎) = 𝜋2 (𝜎).

Definition 3.9 (RA-linearizability of MRDT). LetD be anMRDTwhich satisfies rc-non-comm(D)
and cond-comm(D). Then, a configuration 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩ of SD is RA-linearizable if, for

every active replica 𝑟 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝐻), there exists a sequence 𝜋 consisting of all events in 𝐿(𝐻 (𝑟))
such that lo(𝐶) |𝐿 (𝐻 (𝑟)) ⊆ 𝜋 and 𝑁 (𝐻 (𝑟)) = 𝜋 (𝜎0). An execution 𝜏 ∈ JSDK is RA-linearizable if all
of its configurations are RA-linearizable. Finally, D is RA-linearizable if all of its executions are

RA-linearizable.

For a configuration to be RA-linearizable, every active replica must have a state which can be

obtained by applying a sequence of events witnessed at that replica, and that sequence must obey

the linearization relation of the configuration. For an execution to be RA-linearizable, all of its

configurations must be RA-linearizable. Lemma 3.6 ensures the existence of a sequence extending

the linearization relation, while Lemma 3.8 ensures that two versions which have witnessed the

same set of events will have the same state (i.e. strong eventual consistency). Further, we also show

that if an MRDT is RA-linearizable, then for any query operation in any execution, the query result

is derived from the state obtained by applying the update events seen at the corresponding replica

right before the query:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:15

Lemma 3.10. If MRDT D is RA-linearizable, then for all executions 𝜏 ∈ JSDK, for all transitions

𝐶
𝑞𝑢𝑒𝑟𝑦 (𝑟,𝑞,𝑎)
−−−−−−−−−−→ 𝐶′ in 𝜏 where 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, there exists a sequence 𝜋 consisting of all events in

𝐿(𝐻 (𝑟)) such that lo(𝐶) |𝐿 (𝐻 (𝑟)) ⊆ 𝜋 and 𝑎 = query(𝜋 (𝜎0), 𝑞).

Compared to the definition of RA-linearizability in the work by Wang et. al. [28], there is one

major difference: Wang et. al. also consider a sequential specification in the form of a set of

valid sequences of data-type operations, and requires the linearization sequence to belong to the

specification. Our definition simply requires the state of a replica to be a linearization of the update

operations applied to the replica, without appealing to a separate sequential specification. Once this

is done, we can separately show that a linearization of the MRDT operations obeys the sequential

specification. For this, we can ignore the presence of the merge operation as well as the MRDT

system model (which are taken care of by the RA-linearizability definition), thus boiling down

to proving a specification over a sequential functional implementation, which is a well-studied

problem.

3.3 Bottom-Up Linearization
As demonstrated in §2, our approach to show RA-linearizability of an MRDT implementation is

based on using algebraic properties of merge (specifically, commutativity of merge and update

operation application) which allows us to show that the result of a merge operation is a linearization

of the events in each of the versions being merged. We first describe a generic template for the

algebraic properties which can be used to prove RA-linearizability:

∀𝑗 . 𝜋 𝑗 ∈ E ∪ {𝜖} 𝑙, 𝑎, 𝑏 ∈ Σ 𝜋 ∈ {𝜋0, 𝜋1, 𝜋2} ∀𝑗 . 𝜋 ′
𝑗 = 𝜋 𝑗 − 𝜋

merge(𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 (𝑏)) = 𝜋 (merge(𝜋 ′
0
(𝑙), 𝜋 ′

1
(𝑎)), 𝜋 ′

2
(𝑏))))

[BottomUpTemplate]

The template for the algebraic property is given in the conclusion of the above rule, while the

premises describe certain conditions. Each 𝜋 𝑗 for 𝑗 ∈ {0, 1, 2} is a sequence of 0 or 1 event (i.e.

either 𝜖 or a single event 𝑒 𝑗), while 𝑙, 𝑎, 𝑏 are arbitrary states of the MRDT. Note that applying the 𝜖

event on a state leaves it unchanged (i.e. 𝜖 (𝑠) = 𝑠). Then, we can select one event 𝜋 which has been

applied to the arguments of merge on the LHS, and bring it outside, i.e. remove the event from each

argument on which it was applied, and instead apply the event to the result of merge. Note that

the notation 𝜋
′
𝑗 = 𝜋 𝑗 − 𝜋 means that if 𝜋 = 𝜋 𝑗 , then 𝜋

′
𝑗 = 𝜖 , else 𝜋

′
𝑗 = 𝜋 𝑗 − 𝜋 .

𝑣!

𝑣"

𝑣#

𝑒!: 𝑜!

𝑣$
𝑒": 𝑜"

𝑒#: 𝑜#

𝑣%

Fig. 10. Example demonstrating
the failure of bottom-up lineariza-
tion in the presence of an rc-
chain

The rule (P1
′
) given in §2.2 can be seen as an instantiation of

the above template with 𝜋0 = 𝜖, 𝜋1 = 𝑒1, 𝜋2 = 𝑒2 and 𝜋 = 𝑒2

where 𝑒1
rc−→ 𝑒2. Similarly, (P1-1) is another instantiation with

𝜋0 = 𝜋2 = 𝑒1, 𝜋1 = 𝑒3 and 𝜋 = 𝑒3 where 𝑒3 ≠ 𝑒1. Assuming that the

input arguments to merge are obtained through sequences of events

𝜏0, 𝜏1, 𝜏2, the template rule builds the linearization sequence 𝜏 = 𝜏 ′𝑒
where 𝑒 is the last event in one of the 𝜏𝑖s, and 𝜏 ′ is recursively
generated by applying the rule on 𝜏

′
= 𝜏 −𝑒 . We call this procedure

as bottom-up linearization. The event 𝑒 should be chosen in such a

way that the sequence 𝜏 is an extension of the linearization relation

(Def. 3.5).

However, bottom-up linearization might fail if the last event in

the merge output is not the last event in any of the three arguments to merge. For example, consider

the execution shown in Fig. 10, where there exists an rc-chain: 𝑜2
rc−→ 𝑜3

rc−→ 𝑜1, and 𝑜1 and 𝑜2
are non-commutative. 𝑒1 is visible to 𝑒2, while event 𝑒3 is concurrent to 𝑒1 and 𝑒2. Now, for the

version obtained after merging 𝑣3 and 𝑣4, the linearization relation would be 𝑒1
lo−−→
vis

𝑒2 and 𝑒2
lo−→
rc

𝑒3.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:16 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

Notably, even though 𝑒1 and 𝑒3 are also concurrent, and rc orders 𝑜3 before 𝑜1, this will not result in
a linearization relation from 𝑒3 to 𝑒1, due to the presence of a non-commutative update operation

𝑒2 to which 𝑒1 is visible. The bottom-up linearization for the merge of 𝑣3 and 𝑣4, will result in the

sequence 𝑒1𝑒2𝑒3, which is an extension of the linearization order.

However, suppose we first merge versions 𝑣2 and 𝑣4, to obtain the version 𝑣5, where the lin-

earization relation is 𝑒3
lo−→
rc

𝑒1. Merging 𝑣3 and 𝑣5 (with LCA 𝑣2) would have the same linearization

relation as merging 𝑣3 and 𝑣4. However, the sequences leading to 𝑣3 and 𝑣5 are 𝑒1𝑒2 and 𝑒3𝑒1 respec-

tively, while the only sequence which extends the linearization relation for their merge is 𝑒1𝑒2𝑒3.

Bottom-up linearization will then be constrained to pick either 𝑒1 or 𝑒2 to appear at the end, but

such a sequence will not extend the linearization relation resulting in the failure of bottom-up

linearization. To avoid such cases, we place an additional constraint which prohibits the presence

of an rc-chain:

no-rc-chain(D) ≜ ¬(∃𝑜1, 𝑜2, 𝑜3 ∈ 𝑂. 𝑜1
rc−→ 𝑜2

rc−→ 𝑜3)

If there is an rc-chain, executions such as Fig. 10 are possible, resulting in infeasibility of bottom-up

linearization. However, we will show that if an MRDT satisfies no-rc-chain(D), then we can use

bottom-up linearization to prove that D is linearizable. We note that no-rc-chain is a pragmatic

restriction and consistent with standard conflict-resolution strategies such as add/remove-wins,

enable/disable-wins, update/delete-wins, etc. which are typically used in MRDT implementations.

4 Verifying RA-Linearizability of MRDTs
In this section, we present our verification strategy for proving RA-linearizability of MRDTs using

bottom-up linearization. According to Def. 3.9, in order to prove that an MRDT D is linearizable,

we need to consider every configuration𝐶 reachable in any execution, and show that all replicas in

𝐶 have states which can be obtained by linearizing the events applied to the replica, i.e. finding

a sequence which obeys the linearization relation (Def. 3.5). We will assume that D satisfies the

three constraints (rc-non-comm, cond-comm and no-rc-chain) necessary for an MRDT to be

linearizable, and for bottom-up linearization to succeed.

Our overall proof strategy is to use induction on the length of the execution and to extract generic

verification conditions (VCs) which help us to discharge the inductive case. These VCs would essen-

tially be instantiations of the BottomUpTemplate rule, proving that the merge operation results

in a linearization of the events of the two versions being merged. Proving these VCs for arbitrary

MRDTs is not straightforward (as discussed in §2.3), and hence we propose another induction

scheme over event sequences. We first discuss the instantiations of the BottomUpTemplate rule

required for linearizing merges.

4.1 Linearizing Merge Operations
Consider an execution 𝜏 ∈ JSDK such that all configurations in 𝜏 are linearizable. Suppose 𝜏 ends in

the configuration 𝐶 . Now, we extend 𝜏 by one more transition, resulting in the new configuration

𝐶′
; we need to prove that 𝐶′

is also linearizable. Let 𝐶 = ⟨𝑁,𝐻, 𝐿,𝐺, 𝑣𝑖𝑠⟩, 𝐶′ = ⟨𝑁 ′, 𝐻 ′, 𝐿′,𝐺 ′, 𝑣𝑖𝑠′⟩.
It is easy to see if that this transition is caused due to CreateBranch or Apply rules, then 𝐶′

will

be linearizable. For example, in the [Apply] transition, where a new update operation 𝑜 is applied

on a replica 𝑟 (generating a new event 𝑒), only the state at 𝑟 changes, and this new state is obtained

by directly applying 𝑒 on the original state 𝜎 at 𝑟 . Since 𝜎 was assumed to be linearizable, there

exists a sequence 𝜋 which extends lo(𝐶) |𝐿 (𝐻 (𝑟)) , with 𝜎 = 𝜋 (𝜎0) (recall that 𝐿(𝐻 (𝑟)) denotes the
set of events applied at 𝑟). Then, the new state 𝑒 (𝜎) is clearly linearizable through the sequence 𝜋𝑒

which extends lo(𝐶′) |𝐿′ (𝐻 ′ (𝑟)) .

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:17

We focus on the difficult case when there is aMerge transition from 𝐶 to 𝐶′
which merges the

replicas 𝑟1 and 𝑟2. Let 𝜎1 and 𝜎2 be the states of the head versions 𝑣1 and 𝑣2 at 𝑟1 and 𝑟2 respectively.

Let 𝜎⊤ be the state of the LCA version 𝑣⊤ of 𝑣1 and 𝑣2. Recall that 𝐿(𝑣⊤) = 𝐿(𝑣1) ∩ 𝐿(𝑣2). The
transition will install a new version with state 𝜎𝑚 = merge(𝜎⊤, 𝜎1, 𝜎2) at the replica 𝑟1, leaving
the other replicas unchanged. Also, 𝐿′ (𝑣𝑚) = 𝐿(𝑣1) ∪ 𝐿(𝑣2). We need to show that there exists a

sequence 𝜋 of events in 𝐿′ (𝑣𝑚) such that 𝜋 extends lo(𝐶′) |𝐿′ (𝑣𝑚) and 𝜎𝑚 = 𝜋 (𝜎0).
We first describe the structure of a sequence 𝜋 which extends lo(𝐶′) |𝐿′ (𝑣𝑚) . For ease of readability,

we use 𝐿1 for 𝐿(𝑣1), 𝐿2 for 𝐿(𝑣2) and 𝐿⊤ for 𝐿(𝑣⊤), and lom for lo(𝐶′) |𝐿′ (𝑣𝑚) . We define the following

sets of events:

𝐿′
1
= 𝐿1 \ 𝐿⊤ 𝐿′

2
= 𝐿2 \ 𝐿⊤

𝐿𝑏
1
= {𝑒 ∈ 𝐿

′
1
| ∃𝑒⊤ ∈ 𝐿⊤. (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
1
. 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑏
2
= {𝑒 ∈ 𝐿

′
2
| ∃𝑒⊤ ∈ 𝐿⊤. (𝑒

lom−−→ 𝑒⊤ ∨ ∃𝑒′ ∈ 𝐿
′
2
. 𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤)}

𝐿𝑎⊤ = {𝑒⊤ ∈ 𝐿⊤ | ∃𝑒 ∈ 𝐿𝑏
1
∪ 𝐿𝑏

2
.𝑒

lom−−→ 𝑒⊤} 𝐿𝑎
1
= 𝐿

′
1
\ 𝐿𝑏

1
𝐿𝑎
2
= 𝐿

′
2
\ 𝐿𝑏

2
𝐿𝑏⊤ = 𝐿⊤ \ 𝐿𝑎⊤

Fig. 11. Structure of sequence 𝜋
extending lo𝑚

𝐿
′
1
and 𝐿

′
2
are the local events in each version. Note that any pair

of events 𝑒1 ∈ 𝐿′
1
, 𝑒2 ∈ 𝐿′

2
will necessarily be concurrent. This is

because, in any reachable configuration, any version 𝑣 is always

causally closed, which means that if 𝑒1
vis−−→ 𝑒2 and 𝑒2 ∈ 𝐿(𝑣),

then 𝑒1 ∈ 𝐿(𝑣). Hence, for events 𝑒1 ∈ 𝐿′
1
, 𝑒2 ∈ 𝐿′

2
, if 𝑒1

vis−−→ 𝑒2 then

𝑒1 ∈ 𝐿′
2
, whichwouldmake 𝑒1 a non-local event (i.e. part of the LCA).

Bottom-up linearization first linearizes the local events across the

two versions using the rc relation for non-commutative events, and

then linearizes events of the LCA. However, as demonstrated by the

example in §2.4, local events may also need to be linearized before

events of the LCA (due to possible intermediate merges), and these

events are collected in the sets 𝐿𝑏
1
and 𝐿𝑏

2
. Specifically, 𝐿𝑏𝑖 (𝑖 = 1, 2)

contains those local events 𝑒 in 𝐿′𝑖 which either occur lom before

some event in the LCA, or which occur lom before another local

event 𝑒′ which occurs lom before an LCA event. The events of the LCA which need to be linearized

after local events are collected in 𝐿𝑎⊤. Finally, 𝐿
𝑎
1
and 𝐿𝑎

2
contain local events which do not occur

lom before an LCA event.

Example 4.1. Consider the execution in Fig. 6, and the merge of versions 𝑣3 and 𝑣4, for which

the LCA is 𝑣1. For this merge, 𝐿′
1
= {𝑒3}, 𝐿′2 = {𝑒2}, 𝐿𝑏1 = ∅, 𝐿𝑏

2
= {𝑒2}, 𝐿𝑎⊤ = {𝑒1}. For the merge of

versions 𝑣1 and 𝑣2 (whose LCA is 𝑣0), 𝐿
′
1
= {𝑒1}, 𝐿′2 = {𝑒2}, while 𝐿𝑏1 , 𝐿𝑏2 , 𝐿𝑎⊤ will all be empty (since

no local event comes lo-before an LCA event).

We now show that there exists a sequence 𝜋 which extends lom and which has events in 𝑆1 = 𝐿𝑏⊤
followed by 𝑆2 = 𝐿𝑎⊤ ∪ 𝐿𝑏

1
∪ 𝐿𝑏

2
followed by 𝑆3 = 𝐿𝑎

1
∪ 𝐿𝑎

2
(later, we will discuss the ordering of

events inside each set 𝑆𝑖). To prove this, we will demonstrate that there is no lom from events in

𝑆𝑖 to events in 𝑆𝑖−1. Based on the definitions of the 𝑆𝑖 sets, we can deduce some obvious facts: (i)

there cannot be events 𝑒 ∈ 𝑆3, 𝑒
′ ∈ 𝐿⊤ such that 𝑒

lom−−→ 𝑒′, because otherwise, such an event 𝑒

would be in 𝐿𝑏
1
∪ 𝐿𝑏

2
(and hence not in 𝑆3), (ii) there cannot be events 𝑒 ∈ 𝐿𝑏

1
∪ 𝐿𝑏

2
, 𝑒′ ∈ 𝐿𝑏⊤ such that

𝑒
lom−−→ 𝑒′, because otherwise, such an event 𝑒′ would be in 𝐿𝑎⊤. In addition, using no-rc-chain and

rc-non-comm, we also prove the following:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:18 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

Lemma 4.2. (1) For events 𝑒 ∈ 𝐿𝑎
1
∪ 𝐿𝑎

2
, 𝑒′ ∈ 𝐿𝑏

1
∪ 𝐿𝑏

2
, ¬(𝑒 lom−−→ 𝑒′).

(2) For events 𝑒 ∈ 𝐿𝑎⊤, 𝑒
′ ∈ 𝐿𝑏⊤, ¬(𝑒

lom−−→ 𝑒′).

(1) from the above lemma ensures that there is no lom relation from 𝑆3 to 𝑆2, while (2) ensures

the same from 𝑆2 to 𝑆1. Hence a sequence with the structure 𝑆1 𝑆2 𝑆3 would extend lom. Let us now
consider the ordering among events in each set. First, for 𝑆3, this set contains local events which are

guaranteed to not come lom before any event of the LCA. An event in 𝐿𝑎
1
will be concurrent with an

event in 𝐿𝑎
2
, and the linearization relation between them will depend upon the rc relation between

the underlying operations (if the events don’t commute). We now instantiate BottomUpTemplate

for the case where both 𝐿𝑎
1
and 𝐿𝑎

2
are non-empty in the rule BottomUp-2-OP in Fig. 12, so that

the linearization needs to consider the rc relation between events in the two sets.

[BottomUp-2-OP] [BottomUp-1-OP]

𝑒1 ≠ 𝑒2 𝑒1
rc−→ 𝑒2 ∨ 𝑒1 ⇄ 𝑒2

merge(𝑙, 𝑒1 (𝑎), 𝑒2 (𝑏)) = 𝑒2 (merge(𝑙, 𝑒1 (𝑎), 𝑏))
(𝑒⊤ ≠ 𝜖 ∧ 𝑒1 ≠ 𝑒⊤) ∨ (𝑒⊤ = 𝜖 ∧ 𝑙 = 𝑏)

merge(𝑒⊤ (𝑙), 𝑒1 (𝑎), 𝑒⊤ (𝑏)) = 𝑒1 (merge(𝑒⊤ (𝑙), 𝑎, 𝑒⊤ (𝑏)))

[BottomUp-0-OP] [MergeIdempotence] [MergeCommutativity]

merge(𝑒⊤ (𝑙), 𝑒⊤ (𝑎), 𝑒⊤ (𝑏)) = 𝑒⊤ (merge(𝑙, 𝑎, 𝑏)) merge(𝑎, 𝑎, 𝑎) = 𝑎 merge(𝑙, 𝑎, 𝑏) = merge(𝑙, 𝑏, 𝑎)

Fig. 12. Bottom-up Linearization

Note that 𝑒1, 𝑒2 and 𝑙, 𝑎, 𝑏 are all universally quantified. The BottomUp-2-OP rule is an algebraic

property of merge which needs to be separately shown for each MRDT implementation. For our

case where we are trying to linearizemerge(𝜎⊤, 𝜎1, 𝜎2), we can apply BottomUp-2-OP with 𝑙 = 𝜎⊤,
𝑒1 (𝑎) = 𝜎1 and 𝑒2 (𝑏) = 𝜎2. Note that since 𝐿

𝑎
1
and 𝐿𝑎

2
are both non-empty, 𝑒1 ∈ 𝐿𝑎

1
, 𝑒2 ∈ 𝐿𝑏

2
(in fact,

𝑒1 and 𝑒2 would be the maximal events in 𝐿𝑎
1
and 𝐿𝑏

2
according to lom). BottomUp-2-OPwould then

linearize 𝑒2 at the end of the sequence. If 𝑒1
rc−→ 𝑒2, then 𝑒1

lom−−→ 𝑒2, and thus linearizing 𝑒2 at the end

obeys the lom ordering. Note that due to the no-rc-chain constraint, 𝑒2 cannot come lom before

another concurrent event 𝑒3. BottomUp-2-OP can now be recursively applied onmerge(𝑙, 𝑒1 (𝑎), 𝑏),
by considering 𝑒1 and the last event leading to the state 𝑏. By repeatedly applying BottomUp-2-OP

all the remaining events in 𝐿𝑎
1
and 𝐿𝑎

2
can be linearized until one of the sets becomes empty.

Let us now consider the scenario where exactly one of 𝐿𝑎
1
and 𝐿𝑎

2
is empty. WLOG, let 𝐿𝑎

1
be

non-empty. We instantiate BottomUpTemplate for the case where 𝐿𝑎
1
is non-empty and 𝐿𝑎

2
is

empty in the rule BottomUp-1-OP in Fig. 12, so that the linearization orders all events of 𝐿𝑎
1
after

events of 𝑆2.

Let us consider the first clause in the premise where 𝑒⊤ ≠ 𝜖 . To understand BottomUp-1-OP,

note that if 𝐿𝑎
2
is empty, then all local events in 𝐿′

2
are linearized before the LCA events. In this

case, the last event which leads to the state 𝜎2 must be an LCA event. BottomUp-1-OP uses this

observation, with 𝑒⊤ (𝑙) = 𝜎⊤, 𝑒1 (𝑎) = 𝜎1 and 𝑒⊤ (𝑏) = 𝜎2. Notice that the last event in both the LCA

and the second argument to merge are exactly the same. 𝑒⊤ will be the maximal event (according

to lom relation) in 𝐿𝑎⊤, while 𝑒1 will be the maximal event in 𝐿𝑎
1
. BottomUp-1-OP then linearizes 𝑒1

at the end of the sequence, thus ensuring that all 𝐿𝑎
1
events are linearized after events in 𝑆1 and

𝑆2. It is possible that 𝐿
𝑎
⊤ is empty, in which case 𝐿′

2
will be empty, which is covered by the second

clause where 𝑒⊤ = 𝜖 and 𝑙 = 𝑏 since there is no local event in the second state.

Example 4.3. Referring to Example 4.1 for the execution in Fig. 6, recall that for the merge of 𝑣3
and 𝑣4, we have 𝐿

𝑎
1
= {𝑒3}, 𝐿𝑎2 = ∅ and 𝐿⊤ = {𝑒1}. BottomUp-1-OP can be applied in this scenario

to linearize 𝑒3 at the end of the sequence.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:19

BottomUp-2-OP and BottomUp-1-OP can thus be used to linearize all events in 𝑆3. Let us now

consider 𝑆2, which contains both local events in 𝐿𝑏
1
∪ 𝐿𝑏

2
and LCA events in 𝐿𝑎⊤. We first provide a

more fine-grained structure of lom among events in the set 𝑆2. Let 𝐿
𝑎
⊤ = {𝑒⊤

1
, . . . , 𝑒⊤𝑚}. For each 𝑒⊤𝑖 ,

we collect all local events from 𝐿𝑏
1
and 𝐿𝑏

2
which need to be linearized before 𝑒⊤𝑖 . For local events

which need to be linearized before multiple 𝑒⊤𝑖 s, we associate them with the smallest such 𝑖 . We

use 𝐿𝑏
1
(𝑒⊤𝑖) and 𝐿𝑏2 (𝑒⊤𝑖) to denote these sets. Formally:

∀𝑒⊤𝑖 ∈ 𝐿𝑎⊤ . 𝐿
𝑏
1
(𝑒⊤𝑖) = {𝑒 ∈ 𝐿

′
1
| (∀𝑗 . 𝑗 < 𝑖 =⇒ 𝑒 ∉ 𝐿𝑏

1
(𝑒⊤𝑗)) ∧ 𝑒

lom−−→ 𝑒⊤𝑖 ∨ ∃𝑒 ′ ∈ 𝐿
′
1
.𝑒

lom−−→ 𝑒
′ lom−−→ 𝑒⊤𝑖 }

𝐿𝑏
2
(𝑒⊤𝑖) is defined in a similar manner. We now prove the following lemma using no-rc-chain

and rc-non-comm:

Lemma 4.4. (1) For all events 𝑒⊤𝑖 , 𝑒
⊤
𝑗 ∈ 𝐿𝑎⊤, where 𝐿

𝑎
⊤ = {𝑒⊤

1
, . . . , 𝑒⊤𝑚}, ¬(𝑒⊤𝑖

lom−−→ 𝑒⊤𝑗)

(2) For events 𝑒 ∈ 𝐿𝑏
1
(𝑒⊤𝑖) ∪ 𝐿𝑏

2
(𝑒⊤𝑖), 𝑒′ ∈ 𝐿𝑏

1
(𝑒⊤𝑗) ∪ 𝐿𝑏

2
(𝑒⊤𝑗) where 𝑗 < 𝑖 , ¬(𝑒 lom−−→ 𝑒′).

From (1) in the above lemma, since there is no lom relation among events in 𝐿𝑎⊤, consider the
sequence 𝑒⊤

1
𝑒⊤
2
. . . 𝑒⊤𝑚 as a starting point for the sequence of events in 𝑆2 which extends lom. We

then inject 𝐿𝑏
1
(𝑒⊤𝑖) ∪ 𝐿𝑏

2
(𝑒⊤𝑖) before each 𝑒⊤𝑖 in the sequence 𝑒⊤

1
𝑒⊤
2
. . . 𝑒⊤𝑚 , as shown in Fig. 11. Note

that in Fig.11, we have only presented various segments of the sequence, with the ordering within

those segments determined by vis and rc. By (2) in Lemma 4.4, we can show that such a sequence

will extend lo𝑚 among the events in 𝑆2.

To show that merge follows the sequence 𝜋 for 𝑆2, we now instantiate BottomUpTemplate for

the case where 𝐿𝑎
1
and 𝐿𝑎

2
are empty (i.e. 𝑆3 has already been linearized) in the rule Bottom-0-OP

in Fig. 12. Following the structure of 𝜋 in Fig. 11, 𝑒⊤ would be the event 𝑒⊤𝑚 ∈ 𝐿𝑎⊤. Note that since
𝑒⊤𝑚 is an LCA event, it will be present in both states being merged. BottomUp-0-OP then allows

this event to be linearized first at the end.

Example 4.5. Following on from Example 4.3 for the execution in Fig. 6 for the merge of 𝑣3 and

𝑣4, after BottomUp-1-OP is applied to linearize 𝑒3, the states to be merged would be the versions

𝑣1 and 𝑣4 (with LCA 𝑣1), both of whose last operation is 𝑒1. Hence, BottomUp-0-OP would be

applicable, which would linearize 𝑒1.

After applying BottomUp-0-OP to linearize the LCA event 𝑒⊤𝑚 , we then need to linearize events

in 𝐿𝑏
1
(𝑒⊤𝑚) ∪ 𝐿𝑏

2
(𝑒⊤𝑚). However, the event 𝑒⊤𝑚 has already been linearized, so none of the events

in 𝐿𝑏
1
(𝑒⊤𝑚) ∪ 𝐿𝑏

2
(𝑒⊤𝑚) appear lom after an LCA event. This scenario can now be handled using

BottomUp-2-OP (if both 𝐿𝑏
1
(𝑒⊤𝑚) and 𝐿𝑏2 (𝑒⊤𝑚) are non-empty) or BottomUp-1-OP (if one of 2 sets

is empty). These rules will appropriately linearize the events in 𝐿𝑏
1
(𝑒⊤𝑚) ∪ 𝐿𝑏

2
(𝑒⊤𝑚) taking into

account the rc relation for concurrent events and vis relation for non-concurrent events. Once

𝐿𝑏
1
(𝑒⊤𝑚) ∪ 𝐿𝑏

2
(𝑒⊤𝑚) becomes empty, we then encounter the next LCA event in 𝐿𝑎⊤, which can again be

linearized using BottomUp-0-OP.

The three instantiations of BottomUpTemplate can thus be repeatedly applied to linearize the

rest of the events in 𝑆2. Following this, all the local events would have been linearized, leaving only

the LCA events in 𝑆1. This would result in all three arguments to merge being equal, in which case

we can use the MergeIdempotence rule in Fig. 12. Using MergeIdempotence, we can equate the

output of merge to it’s argument, which has already been assumed to be appropriately linearized.

In order to avoid mirrored versions of BottomUp-2-OP and BottomUp-1-OP where the second

and third arguments are swapped, we also require the MergeCommutativity property in Fig. 12.

We now state our soundness theorem linking the various properties with RA-linearizability of

MRDT:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:20 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

Theorem 4.6. If an MRDT D satisfies BottomUp-2-OP, BottomUp-1-OP, BottomUp-0-OP,
MergeIdempotence and MergeCommutativity, then D is linearizable.

The proof closely follows the informal arguments that we have presented in this sub-section,

using induction on the size of the various sets 𝐿𝑎
1
, 𝐿𝑎

2
, 𝐿𝑏

1
∪ 𝐿𝑏

2
, 𝐿𝑎⊤.

4.2 Automated Verification
While we have identified the sufficient conditions to show RA-linearizability of an MRDT using

bottom-up linearization, proving these conditions for arbitrary MRDTs is not straightforward.

Further, while the BottomUp-X-OP properties as shown in the previous sub-section had universal

quantification over MRDT states 𝑙, 𝑎, 𝑏, in general, for proving RA-linearizability, we only need to

show these properties for feasible states that may arise during an actual execution.

We now leverage the fact that the feasible states would have been obtained through linearization

of the visible events at the respective versions. In particular, we can characterize the states on which

merge can be invoked through the various events sets 𝐿𝑎
1
, 𝐿𝑎

2
, 𝐿𝑏

1
, 𝐿𝑏

2
, 𝐿𝑎⊤, 𝐿

𝑏
⊤ that we had defined

in the previous sub-section. We only need to prove the BottomUp-X-OP properties for states

which have been obtained through linearizations of events in these event sets. For this purpose, we

propose an induction scheme which establishes the required properties while traversing the event

sets as depicted in Fig. 11 in a top-down fashion.

Table 1. Induction scheme for BottomUpTemplate. For clarity, we use · for function composition, and 𝜇 for
merge.

VC
Name

Pre-condition Post-condition

𝜓
𝐿𝑏⊤
base 𝜇 (𝜋0 (𝜎0), 𝜋1 (𝜎0), 𝜋2 (𝜎0)) =

𝜋 ·𝜇 (𝜋 ′
0
(𝜎0), 𝜋 ′

1
(𝜎0), 𝜋 ′

2
(𝜎0))

𝜓
𝐿𝑏⊤
ind 𝜇 (𝜋0 (𝑙), 𝜋1 (𝑙), 𝜋2 (𝑙)) =

𝜋 ·𝜇 (𝜋 ′
0
(𝑙), 𝜋 ′

1
(𝑙), 𝜋 ′

2
(𝑙))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ (𝑙), 𝜋2 ·𝑒⊤ (𝑙)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ (𝑙), 𝜋 ′

2
·𝑒⊤ (𝑙))

𝜓
𝐿𝑎⊤
ind ∃𝑒. 𝑒 rc−→ 𝑒⊤ 𝜇 (𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 (𝑏)) =

𝜋 ·𝜇 (𝜋 ′
0
(𝑙), 𝜋 ′

1
(𝑎), 𝜋 ′

2
(𝑏))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜓
𝐿𝑏
1

ind1 𝑒𝑏
rc−→ 𝑒⊤ 𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏)) =

𝜋 ·𝜇 (𝜋 ′
0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋2 ·𝑒⊤ (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜓
𝐿𝑏
1

ind2 𝑒𝑏
rc−→ 𝑒⊤ ∧ ¬𝑒 ⇄ 𝑒𝑏 𝜇 (𝜋0·𝑒⊤ (𝑙), 𝜋1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋2·𝑒⊤ (𝑏)) =

𝜋·𝜇 (𝜋 ′
0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝜋2 ·𝑒⊤ (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜓
𝐿𝑏
2

ind1 𝑒𝑏
rc−→ 𝑒⊤ 𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ (𝑏)) =

𝜋 ·𝜇 (𝜋 ′
0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ (𝑎), 𝜋2 ·𝑒⊤ ·𝑒𝑏 (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤ (𝑎), 𝜋 ′

2
·𝑒⊤ ·𝑒𝑏 (𝑏))

𝜓
𝐿𝑏
2

ind2 𝑒𝑏
rc−→ 𝑒⊤ ∧ ¬𝑒 ⇄ 𝑒𝑏 𝜇 (𝜋0·𝑒⊤ (𝑙), 𝜋1·𝑒⊤·𝑒𝑏 (𝑎), 𝜋2·𝑒⊤ (𝑏)) =

𝜋·𝜇 (𝜋 ′
0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2
·𝑒⊤ (𝑏))

𝜇 (𝜋0 ·𝑒⊤ (𝑙), 𝜋1 ·𝑒⊤ ·𝑒𝑏 (𝑎), 𝜋2 ·𝑒⊤ ·𝑒𝑏 ·𝑒 (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
·𝑒⊤ (𝑙), 𝜋 ′

1
·𝑒⊤·𝑒𝑏 (𝑎), 𝜋 ′

2
·𝑒⊤·𝑒𝑏 ·𝑒 (𝑏))

𝜓
La1
ind 𝜇 (𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 (𝑏)) =

𝜋 ·𝜇 (𝜋 ′
0
(𝑙), 𝜋 ′

1
(𝑎), 𝜋 ′

2
(𝑏))

𝜇 (𝜋0 (𝑙), 𝜋1 ·𝑒 (𝑎), 𝜋2 (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
(𝑙), 𝜋 ′

1
·𝑒 (𝑎), 𝜋 ′

2
(𝑏))

𝜓
La2
ind 𝜇 (𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 (𝑏)) =

𝜋 ·𝜇 (𝜋 ′
0
(𝑙), 𝜋 ′

1
(𝑎), 𝜋 ′

2
(𝑏))

𝜇 (𝜋0 (𝑙), 𝜋1 (𝑎), 𝜋2 ·𝑒 (𝑏)) =
𝜋 ·𝜇 (𝜋 ′

0
(𝑙), 𝜋 ′

1
(𝑎), 𝜋 ′

2
·𝑒 (𝑏))

Here, we present the induction scheme for the generic BottomUpTemplate rule. The scheme

can then be instantiated for all the three BottomUp-X-OP rules. Table 1 contains the verification

conditions corresponding to the base case and inductive case over the different event sets. Every

VC has the form (pre-condition =⇒ post-condition), and all variables are universally quantified.

Our goal is to show the BottomUpTemplate rule for all feasible MRDT states 𝑙, 𝑎, 𝑏, where 𝑙 is the

state of the LCA of 𝑎 and 𝑏. Let 𝐿⊤, 𝐿1, 𝐿2 be the event sets corresponding to 𝑙, 𝑎, 𝑏 respectively. We

define the event sets 𝐿𝑎
1
, 𝐿𝑎

2
, 𝐿𝑏

1
, 𝐿𝑏

2
, 𝐿𝑎⊤, 𝐿

𝑏
⊤ in exactly the same manner as the previous sub-section,

based on the linearization relation of the configuration obtained by the merge(𝑙, 𝑎, 𝑏) transition.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:21

Note that the events in 𝜋0, 𝜋1, 𝜋2 (used in the BottomUpTemplate rule) would also come from the

above event sets, but in the following discussion, we freeze these events, i.e. all our assertions about

the events sets will be modulo these events.

We start with the VC𝜓
𝐿𝑏⊤
base, which corresponds to the case where every event set is empty. There is

no pre-condition, and the post-condition requires BottomUpTemplate to hold on the initial MRDT

state 𝜎0. For example, for the BottomUp-2-OP rule,𝜓
𝐿𝑏⊤
base VC would be merge(𝜎0, 𝑒1 (𝜎0), 𝑒2 (𝜎0)) =

𝑒2 (merge(𝜎0, 𝑒1 (𝜎0), 𝜎0)), where 𝑒1
rc−→ 𝑒2 or 𝑒1 and 𝑒2 commute. Notice that 𝑒1 and 𝑒2 would be

events in 𝐿𝑎
1
and 𝐿𝑎

2
, and our assertion about all event sets being empty is modulo these events.

Next, the VC 𝜓
𝐿𝑏⊤
ind corresponds to the inductive case on 𝐿𝑏⊤, where we assume every event set

except 𝐿𝑏⊤ to be empty. The pre-condition corresponds to the inductive hypothesis, where we

assume the property to hold for some event set 𝐿𝑏⊤, and the post-condition asserts that the property

holds while adding another event 𝑒⊤ to 𝐿𝑏⊤. Recall that 𝐿
𝑏
⊤ corresponds to the LCA events which

come lo before all local events. Since all the other event sets are empty, this translates to the same

state 𝑙 for all the three arguments to merge in the pre-condition, and applying the LCA event 𝑒⊤ to

all three arguments in the post-condition.

Next, we induct on the set 𝐿𝑎⊤, i.e. the set of LCA events which occur lo after a local event. The
base case, where | 𝐿𝑎⊤ |= ∅ exactly corresponds to the result of the induction on 𝐿𝑏⊤. The inductive

case is covered by the VC𝜓
𝐿𝑎⊤
ind, which adds an LCA event 𝑒⊤ to all three arguments of merge from

pre-condition to post-condition. Notice that we also have another pre-condition which requires the

existence of some event 𝑒 which should come rc-before 𝑒⊤, which is necessary for 𝑒⊤ to be in 𝐿𝑎⊤.
The post-condition just adds a new LCA event 𝑒⊤. The events in 𝐿𝑏

1
(𝑒⊤) and 𝐿𝑏2 (𝑒⊤) will be added

by the next 4 VCs.

𝜓
𝐿𝑏
1

ind1 and𝜓
𝐿𝑏
1

ind2 add an event in 𝐿𝑏
1
from the pre-condition to the post-condition.𝜓

𝐿𝑏
1

ind1 considers an

event 𝑒𝑏 which occurs rc-before the LCA event 𝑒⊤. Notice that the pre-condition of𝜓
𝐿𝑏
1

ind1 is exactly

the same as the post-condition of𝜓
𝐿𝑎⊤
ind. In the post-condition of𝜓

𝐿𝑏
1

ind1, the event 𝑒𝑏 is applied before

𝑒⊤ on the argument 𝑎 to merge, thus reflecting that this is an event in 𝐿𝑏
1
.𝜓

𝐿𝑏
1

ind2 adds an event 𝑒 ∈ 𝐿𝑏
1

which does not commute with an existing event 𝑒𝑏 ∈ 𝐿𝑏
1
(see the definition of 𝐿𝑏

1
).𝜓

𝐿𝑏
2

ind1 and𝜓
𝐿𝑏
2

ind2
are analogous and do the same thing for the argument 𝑏 to merge.

Finally,𝜓
La1
ind and𝜓

La2
ind add events from 𝐿𝑎

1
and 𝐿𝑎

2
. The base cases for the two sets would exactly

correspond to the result of the induction carried out so far on the rest of the event sets. For the induc-

tive case, in𝜓
La1
ind (resp.𝜓

La2
ind), a new event 𝑒 is added on the second argument 𝑎 (resp. third argument

𝑏) from the pre-condition to the post-condition. This establishes the rule BottomUpTemplate for

any feasible input arguments to merge during any execution. We denote the set of VCs in Table 1

by𝜓 ∗ (BottomUpTemplate).

Theorem 4.7. If an MRDT D satisfies the VCs𝜓 ∗ (BottomUp-2-OP),𝜓 ∗ (BottomUp-1-OP),
𝜓 ∗ (BottomUp-0-OP),MergeIdempotence and MergeCommutativity, then D is linearizable.

5 Experimental Evaluation
We have implemented our verification technique in the F

★
programming language and verified

several MRDTs using it. We also extracted OCaml code from the verified implementations and ran

them as part of Irmin [9], a Git-like distributed database which follows the MRDT system model

described in §3. This distinguishes our work from prior works in automated RDT verification [16]

which focuses on verifying abstract models rather than actual implementations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:22 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

Our framework in F
★
consists of an F

★
interface that defines signatures for an MRDT implemen-

tation (Fig. 2) and the VCs described in Table 1; these are encoded as F
★
lemmas. This interface

contains 200 lines of F
★
code. An MRDT developer instantiates the interface with their specific

MRDT implementation and calls upon F
★
to prove the lemmas (i.e., the VCs). Once this is done, our

metatheory (Theorem 4.7) guarantees that the MRDT implementation is linearizable.

Table 2. Verified MRDTs. ∗ denotes MRDT implementations not present in prior work.

MRDT rc Policy #LOC Verification Time (s)

Increment-only counter [12] none 6 0.72

PN counter [23] none 10 1.64

Enable-wins flag
∗ disable

rc−→ enable 30 29.80

Disable-wins flag
∗ enable

rc−→ disable 30 37.91

Grows-only set [12] none 6 0.45

Grows-only map [23] none 11 4.65

OR-set [23] rema
rc−→ adda 20 4.53

OR-set (efficient)
∗ rema

rc−→ adda 34 660.00

Remove-wins set
∗ adda

rc−→ rema 22 9.60

Set-wins map
∗ delk

rc−→ setk 20 5.06

Replicated Growable Array [1] none 13 1.51

Optional register
∗ unset

rc−→ set 35 200.00

Multi-valued Register
∗ none 7 0.65

JSON-style MRDT
∗ Fig. 13 26 148.84

We instantiate the interface with MRDT implementations of several datatypes such as counter,

flag, set, map, and list (Table 2). All the results were obtained on a Intel®Xeon®Gold 5120 x86-64

machine running Ubuntu 22.04 with 64GB of main memory. While some of the MRDTs have been

taken from previous works [1, 12, 23] or translated from their CRDT counterparts, we also develop

some new implementations, denoted by
∗
in Table 2. We also uncovered bugs in previous MRDT

implementations (Enable-wins flag and Efficient OR-set) from [23], which we fixed (more details in

§5.2). We note that in all our experiments, all the VCs were automatically discharged by F
★
in a

reasonable amount of time.

While our approach ensures that the MRDT implementations are verified in the F
★
framework, it

is important to note that the user is obligated to trust the F
★
language implementation, the extraction

mechanism, the OCaml language implementation, the OCaml runtime, and the hardware.

We now highlight several notable features about our verified MRDTs. We have designed and

developed the first correct implementations of both an enable-wins and disable-wins flag MRDT.

Our implementation of efficient OR-set maintains a per-replica, per-element counter instead of

adding different versions of the same element (as done by the OR-set implementation of Fig. 2),

thus matching the theoretical lower bound in terms of space-efficiency for any OR-set CRDT

implementation (as proved in [4]). We have developed the first known MRDT implementation

of a remove-wins set datatype. Finally, as a demonstration of vertical compositionality, we have

developed a JSON MRDT which is composed of several component MRDTs, with its correctness

guarantee being directly derived from the correctness of the component MRDTs.

5.1 Case Study: A Verified Polymorphic JSON-Style MRDT
JSON is a notable example of a data type which is composed of several other datatypes. JSON is

widely used as a data interchange format in many databases and web services [10]. Our JSONMRDT

is modeled as an unordered collection of key/value pairs, where the values can be any primitive

types, such as counter, list, etc., or they can be JSON type themselves. We assume that keys are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:23

update-only; that is, key-value mappings can be added and modified, but once a key is added, it

cannot be deleted. Previous works, such as Automerge [2], have developed similar JSON-style

CRDT models. However, these models are monomorphic, which means that the data type of the

values must be known in advance. Our goal is to develop a more generic JSON-style MRDT that

supports polymorphic values, i.e. we leave the value data type as an abstract type which can be

instantiated with any concrete MRDT.

1: Σjson : (𝑘 : (string × Ω)) → Σsnd(𝑘)
2: 𝑂json = {set(𝑘, 𝑜) | 𝑜 ∈ 𝑂snd(𝑘) }
3: 𝑄json = {get(𝑘,𝑞) | 𝑞 ∈ 𝑄snd(𝑘) }
4: 𝜎0json = 𝜆 (𝑘 : string × Ω) . 𝜎0snd(𝑘)
5: do(𝜎, 𝑡, 𝑟, set(𝑘, 𝑜)) = 𝜎 [𝑘 ↦→ 𝑜 (𝜎 (𝑘), 𝑡, 𝑟)]
6: mergejson (𝜎⊤, 𝜎1, 𝜎2) = 𝜆 (𝑘 : string × Ω) . mergesnd(𝑘) (𝜎⊤ (𝑘), 𝜎1 (𝑘), 𝜎2 (𝑘))
7: queryjson (𝜎,𝑔𝑒𝑡 (𝑘,𝑞)) = querysnd(𝑘) (𝜎 (𝑘), 𝑞)
8: rcjson = { (set(𝑘1, 𝑜1), set(𝑘2, 𝑜2)) ∈ 𝑂json ×𝑂json | 𝑘1 = 𝑘2 ∧ (𝑜1, 𝑜2) ∈ rcsnd(𝑘1) }

Fig. 13. JSON-style MRDT implementation

Fig. 13 shows the implementation of the JSON MRDT. It uses a map to maintain the association

between keys and values. Notice that the key is a tuple consisting of the identifier string and an

MRDT type 𝛼 ∈ Ω which denotes the type of the value. The type 𝛼 can be any arbitrary MRDT

with implementation D𝛼 = (Σ𝛼 , 𝜎0𝛼 ,merge𝛼 , query𝛼 , rc𝛼). Different key strings can now map to

different value MRDT types. We also allow overloading: the same key string can be associated

with multiple values of different types. The JSON MRDT allows update operations of the form

set(𝑘, 𝑜) where 𝑜 is an operation of the underlying value MRDT associated with the key 𝑘 . set(𝑘, 𝑜)
simply applies the operation 𝑜 on the value associated with 𝑘 , leaving the other key-value pairs

unchanged. The JSON merge calls the underlying MRDT merge on the values associated with

each key. The query operation of the form get(𝑘, 𝑞) retrieves the value associated with 𝑘 in 𝜎 and

applies the query operation 𝑞 of the underlying data type to it. The conflict resolution policy of

JSON operations (rcjson) depends on the conflict resolution of the value types when two operations

update the same key (i.e. same identifier and value type). Every other pair of JSON operations

commute with each other.

Notably, the proof of RA-linearizability of the JSON MRDT is directly derived from the proofs of

the underlying value MRDT types. If all the MRDTs in Ω are linearizable, then the JSON MRDT

is also linearizable. We have proved all the VCs for the JSON MRDT in F
★
by using the VCs of

the underlying value MRDTs. We can now instantiate Ω with any set of verified MRDTs, thereby

obtaining the verified JSON MRDT for free.

5.2 Buggy MRDT Implementation in [23]
We now present some details of one of the buggy MRDTs, Enable-wins flag, that we discovered

using our framework in the work by Soundarapandian et al. [23]. The state of the enable-wins

flag MRDT consists of a pair: a counter and a flag. The counter tracks the number of the enable

events, while the flag is set to true on an enable event. The desired specification for this flag is

that it should be true when there is at least one enable event not visible to any disable event.

In our framework, we can express this specification as disable
rc−→ enable, linearizing the enable

operation after a concurrent disable. When we attempted to verify this implementation in our

framework, we discovered that one of the VCs,𝜓
𝐿𝑏
2

ind2−1op, was failing. Our investigation revealed that

the implementation violated the specification. The bug appeared in an execution with intermediate

merges.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:24 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

𝑒!: (_, r!, enable)

𝑣"

𝑣! 𝑣#(1,T)

(1,F) 𝑣$

𝑒#: (_, r#	, enable)
(0,F)

(1,F)

(2,T)

𝑒&: (_, r!, disable)

𝑣&

𝑣'

𝑒$: (_, r#, disable)

𝑣(𝑣)

(1,T)

(2,F) (2,T)

LCA=(0,F)

LCA=(1,T)

LC
A=

(0
,F
)

Fig. 14. An enable-wins flag execution

Consider the execution depicted in Fig. 14. When merging

versions 𝑣3 and 𝑣5 (with LCA 𝑣1), since the counter value of 𝑣5
is greater than 𝑣1, the flag in themerged version 𝑣6 is set to true.

However, this contradicts the Enable-wins flag specification,

which states that the flag should be true only when there is an

enable event that is not visible to any disable event. All enable

events in the execution are disabled by subsequent disable

events on their individual replicas, yet the flag is true at 𝑣6.

Notice that the version 𝑣5 is obtained due to an intermediate

merge. We discovered that Soundarapandian et al. [23] had an

implementation bug in the framework. The framework expects

a simulation relation from the MRDT developer, in addition

to the specification and the implementation. This simulation

relation serves as a proof artefact. Soundarapandian et al. [23] checkwhether the developer-provided

simulation relation is valid and the bug occurred during the validity-checking procedure. Due to

this, Soundarapandian et al. [23] admitted the buggy enable-wins flag implementation
5
.

We further note that this buggy implementation does not even satisfy strong eventual consistency.

In Fig. 14, merging 𝑣3 and 𝑣4 results in 𝑣7, where the flag is false. Note that both versions 𝑣6 and

𝑣7 have observed the same set of updates on both replicas, yet they lead to divergent states. This

violates strong eventual consistency. We fixed this implementation by maintaining a counter-flag

pair for every replica, i.e. changing the state to a map from replica-IDs to counter-flag pair.

5.3 Verifying State-Based CRDTs
Although the developement in the paper so far has focused on verifying MRDTs, we note that our

framework can also directly verify state-based CRDTs. The only difference between the two is that

state-based CRDTs do not maintain the LCA, and merge is a binary function. Our VCs (Table 1)

can be directly applied on state-based CRDTs, by simply ignoring the LCA argument for all merges.

Note that while the merge function in state-based CRDTs does not use the LCA, our VCs still use

the LCA to determine whether an event is local or common to both replicas, and appropriately

linearize events taking into account both rc and vis relations. The entire set of VCs retrofitted for

state-based CRDTs can be found in Table 4 of the extended version [25] of the paper. We have also

successfully implemented and verified 7 state-based CRDTs in our framework: Increment-only

counter, PN counter, Observed-Remove set, Two-Phase set, Grows-only set, Grows-only map and

Multi-valued register.

5.4 Limitations
Our framework is currently unable to verify some MRDT implementations such as Queue from

previous works [12, 23]. The Queue MRDT follows at-least-once semantics for dequeues, which

allows concurrent dequeue operations to return the same element from the queue, thereby having

the effect of a single dequeue. Such an implementation is clearly not linearizable as per our definition,

since we cannot omit any event while constructing the linearization. It would be possible to modify

our notion of linearization to also allow events to be omitted; we leave this investigation as part of

future work. Our verification technique is also not complete, but in practice we have been able to

successfully verify all MRDT implementations (except Queue) from earlier works.

5
Buggy implementation can be found in Appendix §A.3 of the extended version [25] of the paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

Automatically Verifying Replication-Aware Linearizability 111:25

6 Related Work and Conclusion
Reconciling concurrent updates is a challenging problem in distributed systems. CRDTs [3, 20, 22]

(and more recently MRDTs) have emerged as a principled approach for building correct and

efficient replicated implementations. Numerous works have focused on specifying and verifying

CRDTs [1, 4, 7, 8, 13, 15–18, 28, 29]. Op-based CRDTs have a considerably different system model

than MRDTs, where every operation instance at a replica is individually sent to other replicas.

Hence, verification efforts targeting them [7, 15–17, 28] are mostly orthogonal to our work.

The system model of state-based CRDTs is similar to MRDTs, as it also requires a merge function

to be implemented for reconciling concurrent updates. However, state-based CRDTs have stricter

requirements for convergence and consistency: CRDT states must form a join-semilattice, updates

must be monotonic, and the merge function must be the lattice join operation. The three algebraic

properties of a semilattice: idempotence, commutativity, and associativity guarantee convergence.

Some CRDT works focus solely on ensuring convergence without addressing functional correct-

ness. For instance, Porre et al. [18] do not fully capture the user intent when verifying state-based

CRDTs. Consider a Counter CRDT with only an increment operation and an incorrect merge func-

tion that ignores its input states and always returns 0. Such an implementation is still convergent.

However, it clearly does not capture the developer intent, which is that the value of the counter

should be equal to the number of increment operations. Functional correctness is as important as

convergence for replicated data types. Our framework addresses both by couching both in terms of

RA-linearizability. We will flag the above implementation as incorrect, since the state after merge

cannot be obtained by linearizing the operations performed on both the replicas.

In the context of CRDTs, Wang et al. [28] proposed the notion of replication-aware linearizability,

which requires all replicas to have a state which can be obtained by linearizing the update operations

visible to the replica according to the sequential specification. However, they do not propose any

automated verification methodology for RA-linearizability. Further, though the main paper Wang

et al. [28] focuses on op-based CRDTs, the extended version Enea et al. [5] does address state-based

CRDTs, but they also require a semi-lattice-based formulation of the CRDT states for proving

RA-linearizability.

A few works [11, 23] have explored the problem of verifying MRDT implementations. Kaki

et al. [11] only focus on verifying convergence, but not functional correctness. Moreover, they

significantly restrict the underlying system model by synchronizing all merge operations, which

as mentioned in the paper itself could lead to longer convergence times. Soundarapandian et al.

[23] verify both convergence and functional correctness, without requiring synchronized merges.

However, their approach is not fully automated, and requires developers to provide a simulation

relation linking concrete MRDT states with an abstract state which is based on a event-based

declarative model. Their specification language is also based on an event-based model and is not

very intuitive or developer-friendly. A few MRDT implementations from [23] were found to be

buggy, and these errors were due to faulty simulation relations.

To conclude, in this work, we present the first, fully-automated verification methodology for

MRDTs. We introduce the notion of replication-aware linearizability for MRDTs, as well as a simple

specification framework based on ordering non-commutative update operations. We identify certain

restrictions on the specification to ensure existence of a consistent linearization. We then leverage

the definition of replication-aware linearizability to propose an automated verification methodology

based on induction on operation sequences. We have successfully applied the technique on a number

of complex MRDTs. While the foundations have been laid in this work, we believe there is a lot of

scope for enriching the technique even further by considering more complex linearization strategies.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

111:26 Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan

7 Data-Availability Statement
The artifact supporting this paper is available on Zenodo [24] as well as in our GitHub repository

[26]. It provides our framework in the F
★
programming language that allows implementing MRDT-

s/CRDTs and automatically proving the verification conditions (VCs) required by our technique.

References
[1] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and Marek Zawirski. 2016.

Specification and Complexity of Collaborative Text Editing. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing (Chicago, Illinois, USA) (PODC ’16). Association for Computing Machinery, New York, NY, USA,

259–268. doi:10.1145/2933057.2933090

[2] Automerge. 2022. Automerge. https://automerge.org/

[3] Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Baquero, Valter Balegas, and Sérgio Duarte.

2012. An optimized conflict-free replicated set. CoRR abs/1210.3368 (2012). arXiv:1210.3368 http://arxiv.org/abs/1210.

3368

[4] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types: specification,

verification, optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA,

271–284. doi:10.1145/2535838.2535848

[5] Constantin Enea, Suha Orhun Mutluergil, Gustavo Petri, and Chao Wang. 2019. Replication-Aware Linearizability.

CoRR abs/1903.06560 (2019). arXiv:1903.06560 http://arxiv.org/abs/1903.06560

[6] Git. 2021. Git: A distributed version control system. https://git-scm.com/

[7] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford. 2017. Verifying strong

eventual consistency in distributed systems. Proc. ACM Program. Lang. 1, OOPSLA, Article 109 (Oct. 2017), 28 pages.
doi:10.1145/3133933

[8] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m strong enough:

reasoning about consistency choices in distributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav
Bodík and Rupak Majumdar (Eds.). ACM, 371–384. doi:10.1145/2837614.2837625

[9] Irmin. 2021. Irmin: A distributed database built on the principles of Git. https://irmin.org/

[10] Json. [n. d.]. Json: A lightweight data-interchange format. https://www.json.org/

[11] Gowtham Kaki, Prasanth Prahladan, and Nicholas V. Lewchenko. 2022. RunTime-assisted convergence in replicated

data types. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 364–378.

doi:10.1145/3519939.3523724

[12] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. 2019. Mergeable replicated data types.

Proc. ACM Program. Lang. 3, OOPSLA, Article 154 (Oct. 2019), 29 pages. doi:10.1145/3360580
[13] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. 2022. Katara: synthesizing CRDTs

with verified lifting. Proc. ACM Program. Lang. 6, OOPSLA2, Article 173 (Oct. 2022), 29 pages. doi:10.1145/3563336
[14] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558–565. doi:10.1145/359545.359563

[15] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. 2020. Verifying replicated

data types with typeclass refinements in Liquid Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 216 (Nov. 2020),
30 pages. doi:10.1145/3428284

[16] Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized Verification of CRDTs. In Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer, 459–477. doi:10.1007/978-

3-030-25543-5_26

[17] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the Safety of Highly-Available Distributed Objects.

In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 544–571. doi:10.1007/978-3-030-44914-8_20

[18] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. 2023. VeriFx: Correct Replicated Data Types for the Masses. In

37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United
States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

9:1–9:45. doi:10.4230/LIPICS.ECOOP.2023.9

[19] Riak. 2021. Resilient NoSQL Databases. https://riak.com/

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

https://doi.org/10.1145/2933057.2933090
https://automerge.org/
https://arxiv.org/abs/1210.3368
http://arxiv.org/abs/1210.3368
http://arxiv.org/abs/1210.3368
https://doi.org/10.1145/2535838.2535848
https://arxiv.org/abs/1903.06560
http://arxiv.org/abs/1903.06560
https://git-scm.com/
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625
https://irmin.org/
https://www.json.org/
https://doi.org/10.1145/3519939.3523724
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3563336
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3428284
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.4230/LIPICS.ECOOP.2023.9
https://riak.com/

Automatically Verifying Replication-Aware Linearizability 111:27

[20] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated abstract data types: Building blocks

for collaborative applications. J. Parallel Distrib. Comput. 71, 3 (March 2011), 354–368. doi:10.1016/j.jpdc.2010.12.006

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A comprehensive study of Convergent and
Commutative Replicated Data Types. Research Report RR-7506. Inria – Centre Paris-Rocquencourt ; INRIA. 50 pages.

https://inria.hal.science/inria-00555588

[22] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In

Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6976), Xavier Défago, Franck Petit, and Vincent

Villain (Eds.). Springer, 386–400. doi:10.1007/978-3-642-24550-3_29

[23] Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan. 2022. Certified Mergeable

Replicated Data Types. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,

USA, 332–347. doi:10.1145/3519939.3523735

[24] Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan. 2025. Automatically Verifying

Replication-aware Linearizability (Artifact). https://doi.org/10.5281/zenodo.14922118.

[25] Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan. 2025. Automatically Verifying

Replication-aware Linearizability (Extended version). arXiv:2502.19967 [cs.PL] https://arxiv.org/abs/2502.19967

[26] Vimala Soundarapandian, Kartik Nagar, Aseem Rastogi, and KC Sivaramakrishnan. 2025. Automatically Verifying

Replication-aware Linearizability (GitHub Repository). https://github.com/prismlab/certified-mrdts.

[27] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan

Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-

Béguelin. 2016. Dependent types and multi-monadic effects in F*. SIGPLAN Not. 51, 1 (Jan. 2016), 256–270. doi:10.
1145/2914770.2837655

[28] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. 2019. Replication-aware linearizability. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 980–993. doi:10.1145/3314221.3314617

[29] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. Formal Specification and Verification of CRDTs. In

Formal Techniques for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1 International Conference, FORTE
2014, Held as Part of the 9th International Federated Conference on Distributed Computing Techniques, DisCoTec 2014,
Berlin, Germany, June 3-5, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8461), Erika Ábrahám and Catuscia

Palamidessi (Eds.). Springer, 33–48. doi:10.1007/978-3-662-43613-4_3

Received 2024-10-15; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 111. Publication date: April 2025.

https://doi.org/10.1016/j.jpdc.2010.12.006
https://inria.hal.science/inria-00555588
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/3519939.3523735
https://doi.org/10.5281/zenodo.14922118
https://arxiv.org/abs/2502.19967
https://arxiv.org/abs/2502.19967
https://github.com/prismlab/certified-mrdts
https://doi.org/10.1145/2914770.2837655
https://doi.org/10.1145/2914770.2837655
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1007/978-3-662-43613-4_3

	Abstract
	1 Introduction
	2 Overview
	2.1 System Model
	2.2 RA-Linearizability for MRDTs
	2.3 Verification using Induction on Event Sequences
	2.4 Intermediate Merges

	3 Problem Definition
	3.1 Semantics of the Replicated Data Store
	3.2 Replication-Aware Linearizability for MRDTs
	3.3 Bottom-Up Linearization

	4 Verifying RA-Linearizability of MRDTs
	4.1 Linearizing Merge Operations
	4.2 Automated Verification

	5 Experimental Evaluation
	5.1 Case Study: A Verified Polymorphic JSON-Style MRDT
	5.2 Buggy MRDT Implementation in Vimala
	5.3 Verifying State-Based CRDTs
	5.4 Limitations

	6 Related Work and Conclusion
	7 Data-Availability Statement
	References

