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Abstract

Replicated data types (RDTs) are data structures that per-
mit concurrent modification of multiple, potentially geo-
distributed, replicas without coordination between them.
RDTs are designed in such a way that conflicting opera-
tions are eventually deterministically reconciled ensuring
convergence. Constructing correct RDTs remains a difficult
endeavour due to the complexity of reasoning about inde-
pendently evolving states of the replicas. With the focus on
the correctness of RDTs (and rightly so), existing approaches
to RDTs are less efficient compared to their sequential coun-
terparts in terms of the time and space complexity of local
operations. This is unfortunate since RDTs are often used in
a local-first setting where the local operations far outweigh
remote communication.

This paper presents PEEPUL, a pragmatic approach to build-
ing and verifying efficient RDTs. To make reasoning about
correctness easier, we cast RDTs in the mould of the dis-
tributed version control system, and equip it with a three-
way merge function for reconciling conflicting versions. Fur-
ther, we go beyond just verifying convergence, and provide
a methodology to verify arbitrarily complex specifications.
We develop a replication-aware simulation relation to relate
RDT specifications to their efficient purely functional im-
plementations. We implement PEEPUL as an F* library that
discharges proof obligations to an SMT solver. The verified
efficient RDTs are extracted as OCaml code and used in Irmin,
a distributed database built on the principles of Git.

CCS Concepts: + Computing methodologies — Dis-
tributed programming languages; « Software and its
engineering — Formal software verification; « Com-
puter systems organization — Availability.
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1 Introduction

Modern cloud-based software services often replicate data
across multiple geographically distributed locations to tol-
erate partial failures of servers and to minimise latency by
bringing data closer to the user. While services like Google
Docs allow several users to concurrently edit the document,
the conflicts are resolved with the help of a centralised server.
On the other hand, services like Github and Gitlab, built on
the decentralised version control system Git, avoid the need
for a centralised server and permit the different replicas
(forks) to synchronize with each other in a peer-to-peer fash-
ion. By avoiding centralised server, local-first software [20]
such as Git bring in additional benefits of security, privacy
and user ownership of data.

While Git is designed for line-based editing of text files
and requires manual intervention in the presence of merge
conflicts, RDTs generalise this concept to arbitrary general-
purpose data structures such as lists and hash maps, and
ensure convergence without manual intervention. Conver-
gent Replicated Data Types (CRDTs) [32], which arose from
distributed systems research, are complete reimplementa-
tions of sequential counterparts aimed at providing conver-
gence without user intervention, and have been deployed in
distributed databases such as AntidoteDB [31] and Riak [29].

To resolve conflicting updates, CRDTs generally need to
carry their causal contexts as metadata [35]. Managing this
causal context is often expensive and complicated. For exam-
ple, consider the observed-removed set CRDT (OR-set) [32],
where, in the case of concurrent addition and removal, the
addition wins. A typical OR-set implementation uses two
grow-only sets, one for elements added to the set A and
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another for elements that are removed R. An element e is
removed from the OR-set by adding it to the set R, and thus
creating a tombstone for e. The set membership is given by
the difference between the two: A — R, and two concurrent
versions can be merged by unioning the individual A and
R sets. Observe that the tombstones for removed elements
cannot be garbage collected as that would require all the repli-
cas to remove the element at the same time, which requires
global coordination. This leads to an inefficient implemen-
tation. Several techniques have been proposed to minimise
this metadata overhead [1, 35], but the fundamental problem
remains.

1.1 Mergeable Replicated Data Types

As an alternative to CRDTs, mergeable replicated data types
(MRDTs) [18] have been proposed, which extend the idea
of distributed version control for arbitrary data types. The
causal context necessary for resolving the conflicts is main-
tained by the MRDT middleware. MRDTs allow ordinary
purely functional data structures [27] to be promoted to
RDTs by equipping them with a three-way merge function
that describes the conflict resolution policy. When conflict-
ing updates need to be reconciled, the causal history is used
to determine the lowest common ancestor (Ica) for use in the
three-way merge function along with the conflicting states.
The MRDT middleware garbage collects the causal histories
when appropriate [8], and is no longer a concern for the RDT
library developer. This branch-consistent view of replication
not only makes it easier to develop individual data types but
also leads to a natural transactional semantics [6, 9].

An efficient OR-set MRDT that avoids tombstones can be
implemented as follows. We represent the OR-set as a list
of pairs of the element and a unique id, which is generated
per operation. The list may have duplicate elements with
different ids. Adding an element appends the element and
the id pair to the head of the list (O(1) operation). Removing
an element removes all the occurrences of the element from
the list (O(n) operation). Given two concurrent versions of
the OR-set a and b, and their lowest common ancestor [, the
merge is implemented as (a - 1) @ (b-1) @ (INanb),
where @ stands for list append. Intuitively, we append the
lists formed by newly added elements in a and b with the
list of elements that are present in all three versions. The
unique id associated with the element ensures that in the
presence of concurrent addition and removal of the same
element, the newly added element with the fresh id, which
has not been seen by the concurrent remove, will remain in
the merged result. The merge operation can be implemented
in O(n log n) time by sorting the individual lists. In §2.1.2, we
show how to make this implementation even more efficient
by removing the duplicate elements with different ids from
the OR-set.
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1.2 Efficiency and Correctness

The key question is how do we guarantee that such effi-
cient implementations still preserve the intent of the OR-Set
in a sound manner? Optimisations such as removing du-
plicate elements are notoriously difficult to get right since
the replica states evolve independently. Moreover, individ-
ually correct RDTs may fail to preserve convergence when
putting together [19]. Kaki et al. [18] (Quark) opine that
merge functions should not be written by hand, but auto-
matically derived from a relational representation of the
sequential data type. Their idea is to capture the key proper-
ties of the algebraic data type as relations over its constituent
elements. Then, the merge function devolves to a merge of
these relations (sets) expressed as MRDTs. During the merge,
the concrete implementations are reified to their relational
representations expressed in terms of sets, merged using set
semantics, and the final concrete state is reconstructed from
the relational set representation.

Unfortunately, mapping complex data types to sets do not
lead to efficient implementations. For example, a queue in
Kaki et al. is represented by two characteristic relations -
a unary relation for membership and a binary relation for
ordering. For a queue with n elements, the ordering relation
contains n? elements. Reifying the queue to its characteristic
relations and back to its concrete representation for every
merge is inefficient and impractical. This technique does not
scale as the structure of the data type gets richer (Red-Black
tree, JSON, file systems, etc.). The more complex the data
type, the more complex the characteristic relations become,
having an impact on the cost of the merge. Further Kaki
et al. do not consider the functional correctness of MRDT
implementations, but instead only focuses on the correctness
of convergence.

1.3 Certified MRDTs

Precisely specifying and verifying the functional correctness
of efficient RDT implementations is not straightforward due
to the complexity of handling conflicts between divergent
versions. This results in a huge gap between the high-level
specifications and efficient implementations. In this work,
we propose to bridge this gap by using Burckhardt et al’s
replication-aware simulation relation [5]. However, Burck-
hardt et al’s simulation is only applicable to CRDTs and
cannot be directly extended to MRDTs which assume a dif-
ferent system model.

We first propose a system model and operational seman-
tics for MRDTs, and precisely define the problem of con-
vergence and functional correctness for MRDTs. We also
introduce a new notion of convergence modulo observable be-
haviour, which allows replicas to converge to different states,
as long as their observable behaviour to clients remains the
same. This notion allows us to build and verify even more
efficient MRDTs.
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Further, we go beyond Burckhardt et al’s work [5] in the
use of simulation relations by mechanizing and automat-
ing (to an extent) the complete verification process. We in-
stantiate our technique as an F* library named PEEpUL and
mechanically verify the implementation of several efficient
purely functional MRDT implementations including an ef-
ficient replicated two-list queue. Our replicated queue sup-
ports constant time push and pop operations, a linear time
merge operation, and does not have any tombstones. To the
best of our knowledge, ours is the first formal declarative
specification of a distributed queue (§6), and its mechanised
proof of correctness.

Being an SMT-solver-aided programming language, F*
allows us to discharge many of the proof obligations auto-
matically through the SMT solver. Even though our approach
requires the simulation relation as input, we also observe
that in most cases, the simulation relation directly follows
from the declarative specification.

Our technique also supports composition, and we demon-
strate how parametric polymorphism allows composition
of not just the MRDT implementations but also their proofs
of correctness. From our MRDT implementations in F*, we
extract verified OCaml implementations and execute them
on top of Irmin, a Git-like distributed database. Our experi-
mental evaluation shows that our efficient MRDT implemen-
tations scale significantly better than other RDT implemen-
tations.

To summarize, we make the following contributions:

e We propose a store semantics for MRDT implementa-
tions and formally define the convergence and func-
tional correctness problem for MRDTs, including a new
notion of convergence modulo observable behaviour.

e We propose a technique to verify both convergence
and functional correctness of MRDTs by adapting the
notion of replication-aware simulation relation [5] to
the MRDT setting.

e We mechanize and automate the complete verifica-
tion process using F*, and apply our technique to sev-
eral complex MRDT implementations, including a new
time and space-efficient OR-set and a queue MRDT.

e We provide experimental results which demonstrate
that our efficient MRDT implementations perform
much better as compared with previous implemen-
tations, and also show the tradeoff between proof au-
tomation and verification time in F*.

The rest of the paper is organized as follows. §2 presents
the implementation model and the declarative specification
framework for MRDTs. §3 presents the formal semantics
of the git-like replicated store on which MRDT implemen-
tations run. In §4, we present a new verification strategy
for MRDTs based on the notion of replication-aware simu-
lation. §5 highlights the compositionality of our technique
in verifying complex verified MRDTs by reusing the proofs
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of simpler ones. §6 presents the formally verified efficient
replicated queue. §7 presents the experimental evaluation
and §8 presents the related work.

2 Implementing and Specifying MRDTs

In this section, we present the formal model for describing
MRDT implementations and their specifications.

2.1 Implementation

Our model of replicated datastore is similar to a distributed
version control system like Git [11], with replication centred
around versioned states in branches and explicit merges. A
typical replicated datastore will have a key-value interface
with the capability to store arbitrary objects as values [16,
29]. Since our goal is to verify correct implementations of
individual replicated objects, our formalism models a store
with a single object.

A replicated datastore consists of an object which is
replicated across multiple branches by, by, ... € branchID.
Clients interact with the store by performing operations on
the object at a specified branch, modifying its local state. The
different branches may concurrently update their local states
and progress independently. We also allow the dynamic cre-
ation of a new branch by copying the state of an existing
branch. A branch at any time can get updates from any other
branch by performing a merge with that branch, updating
its local copy to reflect the merge. Conflicts might arise when
the same object is modified in two or more branches, and
these are resolved in a datatype-specific way.

An object has a type ¢ € Type, whose type signature
(Opr, Val;) determines the set of supported operations Op,
and the set of their return values Val;. A special value L €
Val; is used for operations that return no value.

Definition 2.1. A mergeable replicated data type
(MRDT) implementation for a data type 7 is a tuple
D, = (2, 0y, do, merge) where:
e X is the set of all possible states at a branch,
e 0y € X is the initial state,
e do : Op; X X X Timestamp — ¥ X Val, implements
every data type operation,
e merge : X X X X X — ¥ implements the three-way
merge strategy.

An MRDT implementation D, provides two methods: do
and merge that the datastore will invoke appropriately. We
assume that these methods execute atomically. A client re-
quest to perform an operation o € Op; at a branch triggers
the call do(o, o,t). This takes the current state ¢ € X of
the object at the branch where the request is issued and a
timestamp ¢ € Timestamp provided by the datastore, and
produces the updated object state and the return value of
the operation.

The datastore guarantees that the timestamps are unique
across all of the branches, and for any two operations a and b,
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with timestamps ¢, and tp, if a happens-before b, then ¢, < .
The data type implementation can use the timestamp pro-
vided to implement the conflict-resolution strategy but is also
free to ignore it. For simplicity of presentation, we assume
that the timestamps are positive integers, Timestamp = N.
The datastore may choose to implement the timestamp us-
ing Lamport clocks [21], along with the unique branch id to
provide uniqueness of timestamps.

A branch a may get updates from another branch b by
performing a merge, which modifies the state of the object in
branch a. In this case, the datastore will invoke merge(ojcq,
04, 0p) Where o, and o}, are the current states of branch a
and b respectively, and oy, is the lowest common ancestor
(LCA) of the two branches. The LCA of the two branches is
the most recent state from which the two branches diverged.
We assume that the execution of the store will begin with a
single branch, from which new branches may be dynamically
created. Hence, for any two branches, the LCA will always
exist.

2.1.1 OR-set. We illustrate MRDT implementations using
the example of an OR-set. Recall from §1 that the OR-set
favours the addition in the case where there is a concur-
rent addition and removal of the same element on different
branches.

3 =P(NxN)

oo = {}

do(rd,o, ) = (0,{a]| (a,_) € 0})
do(add(a),o,t) = (c U{(a,t)}, 1)
do(remove(a),o,t) = ({e € o | fst(e) # a}, L)
merge(o'lcw Oa, Op) =

(G1ca N 0o N 0p) U (04 = O1ca) U (0 — Ticq)

AN U A

Figure 1. OR-set data type implementation

Let us assume that the elements in the OR-set are natural
numbers. Its type signature would be (Oporser, Valorser) =
({add(a), remove(a) | a € N} U {rd}, {P(N), L}). Figure 1
shows an MRDT implementation of the OR-set data type.
The state of the object is a set of pairs of the element and the
timestamp. The operations and the merge remain the same
as described in §1.1. Note that we use fst and snd functions
to obtain the first and second elements respectively from a
tuple. This implementation may have duplicate entries of
the same element with different timestamps.

2.1.2 Space-efficient OR-set (OR-set-space). One pos-
sibility to make this OR-set implementation more space-
efficient is by removing the duplicate entries from the set.
A duplicate element will appear in the set if the client calls
add(e) for an element e which is already in the set. Can we
reimplement add such that we leave the set as is if the set
already has e? Unfortunately, this breaks the intent of the
OR-set. In particular, if there were a concurrent removal of
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e on a different branch, then e will be removed when the
branches are merged. The key insight is that the effect of the
duplicate add has to be recorded to not lose additions.

1. 2= P(N X N)

2 09 ={}

3: do(rd,o,_) = (0,{a| (a,_) € o})

4: do(add(a),o,t) =if (a,_) € o then (c[a — t], L)

5: else (c U{(a,t)}, 1)

6: do(remove(a),o,t) = ({e € o | fst(e) # a}, L)

7: merge(Oicq, O, Op) =

8: {ele€ (orcanaaNop)} U

9: {e | e€ (04— 01ca) A (fst(e),_) & (0b — Tl1ca) } U
10: {ele€ (o —01ca) N (fst(e), ) & (0a = O1ea) } U
11:  {e|e€ (04— 05ca) A

12: (Vt. (fst(e), t) € (op — 01cq) = snd(e) > 1)} U
132 {e|e€(op—0pa) A

14: (Vt. (fst(e),t) € (04 — 01cq) = snd(e) > t)}

Figure 2. Space-efficient OR-set (OR-set-space) implemen-
tation

Figure 2 provides the implementation of the space-efficient
OR-set. The read and the remove operations remain the same
as the earlier implementation. If the element being added is
not already present in the set, then the element is added to
the set along with the timestamp. Otherwise, the timestamp
of the existing entry is updated to the new timestamp. Given
that our timestamps are unique, the new operation’s times-
tamp will be distinct from the old timestamp. This prevents
a concurrent remove from deleting this new addition.

Another possibility of duplicates is that the same element
may concurrently be added on two different branches. The
implementation of the merge function now has to take care
of this possibility and not include duplicates. An element in
the merged set was either in the LCA and the two concurrent
states (line 8), or was only added in one of the branches (lines
9 and 10), or was added in both the branches in which case
we pick the entry with the larger timestamp (lines 11-14).

2.2 Specification

Given that there are several candidates for implementing
an MRDT, we need a way to specify the behaviour of an
MRDT so that we may ask the question of whether the given
implementation satisfies the specification. We now present a
declarative framework for specifying MRDTs which closely
follows the framework presented by Burckhardt et al. [5].
We define our specifications on an abstract state, which cap-
ture the state of the distributed store. It consists of events
in execution of the distributed store, along with a visibility
relation among them.

Definition 2.2. An abstract state for a data type r = (Op;,
Val,) is a tuple I = (E, oper, rval, time, vis), where
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E C Event is a set of events,

e oper : E — Op, associates the data type operation
with each event,

rval : E — Val, associates the return value with each
event,

time : E — Timestamp associates the timestamp at
which an event was performed,

vis C EXE is an irreflexive, asymmetric and transitive
visibility relation.

Given e —» f, e is said to causally precede f. In our
setting, it may be the case that the operation of f follows
the operation of e on the same branch, or the operations
of f and e were performed on different branches by and b,
but before the operation of f, the branch b, on which the
operation of e was performed was merged info by.

We specify a data type 7 by a function ¥, which deter-
mines the return value of an operation o based on prior
operations applied to that object. ¥; also takes as a param-
eter the abstract state that is visible to the operation. Note
that the abstract state contains all the information that is
necessary to specify the return value of o.

Definition 2.3. A replicated data type specification for a
type 7 is a function ¥ that given an operation o € Op, and an
abstract state I for 7, specifies a return value ¥;(o0,I) € Val,.

OR-set specification. As an illustration of the specification
language, let us consider the OR-set. For the OR-set, both add
and remove operations always return L. We can formally
specify the ‘add-wins’ conflict resolution strategy as follows:

Forset (rd, (E, oper, rval, time, vis)) = {a | Je € E. oper(e)
=add(a) A =(3f € E. oper(f) = remove(a) A e o, N}

In words, the read operation returns all those elements for
which there exists an add operation of the element which is
not visible to a remove operation of the same element. Hence,
if an add and remove operation are concurrent, then the add
would win. Notice that the specification, while precisely
encoding the required semantics, is far removed from the
MRDT implementations of the OR-set that we saw earlier.
Providing a framework for bridging this gap in an automated
and mechanized manner is one of the principal contributions
of this work.

3 Store Semantics and MRDT Correctness

In this section, we formally define the semantics of a repli-
cated datastore S consisting of a single object with data type
implementation ;. Note that the store semantics can be
easily generalized to multiple objects (with possibly different
data types) since the store treats each object independently.
We then define formally what it means for data type imple-
mentations to satisfy their specifications. We also introduce
a novel notion of convergence across all the branches called
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convergence modulo observable behaviour that differs from
the standard notions of eventual consistency. This property
allows us to have more efficient but verified merges.

The semantics of the store is a set of all its executions. In
order to easily relate the specifications which are in terms of
abstract states to the implementation, we maintain both the
concrete state (as given by the data type implementation)
and the abstract state at every branch in our store semantics.
Formally, the semantics of the store are parametrised by a
data type 7 and its implementation D; = (Z, oy, do, merge).
They are represented by a labelled transition system Mp, =
(@, —). Assume that B is the set of all possible branches.
Each state in @ is a tuple (¢, §, t) where,

e ¢ : B — X is a partial function that maps branches to
their concrete states,

e §: B — [is a partial function that maps branches to
their abstract states,

e t € Timestamp maintains the current timestamp to be
supplied to operations.

The initial state of the labelled transition system consists
of only one branch b, and is represented by C, = (¢,,6,,0)
where ¢, = [by > 0p] and 6, = [by — ].

Here, 0y is the initial state as given by the implementation
D,, while I is the empty abstract state, whose event set
is empty. In order to describe the transition rules, we first
introduce abstract operations do®, merge* and Ica* which
perform a data type operation, merge operation and find the
lowest common ancestor respectively on abstract states:

do*(I,e,op,a,t)
= (I.E VU {e}, Loper[e — op],L.rval[e — a],
Ltime[e — t],IvisU {(f,e) | f € L.E)})

merge* (I, Ip) = I, where
In.E=1,EUIL.E
prop € {oper, rual, time}
I,(e) ifeel,.E
Iy(e) ife€l,.E
I,.vis = I,.0is U Ip.vis

In.prop(e) =

lea* (I, Ip) = (Io.E N Ip.E, I .oper |g,,
Ip.rval |, Ip.time |g;, Io.0is |g,)

In terms of abstract states, do* simply adds the new event
e to the set of events, appropriately setting the various event
properties and visibility relation. merge® of two abstract
states simply takes a union of the events in the two states.
Similarly, the lca® of two abstract states would be the inter-
section of events in the two states.

Figure 3 describes the transition function —. The first rule
describes the creation of a new branch b, from the current
branch b;. Both the concrete and abstract states of the new
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by € dom(¢) by ¢ dom(¢)
¢ =lbr > ¢(b1)] & =8[by > 5(b)]
(¢’ 5’ t) CREATEBRANCH(bl,bz) (¢/’5,’t)

bedom(¢p)  D.do(o,¢(b),t)=(c,a)
e : {oper = o, time = t,rval = a}
do*(8(b),e,0,a,t) = I
§ =¢lbo] 8 =68br1I]

(¢ s t) DO(o,b)

(¢,8,t+1)

by € dom(¢) b, € dom(¢)

Ica € dom(¢) S(Ica) = lca® (5(by), 5(by))
Drmerge(d)(lca)’ ¢(b1)’ ¢(b2)) = Omerge
merge#(a(bl)’ 3(b2)) = Imerge
¢ = $lb1 = Omergel 8 = 8[b1 = Inerge]

MERGE (by,b3) ;o
(¢,6,t) ———— (¢,5,1)

Figure 3. Semantics of the replicated datastore

branch will be the same as that of b;. The second rule de-
scribes a branch b performing an operation o which triggers
a call to the do method of the corresponding data type imple-
mentation. The return value is recorded using the function
roal. A similar update is also performed on the abstract state
of branch b using do®. The third rule describes the merging
of branch b, into branch b; which triggers a call to the merge
method of the data type implementation. We assume that
the store provides another branch Ica whose abstract and
concrete states correspond to the lowest common ancestor
of the two branches.

Definition 3.1. An execution y of Mp, is a finite but un-
bounded sequence of transitions starting from the initial
state C, .

¥ =(4,6,0) 5 (¢80 1) = ... D (¢S tn) (1)

Definition 3.2. An execution y satisfies the specification

¥, for the data type 7, written as y E ¥, if for every DO
DO(o,b
transition (¢;, d;, t;) ——ﬁ—)—> (¢i+1, 0141, ti+1) in y, such that

D,.do(o,¢;(b),t;) = (0,a), then a = F,(0,5;(b)).

That is for every operation o, the return value a computed
by the implementation on the concrete state must be equal to
the return value of the specification function ¥, computed on
the abstract state. Next, we define the notion of convergence
(i.e. strong eventual consistency) in our setting:

Definition 3.3. An execution y (as in equation 1) is con-
vergent,
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if for every state (¢;, §;) and

Vbl, bz (S dom(¢,)5,(b1) = (Sl(bz) - ¢l(b1) = ¢l(b2)

That is, two branches with the same abstract states—which
corresponds to having seen the same set of events—must also
have the same concrete state. We note that even though
eventual consistency requires two branches to converge to
the same state, from the point of view of a client that uses
the data store, this state is never directly visible. That is, a
client only notices the operations and their return values.
Based on this insight, we define the notion of observational
equivalence between states, and a new notion of conver-
gence modulo observable behaviour that requires branches
to converge to observationally equivalent states.

Definition 3.4. Two states o1 and o, are observationally
equivalent, written as oy ~ oy, if the return value of every
operation supported by the data type applied on the two
states is the same. Formally,

Vo1, 0, € 2. Yo € Op;. Vty, t, € Timestamp. da € Val,.
D:.do(o,01,t1) = (L, a) A Dr.do(o,02,t2) = (L a)
—— 01 ~ 03

Definition 3.5. An execution y (as in equation 1) is conver-
gent modulo observable behavior, if for every state (¢;, 5;)
and

Vb1, by € dom(¢;).5i(b1) = 6i(b2) = ¢i(b1) ~ $i(b2)
()
The idea behind convergence modulo observable be-
haviour is that the state of the object at different replicas
may not converge to the same (structurally equal) represen-
tation, but the object has the same observable behaviour in
terms of its operations. For example, in the OR-set imple-
mentation, if the set is implemented internally as a binary
search tree (BST), then branches can independently decide
to perform balancing operations on the BST to improve the
complexity of the subsequent read operations. This would
mean that the actual state of the BSTs at different branches
may eventually not be structurally equal, but they would
still contain the same set of elements, resulting in the same
observable behaviour. Note that the standard notion of even-
tual consistency implies convergence modulo observable
behaviour.

Definition 3.6. A data type implementation D; is correct,
if every execution y of Mp_ satisfies the specification 7
and is convergent modulo observable behavior.

4 Proving Data Type Implementations
Correct

In the previous section, we have defined what it means for an
MRDT implementation to be correct concerning the specifi-
cation. In this section, we show how to prove the correctness
of an MRDT implementation with the help of replication-
aware simulation relations.
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4.1 Replication-Aware Simulation

For proving the correctness of a data type implementation
D., we use replication-aware simulation relations Rg;p,.
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple sufficient conditions which
can easily be discharged by tools such as F*. Finally, we apply
our proof technique to a wide range of MRDTs, with substan-
tially complex specifications (e.g. queue MRDT described in
§6).

The Rginm, relation essentially associates the concrete state
of the object at a branch b with the abstract state at the
branch. This abstract state would consist of all events which
were applied to the branch. Verifying the correctness of an
MRDT through simulation relations involves two steps: (i)
first, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type specification and is sufficient for convergence. The
first step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in figures 4 and 5, respectively.

# /
ILI

Rsim Rsim

’

(o o

D, .do

Figure 4. Verifying operations

Oq Ilca Op
RSiT’L I J RSIWL IRS'LTYT.
Ia Tlca Ib

l

D,.merge(0iea, 0, 0b)

[Rszm
merge# (1o, In)

Figure 5. Verifying 3-way merge

Figure 4 considers the application of a data type operation
(through the do function) at a branch. Assuming that the
simulation relation R;;,, holds between the abstract state
I and the concrete state o at the branch, we would have
to show that R, continues to hold after the application
of the operation through the concrete do function of the
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implementation and the abstract do” function on the abstract
state.

Figure 5 considers the application of a merge operation
between branches a and b. In this case, assuming Rs;,,, be-
tween the abstract and concrete states at the two branches
and for the LCA, we would then show that R;;,, continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state 0.4, we also assume that
Rsim holds between the concrete and abstract LCA states.

These conditions consider the effect of concrete and ab-
stract operations locally and thus enable automated veri-
fication. To discharge these conditions, we also consider
two store properties, ¥;s and ¥, that hold across all ex-
ecutions (shown in Table 1). ¥;s pertains to the nature of
the timestamps associated with each operation, while ¥,
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role in
discharging the conditions required for the validity of the
simulation relation.

In particular, ¥;5(I) asserts that in the abstract state I,
causally related events have increasing timestamps, and no
two events have the same timestamp. ¥, (I}, I, I) will be
instantiated with the LCA of two abstract states I, and I
(i.e. I; = lca*(I,, Ip)), and asserts that the visibility relation
between events which are present in both I, and I, (and
hence also in I;) will be the same in all three abstract states.
These properties follow naturally from the definition of LCA
and are also maintained by the store semantics.

Table 2 shows the conditions required for proving the
validity of the simulation relation Ry;,. In particular, ®4, and
@ perge exactly encode the scenarios depicted in the figures 4
and 5. Note that for &4,, we assume ¥y, for the input abstract
state on which the operation will be performed. Similarly, for
@ perge, We assume ¥y for all events in the merged abstract
state (thus ensuring ¥ also holds for events in the original
branches) and ¥, for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
specification as well as guarantee convergence. For this, we
define two more conditions ®spec and P, (also in table 2).
®;pec says that if abstract state I and concrete state o are re-
lated by Rs;im, then the return value of operation o performed
on o should match the value of the specification function 7
on the abstract state. Since the Rg;,, relation is maintained
at every transition, if ®spe. is valid, then the implementation
will satisfy the specification. Finally, for convergence, we
require that if two concrete states are related to the same ab-
stract state, then they should be observationally equivalent.
This corresponds to our proposed notion of convergence
modulo observable behaviour.
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Table 1. Store properties

\Ilts (I)

T
Ve,e! € LE. e — ¢/ = Ltime(e) < I.time(e’)
AVe,e’ € I.LE. I.time(e) = I.time(e’) > e=¢’

\Plca (Il= Ia: Ib)

LE=1,ENI.E

A Ljvis = Iy.0is, g = Ip.vis|;, g

Table 2. Sufficient conditions for showing validity of simulation relation

Do (Rsim)

VI, 0,e,0p,a,t. Rsim(I, o) Ado*(I,e,op,at) =1
A Dy .do(op,o,t) = (0,a) A V(1) = Reim(I,0)

q)merge (Rsim)

Vg, Iy, 0as Ob, Olcq- Rsim (Ia’ Ua) A Rsim(Ib, Ub)
A Rsim(lca#(la, Ib), Glca) A \Ilts(merge#(laa Ib)) A \I]lca(lca#(la, Ib)’ Iaa Ib)
= Rim(merge’ (I, Ip), Dr.merge(cicq, 04, 0p))

CI)spec(ﬂsim)

VI, 0,e,0p,a,t. Rsim(I,0) A Dr.do(op,o,t) = (c,a)
ANYis(I) = a=F(op,])

(I)con (Rsim)

VI, 04, 0p. Rsim(Ia O_a) A Rsim(Is Ub) = 04 ~ 0p

Definition 4.1. Given a MRDT implementation D, of data
type 7, a replication-aware simulation relation R, C

I x 3 is valid if @, (Rsim) A (I)merge (Rsim) A (Dspec(Rsim) A
chon (Rsim)'

Theorem 4.2 (Soundness). Given a MRDT implementation
D, of data type 7, if there exists a valid replication-aware
simulation Rg;m, then the data type implementation D, is
correct .

4.2 Verifying OR-sets Using Simulation Relations

Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the specification Foyse; in
§2.2.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

Rsim([,0) & (VYa,t. (a,t) €0 =

(Je € LE AL oper(e) = add(a) A Ltime(e) =t A 3)

—(3f € LE A 1. oper(f) = remove(a) A e ﬂ) )

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set specification and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.

!The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.
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Space-efficient OR-set. Following is a candidate valid
simulation relation for the space-efficient OR-set (OR-set-
space) from §2.1.2:

Rsim ((E, oper, rval, time, vis), o)

(Va,t. (a,t) € 0 = (Je € E. oper(e) = add(a) A time(e) = t)

A =(3r € E. oper(r) = remove(a) A e 2is, r)

A(Ve' € E.(oper(e’) = add(a) A =(3r € E.oper(r) = remove(a)

AN 2B ) = > time(e))) A
(Ve € E.Va € N. oper(e) = add(a)

A =(3r € E. oper(r) = remove(a) A e g r) = (a,_) €0)

©

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs

A key benefit of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.
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5.1 IRC-Style Chat

To illustrate the benefits of compositionality, we consider a
decentralised IRC-like chat application with multiple chan-
nels. Each channel maintains the list of messages in reverse
chronological order so that the most recent message may be
displayed first. For simplicity, we assume that the channels
are append-only; while new messages can be posted to the
channels, old messages cannot be deleted. We also assume
that while new channels may be created, existing channels
may not be deleted.

Fenar (rd(ch), (E, oper, rval, time, vis)) = log where
1 (Vt,m. (t,m) € log &< Je € E.
oper(e) = send(ch,m) A time(e) =t) A
2. (Vty, my, tp, my. ord (t1, my) (t2, mz) log
&= ey, e; € E. oper(e;) = send(ch,my) A
time(e1) = t; A oper(ez) = send(ch, my) A
time(es) =t Aty > tp)

Figure 6. The specification of IRC-style chat.

The chat application supports sending a message to a
channel and reading messages from a channel: Op.par =
{send(ch,m) | ch € string A m € string)} U {rd(ch)
| ch € string}. The specification of this chat application is
given in Figure 6. For this we define a predicate ord such
that ord(t;, m1) (t;, mz) l holds iff t; # t; and (#;, m;) occurs
before (t;, my) in list I. The specification essentially says the
log of messages contains all (and only those) messages that
were sent, and messages are ordered in reverse chronological
order.

Rather than implement this chat application from scratch,
we may quite reasonably build it using existing MRDTs. We
may use an MRDT map to store the association between
the channel names and the list of messages. Given that the
conversations take place in a decentralized manner, the list
of messages in each channel should also be mergeable. For
this purpose, we use a mergeable log, an MRDT list that
totally orders the messages based on the message timestamp,
to store the messages in each of the channels. As mentioned
earlier, for simplicity we will assume that the map and the
log are grow-only.

5.2 Mergeable Log

The mergeable log MRDT supports operations to append
messages to the log and to read the log: Opjoy = {rd} U
{append(m) | m € string}. The log maintains messages in
reverse chronological order. Figure 7 presents the specifica-
tion, implementation and simulation relation of the merge-
able log. The sort function sorts the list in reverse chrono-
logical order based on the timestamps associated with the
messages.
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Flog(rd, (E, oper, rval, time, vis)) = Ist where
1 (Vt,m. (t,m) € lst &
de € E. oper(e) = append(m) A time(e) =t) A
2: (th, my, tp, My. ord (tl, ml) (tz, mg) Ist
ey, e2 € E. oper(e;) = append(m;) A time(e;) =t
A oper(e;) = append(mz) A time(ez) =t2 A t1 > t3)

Diog = (2, 00, do, mergejoy) where
Zlog = P(N X string)
oo = {}
do(append(m),o,t) = ((t,m) :: 0, 1)
do(rd, o,t) = (0,0)
mergelog(o'lcas Oas Op) =
sort((0q = 01ca) @ (0p = G1ca)) @ Olca

EAN i A

Rsim—log(I’ 0) —
: (Vt,m. (t,m) € 0 =
de € I.E. oper(e) = append(m) A time(e) =t) A
2. (Vty, my, by, my. ord (t1,my) (t, m) 0 =
ey, e2 € I.LE. oper(e;) = append(my) A time(er) =t
A oper(ey) = append(my) A time(ey) =ty A t; > 1p)

—_

Figure 7. The specification, implementation and the simula-
tion relation of mergeable log.

ﬁfmap(get(ks 0q),1) =
let I, = project(k,I) in Fu (04, Iy)

Da-map = (3, 09, do, mergeq_mqp) Where
L Zg-map = P(string X Z,)
2: oy = {}
% S(o.k) = o(k), ifke d.om(a)
oo,, otherwise
4 do(set(k,o0y),0,t) =
let (v,r) = dog(04,8(0, k), t) in (a[k — 0],7)
5: do(get(k,04),0,t) =
let (,r) =doy(0y,6(0,k),t) in (0,r)
6:  mergeqa—map(Oica» Tas Op) =
{(k,v) | (k € dom(oycq) U dom(o,) U dom(op)) A
v = mergeq(8(01cq k), 8(0a, k), 6(op, k))

Rsim-a-map (I, 0) & Vk.
1: (k € dom(o) &= 3Je € L.E. oper(e) = set(k,_)) A
20 Rsim-a (project(k,I), §(o,k))

Figure 8. The specification, implementation and simulation
relation of a-map.

5.3 Generic Map

We introduce a generic map MRDT, a-map, which asso-
ciates string keys with a value, where the value stored in the
map is itself an MRDT. This a-map is parameterised on an
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MRDT « and its implementation D,, and supports get and
set operations: Opg—map = {get(k,04) | k € string A o, €
Opq} U {set(k,04) | k € string A o4 € Opy}, where Op,
denotes the set of operations on the underlying value MRDT.

Figure 8 shows the specification, implementation and sim-
ulation relation of @-map. The implementations for get and
set operations both fetch the current value associated with
the key k (and the initial state of D, if the key is not present
in the map) and apply the given operation o, from the imple-
mentation D, on this value. While set updates the binding
in the map, get does not do so and simply returns the value
returned by o,. The merge operation merges the values for
each key using the merge function of a. The specification
and simulation relation of ¢-map use the specification and
simulation relation of the underlying MRDT «, by projecting
the events associated with each key to an abstract execution
of a. We now provide the details of this projection function.

5.4 Projection Function

project k In_map = I, where
. Ig-map = Bm, operm, roaly,, timey,, visy,) and
2 Iy = (Zg, 0perq, roaly, timegy, vis,) and
3 (Ve k,0.e €3, A operp(e) =set(k,0)
Je’ € 3,. operg(e’) =0 Arvaly(e) = roaly(e’) A
timey,(e) = timey(e’)) A
4. (Vep,e.e1 € Xy Aep € 2y A operp(eq) = set(k,_) A

operm(ez) = set(k,_) Ae; 2om, ey
EIe;,e’2 € Jg. timea(e;) = timen,(e1) A

;) ViSq

timea(e;) = timem(e2) Ne, — 6,2)

Figure 9. Projection function for mapping a-map execution
to a execution.

Figure 9 gives the projection function which when given
an abstract execution I,_mqp of a-map, projects all the set-
events associated with a particular key k to define an abstract
execution I,. There is a one-to-one correspondence between
set-events to k in I mqp and events in I, with the corre-
sponding events in I, preserving the operation type, return
values, timestamps and the visibility relation. The project
function as used in the specification of ¥, _mqp ensures that
the return value of get-events obey the specification ¥, as
applied to the projected a-execution.

Similarly, the simulation relation of a-map requires the
simulation relation of « to hold for every key, between the
value associated with the key and the corresponding pro-
jected execution for the key. We can now verify the correct-
ness of the generic a-map MRDT by relying on the correct-
ness of a. That is if Rg;m—q is a valid simulation relation for
the implementation Dy, then Ryim—g—map is a valid simula-
tion relation for Dg_pmqep. This allows us to build the proof
of correctness of ¢-map using the proof of correctness of «.

For our chat application, we instantiate a-map with the
mergeable log Dj,,. The chat application itself is a wrapper
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%hat(rd(Ch), I) = ﬁog—mup (get(Chs rd): I)

Dehar = Dlog—map where
1: do(send(ch,m),o,t) =
do(set(ch, append(m)), o, t)
2: do(rd(m), o,t) = do(get(k,rd), o, t)

Figure 10. Implementation of IRC-style chat.

around the log-map MRDT as shown in Fig. 10. To verify
the correctness of D.p,;, we only need to separately verify
Dg-map and Dy,y. Note that one can instantiate a with any
verified MRDT implementation to obtain a verified a-map
MRDT.

6 Case study: A Verified Queue MRDT

Okasaki [27] describes a purely functional queue with amor-
tized time complexity of O(1) for enqueue and dequeue op-
erations. This queue is made up of two lists that hold the
front and rear parts of the queue. Elements are enqueued
to the rear queue and dequeued from the front queue (both
are O(1) operations). If the front queue is found to be empty
at dequeue, then the rear queue is reversed and made to
be the front queue (O(n) operation). Since each element is
part of exactly one reverse operation, the enqueue and the
dequeue have an amortized time complexity of O(1). In this
section, we show how to convert this efficient sequential
queue into an MRDT by providing additional semantics to
handle concurrent operations.

For simplicity of specification, we tag each enqueued
element with the unique timestamp of the enqueue oper-
ation, which ensures that all the elements in the queue
are unique. The queue supports two operations: Opgueue =
{dequeue} U {enqueue(a) | a € V}, where V is some value
domain. Unlike a sequential queue, we follow an at-least-once
dequeue semantics - an element inserted into the queue may
be consumed by concurrent dequeues on different branches.
At-least-once semantics is common for distributed queueing
services such as Amazon Simple Queue Service(SQS) [2] and
RabbitMQ [28]. At a merge, concurrent enqueues are ordered
according to their timestamps.

6.1 Merge Function of the Replicated Queue

To illustrate the three-way merge function, consider the
execution presented in figure 11. For simplicity, we assume
that the timestamps are the same as the values enqueued.
Starting from the LCA, each branch performs a sequence
of dequeue and enqueue operations. The resulting versions
are then merged. Observe that in the merged result, the
elements 1 and 2 which were dequeued (with 1 dequeued
on both the branches!) are not present. Elements 3, 4 and
5 which are present in all three versions are present in the
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LCA

dequeue
dequeue
enqueue(6)
enqueue(7)

dequeue
enqueue(8)
enqueue(9)

[3,4,5,6,7,8,9]

Figure 11. Three-way merge for queues

merged result. Newly inserted elements appear at the suffix,
sorted according to their timestamps.

The merge function first converts each of the queues to a
list and finds the longest common contiguous subsequence
between the three versions ([3,4,5]). The newly enqueued
elements are suffixes of this common subsequence - [8,9]
and [6,7] in queues A and B, respectively. The final merged
result is obtained by appending the common subsequence
to the suffixes merged according to their timestamps. Each
of these operations has a time complexity of O(n) where n
is the length of the longest list. Hence, the merge function is
also an O(n) operation 2.

6.2 Specification of the Replicated Queue

We now provide the specification for the queue MRDT, which
is based on the declarative queue specification in Nagar et
al. [24]. In particular, compared to the sequential queue, the
only constraint that we relax is allowing multiple dequeues
of the same element.

In order to describe the specification, we first introduce
a number of axioms which declaratively specify different
aspects of queue behaviour. Consider the match; predicate
defined for a pair of events ey, e; in an abstract execution I:

matchy(ey, e2) © Loper(ey) = enqueue(a)
A Loper(ez) = dequeue A a = Lrval(ez)

Let EMPTY be the value returned by a dequeue when the
queue is empty. We define the following axioms:

o AddRem(I) : Ve € I.E. I.oper(e) = dequeue A
Lrval(e) # EMPTY = de’ € I.E. match;(e’, e)

o Empty(I) : Vey, ez, e3 € I.E. [.oper(ey) = dequeue A
Lroal(e;) = EMPTY A Loper(e;) = enqueue(a) A

1.vis 1.vis
e; — ey = ez € I.LE. matchy(es, e3) Aes — e

o FIFO;(I) :Vey, ey e5 € I.E. Loper(e1) = enqueue(a) A

L.vis
matchy(es, e3) A = Jey, €

I.E. matchy(ey, eq)

€1 €2

2The functional queue simulation relation and implementation can be found
in the extended version [34] of the paper.
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® FIFO;,(I): Vey, ez, 3,4 € I.E. =(matchy(ey, es) A
I.vis I.vis
matchy(es, e3) A e — es A e3 — ey)

These axioms essentially encode queue semantics.
AddRem says that for every dequeue event which does not
return EMPTY, there must exist a matching enqueue event.
Empty says that if a dequeue event returns EMPTY, there
should not be an unmatched enqueue visible to it. Finally,
FIFO; and FIFO, encode the first-in-first-out nature of the
queue. These axioms ensure that if an enqueue event e; was
visible to another enqueue event e,, then the element in-
serted by e; will be dequeued first. Notice that a sequential
queue would also have an injectivity axiom, which disallows
multiple dequeues to be matched to an enqueue, but we do
not enforce this requirement for the replicated queue.

To define Foueue, We first note that enqueue operation
always returns L. For an abstract state I, Foueue (dequeue, I)
returns a such that if we add the new event e for the de-
queue to the abstract state I, then the resulting abstract state
do* (I, e, dequeue, a, t) must satisfy all the queue axioms.

Notice how the queue axioms are substantially different
from the way the MRDT queue is implemented. The sim-
ulation relation that we use to bridge this gap and relate
the implementation with the abstract state is very straight-
forward: we simply say that for every element present in
the concrete state of the queue, there must be an enqueue
event without a matching dequeue. We also assert the other
direction and enforce the queue axioms on the abstract state.
We were able to successfully discharge the conditions for
validity of the simulation relation using F*.

7 Evaluation

In this section, we evaluate the instantiation of the formalism
developed thus far in PEEPUL, an F* library of certified effi-
cient MRDTs. We first discuss the verification effort followed
by the performance evaluation of efficient MRDTs compared
to existing work. These results were obtained on a 2-socket
Intel®Xeon®Gold 5120 x86-64 [15] server running Ubuntu
18.04 with 64GB of main memory.

7.1 Verification in F*

F*’s core is a functional programming language inspired by
ML, with support for program verification using refinement
types and monadic effects. Though F* has support for built-
in effects, PEEPUL library only uses the pure fragment of the
language. Given that we can extract OCaml code from our
verified implementations in F*, we can directly utilise our
MRDTs on top of Irmin [16], a Git-like distributed database,
whose execution model fits the MRDT system model.

As part of the PEepUL library, we have implemented and
verified 9 MRDTs - increment-only counter, PN counter,
enable-wins flag, last-writer-wins register, grows-only set,
grows-only map, mergeable log, observed-remove set and
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functional queue. Our specifications capture both the func-
tional correctness of local operations as well as the semantics
of the concurrent conflicting operations.

F*’s support for type classes provides a modular way to
implement and verify MRDTs. The PEepUL library defines an
MRDT type class that captures the sufficient conditions to be
proved for each MRDT as given in Table 2. This library con-
tains 124 lines of F* code. Each MRDT is a specific instance
of the type class which satisfy the conditions. It is useful to
note that our MRDTs sets, maps and queues are polymorphic
in their contents and may be plugged with other MRDTs to
construct more complex MRDTs as seen in §5.

Table 3 tabulates the verification effort for each MRDT in
the PEEPUL library. We include three versions of OR-sets:

e OR-set: the unoptimized one from §2.1.1 which uses
a list for storing the elements and contains duplicates.

e OR-set-space: the space-optimized one from §2.1.2
which also uses a list but does not have duplicates.

e OR-set-spacetime: a space- and time-optimized one
which uses a binary search tree for storing the ele-
ments and has no duplicates. The merge function pro-
duces a height balanced binary tree.

The lines of code represent the number of lines for imple-
menting the data structure without counting the lines for
refinements, lemmas, theorems and proofs. This is approxi-
mately the number of lines of code there will be if the data
structures were implemented in OCaml. Everything else that
has to do with verification is included in the lines of proofs.
It is useful to note that the lines of proof for simple MRDTs
such as counter and last-writer-wins (LWW) register is high
compared to the lines of code since we also specify and prove
their full functional correctness.

For many of the proofs, F* can automatically verify the
properties either without any lemmas or just a few, thanks to
F* discharging the proof obligations to the SMT solver. Most
of the proofs are a few tens of lines of code except queues.
In queues, the implementation is far removed from the spec-
ification, and hence, additional lemmas were necessary to
bridge this gap.

F* allows the user to provide additional lemmas that help
the solver arrive at the proof faster. We illustrate this for the
enable-wins flag, G-set and OR-set by adding additional lem-
mas. Correspondingly, we observe that the verification time
reduces significantly. Thanks to F*, the developers of new
MRDTs in PEEPUL can strike a balance between verification
times and manual verification effort.

In this work, we have not used F* support for tactics and in-
teractive proofs. We believe that some of the time-consuming
calls to the SMT solver may be profitably replaced by a few
interactive proofs. On the whole, the choice of F* for PEEPUL
reduces manual effort and most of the proofs are checked
within a few seconds.
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7.2 Performance Evaluation

In this section, we evaluate the runtime performance of effi-
cient MRDTs in PEEPUL.

7.2.1 PEEPUL vs Quark. We first compare the perform-
ance of PEEPUL MRDTs against the MRDTs presented in Kaki
et al. [18] (Quark). Recall that Quark lifts sequential data
types to MRDTs by equipping them with a merge function,
which converts the concrete state of the MRDT to a relational
(set-based) representation that captures the characteristic
relations of the data type. The actual merge is implemented
as a merge of these sets for each of the characteristic relations.
After the merging of the relational representations, the final
result is obtained by a concretization function. Compared to
this, PEEPUL merges are implemented directly on the concrete
representations.

To highlight the impact of the efficient merge function in
PEEPUL, we evaluate the performance of merge in queues.
Both PEEPUL and Quark uses the same sequential queue rep-
resentation, and the only difference is the merge function
between the two. For this experiment, we start with an empty
queue and perform a series of randomly generated opera-
tions with a 75:25 split between enqueues and dequeues. We
use this version as the LCA and subsequently perform two
different sets of operations to get the two divergent versions.
We then merge these versions to measure the time taken for

the merge.
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Figure 12. Merge performance of PEEPUL and Quark queues.

The results are reported in figure 12. For a queue, Quark
needs to reify the ordering relation as a set that will contain
n? elements for a queue of size n. In addition, there is also
the cost of abstracting and concretising the queue to and
from relational representation. As a result, the merge func-
tion takes 10 seconds for 1000 operations, increasing to 178
seconds for 5000 operations. On the other hand, PEEPUL’S
linear-time merge took less than a millisecond in all of the
cases. This shows that Quark merge is unacceptably slow
even reasonably sized queues, while PEEPUL remains fast
and practical.

We also compare the performance of OR-set in PEEPUL
and Quark. Since the merge function in Quark is based on
automatic relational reification, Quark does not allow dupli-
cate elements to be removed from the OR-set. To highlight
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Table 3. PEepuUL verification effort.

MRDTs verified #Lines code #Lines proof #Lemmas  Verif. time (s)
Increment-only counter 6 43 3.494
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
81 6 171
89 7 104
LWW register 5 44 1 4.21
G-set 10 23 0 4.71
28 1 2.462
33 2 1.993
G-map 48 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829
OR-set-space (§2.1.2) 59 108 7 1716
OR-set-spacetime 97 266 7 1854
Queue 32 1123 75 4753
10000 30
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% 2500 Peepul f‘g 10
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Figure 13. Performance of PEEPUL and Quark OR-sets.
Figure 14. Running time of OR-sets.
the impact of duplicate elements, we perform an experiment ,
similar to the queue one except that we pick a 50:50 split °
between add and remove operations. The values added are 20
randomly picked in the range (0:1000). For PEEPUL, we pick @15
the space-optimized OR-set (OR-set-space). We report the @10
number of elements in the final set including duplicates. 2 s =~
The results are presented in figure 13. Due to the dupli-
cates, the size of the Quark set increases with an increasing 5000 10000 15000 20000 25000 30000

number of operations; the growth is not linear due to the
stochastic interplay between add and remove. For PEEPUL,
the set size always remains below 1000 which is the range of
the values picked. The results show that MRDTs in PEEpUL
are much more efficient than in Quark.

7.2.2 PEEPUL OR-set Performance. We also compare
the overall performance of the three OR-set implementations
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Figure 15. Space consumption of OR-sets. The OR-set-space
line is hidden by the OR-set-spacetime line.
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in PEEPUL. Our workload consists of 70% lookups, 20% adds
and 10% remove operations starting from an initially empty
set on two different branches. We trigger a merge every 500
operations. We measure the overall execution time for the
entire workload and the maximum size of the set during the
execution.

The results are reported in figures 14 and 15. The re-
sults show that OR-set-spacetime is the fastest, and is
around 5x faster than OR-set-space due to the fast reads and
writes thanks to the binary search tree in OR-set-spacetime.
Both OR-set-space and OR-set-spacetime consume a similar
amount of memory. The unoptimized OR-set is both slower
and consumes more memory than the other variants due to
the duplicates. The results show that PEEPUL enables the con-
struction of efficient certified MRDTs that have significant
performance benefits compared to unoptimised ones.

8 Related Work

Reconciling concurrent updates is an important problem
in distributed systems. Some of the works proposing new
designs and implementations of RDTs [4, 30, 32] neither pro-
vide their formal specification nor verify them. Due to the
concurrently evolving state of the replicas, informally rea-
soning about the correctness of even simple RDTs is tedious
and error-prone. In this work, our focus is on mechanically
verifying efficient implementations of MRDTs.

Several works focus on the specification and verification of
CRDTs [3, 5, 12, 22, 23, 25, 36]. CRDTs typically assume a sys-
tem model which involves several replicas communicating
over a network with asynchronous message passing. Cor-
respondingly, the specification and verification techniques
for CRDTs will have to take into account the properties
of message passing such as message ordering and delivery
guarantees. On the other hand, MRDTs are described over a
Git-like distributed store with branching and merging, which
in turn may be implemented over asynchronous message
passing. We believe that, by lifting the level of abstraction,
MRDTs are easy to specify, implement and verify compared
to CRDTs.

In terms of mechanised verification of RDTs, prior work
has used both automated and interactive verification. Zeller
et al. [36] verify state-based CRDTs with the help of inter-
active theorem prover Isabelle/HOL. Gomes et al. [12] de-
velop a foundational framework for proving the correctness
of operation-based CRDTs. In particular, they construct a
formal network model that may delay, drop or reorder mes-
sages sent between replicas. Under these assumptions, they
verify several op-based CRDTs using Isabelle/HOL. Nair et
al. [25] presents an SMT-based verification tool to specify
state-based CRDTs and verify invariants over its state. Na-
gar et al. [23] also utilise SMT-solver to automatically verify
the convergence of CRDTs under different weak consistency
policies. Liu et al. [22] present an extension of the SMT-
solver-aided Liquid Haskell to allow refinement types on
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type classes and use to implement a framework to verify
operation-based CRDTs. Similar to Liu et al., PEEPUL also
uses an SMT-solver-aided programming language F*. We
find that the SMT-solver-aided programming language of-
fers a useful trade-off between manual verification effort and
verification time.

Our verification framework for MRDTs builds on the con-
cept of replication-aware simulation introduced by Burck-
hardt et al. [5]. Burckhardt et al. present precise specifica-
tions for RDTs and (non-mechanized) proof of correctness
for a few CRDT implementations. Burckhardt et al’s speci-
fications are presented over the CRDT system model with
explicit message passing between replicas. In this work, we
lift these specifications to a higher level by abstracting out
the guarantees provided by the low-level store (¥s and ¥.,).
Further, we also observe that the simulation relation R;;,
cannot be used as an inductive invariant on its own, and in-
stead, a conjunction of Ry, with ¥;5 and ¥}, is required (see
conditions @y, and ®perge in Table 2). To enable mechanised
verification, we identify the relationship between Rg;y, and
the functional correctness and convergence of MRDTs. This
leads to a formal specification framework that is suitable for
mechanized and automated verification. We demonstrate this
by successfully verifying several complex MRDT implemen-
tations in F* including the first, formally verified replicated
queue.

MRDTs were first introduced by Farnier et al. [10] for
Irmin [16], a distributed database built on the principles of
Git. Quark [18] automatically derives merge functions for
MRDTs using the invertible relational specification. However,
their merge semantics focused only on convergence, and not
the functional correctness of the data type. Our evaluation
(§7.2.1) shows that merge through automatically derived
invertible relational specification is prohibitively expensive
for data types with a rich structure such as queues. Tardis [6]
also uses a branch-and-merge approach to weak consistency,
but does not focus on verifying the correctness of the RDTs.

Not all application logic can be expressed only using even-
tually consistent and convergent RDTs. For example, a repli-
cated bank account that guarantees a non-negative balance
requires coordination between concurrent withdraw opera-
tions. Several previous works have explored RDTs that uti-
lize on-demand coordination based on application invari-
ants [7, 13, 14, 17, 26, 33]. We leave the challenge of extend-
ing PEEPUL to support on-demand coordination to future
work.
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