
27

Alone Together: Compositional Reasoning and Inference for
Weak Isolation

GOWTHAM KAKI, Purdue University
KARTIK NAGAR, Purdue University
MAHSA NAJAFZADEH, Purdue University
SURESH JAGANNATHAN, Purdue University

Serializability is a well-understood correctness criterion that simpli�es reasoning about the behavior of
concurrent transactions by ensuring they are isolated from each other while they execute. However, enforcing
serializable isolation comes at a steep cost in performance because it necessarily restricts opportunities to
exploit concurrency even when such opportunities would not violate application-speci�c invariants. As a
result, database systems in practice support, and often encourage, developers to implement transactions
using weaker alternatives. These alternatives break the strong isolation guarantees o�ered by serializablity to
permit greater concurrency. Unfortunately, the semantics of weak isolation is poorly understood, and usually
explained only informally in terms of low-level implementation artifacts. Consequently, verifying high-level
correctness properties in such environments remains a challenging problem.

To address this issue, we present a novel program logic that enables compositional reasoning about the
behavior of concurrently executing weakly-isolated transactions. Recognizing that the proof burden necessary
to use this logic may dissuade application developers, we also describe an inference procedure based on this
foundation that ascertains the weakest isolation level that still guarantees the safety of high-level consistency
invariants associated with such transactions. The key to e�ective inference is the observation that weakly-
isolated transactions can be viewed as functional (monadic) computations over an abstract database state,
allowing us to treat their operations as state transformers over the database. This interpretation enables
automated veri�cation using o�-the-shelf SMT solvers.

Our development is parametric over a transaction’s speci�c isolation semantics, allowing it to be applicable
over a range of weak isolation mechanisms. Case studies and experiments on real-world applications (written
in an embedded DSL in OCaml) demonstrate the utility of our approach, and provide strong evidence that
automated veri�cation of weakly-isolated transactions can be placed on the same formal footing as their
strongly-isolated serializable counterparts.

CCS Concepts: •Software and its engineering! Formal software veri�cation; •Information systems
! Integrity checking; Relational database model;

Additional Key Words and Phrases: Transactions, Weak Isolation, Concurrency, Rely-Guarantee, Veri�cation

ACM Reference format:
Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. 2018. Alone Together: Composi-
tional Reasoning and Inference for Weak Isolation. PACM Progr. Lang. 2, POPL, Article 27 (January 2018),
46 pages.
DOI: 10.1145/3158115

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s). 2475-1421/2018/1-ART27 $
DOI: 10.1145/3158115

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:2 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

1 INTRODUCTION
Database transactions allow users to group operations on multiple objects into a single logical
unit, equipped with a set of four key properties - atomicity, consistency, isolation, and durability
(ACID). Concurrency control mechanisms provide speci�c instantiations of these properties to
yield di�erent ACID variants that characterize how and when the e�ects of concurrently executing
transactions become visible to one another. Serializability is a particularly well-studied instantiation
that imposes strong atomicity and isolation constraints on transaction execution, ensuring that
any permissible concurrent schedule yields results equivalent to a serial one in which there is no
interleaving of actions from di�erent transactions.

The guarantees provided by serializability do not come for free, however - pessimistic concurrency
control methods require databases to use expensive mechanisms such as two-phase locking that
incur overhead to deal with deadlocks, rollbacks, and re-execution (Eswaran et al. 1976; Garcia-
Molina et al. 2008). Similar criticisms apply to optimistic multi-version concurrency control
methods that must deal with timestamp and version management (Bernstein and Goodman 1983).
These issues are exacerbated when the database is replicated, requiring additional coordination
mechanisms (Bailis et al. 2013; Bernstein and Das 2013; Davidson et al. 1985; Gilbert and Lynch
2002).
Because serializable transactions favor correctness over performance, there has been long-

standing interest (Gray et al. 1976) in the database community to consider weaker variants that try
to recover performance, even at the expense of simplicity and ease of reasoning. These instantiations
permit a transaction to witness various e�ects of newly committed, or even concurrently running,
transactions while it executes, thus weakening serializability’s strong isolation guarantees. The
ANSI SQL 92 standard de�nes three such weak isolation levels which are now implemented in many
relational and NoSQL databases. Not surprisingly, weakly-isolated transactions have been found
to signi�cantly outperform serializable transactions on benchmark suites, both on single-node
databases and multi-node replicated stores (Bailis et al. 2013, 2014; Shasha and Bonnet 2003), leading
to their overwhelming adoption. A 2013 study (Bailis et al. 2013) of 18 popular ACID and “NewSQL”
databases found that only three of them o�er serializability by default, and half, including Oracle
11g, do not o�er it at all. A 2015 study (Bailis et al. 2015) of a large corpus of database applications
�nds no evidence that applications manifestly change the default isolation level o�ered by the
database. Taken together, these studies make clear that weakly-isolated transactions are quite
prevalent in practice, and serializable transactions are often eschewed.
Unfortunately, weak isolation admits behaviors that are di�cult to comprehend (Berenson

et al. 1995). To quantify weak isolation anomalies, Fekete et al. (Fekete et al. 2009) devised and
experimented with a microbenchmark suite that executes transactions under Read Committed weak
isolation level - default level for 8 of the 18 databases studied in (Bailis et al. 2013), and found
that 25 out of every 1000 rows in the database violate at least one integrity constraint. Bailis et
al. (Bailis et al. 2015) rely on Rails’ uniqueness validation to maintain uniqueness of records while
serving Linkbench’s (Armstrong et al. 2013) insertion workload (6400 records distributed over 1000
keys; 64 concurrent clients), and report discovering more than 10 duplicate records. Rails relies on
database transactions to validate uniqueness during insertions, which is sensible if transactions
are serializable, but incorrect under the weak isolation level used in the experiments. The same
study has found that 13% of all invariants among 67 open source Ruby-on-Rails applications
are at risk of being violated due to weak isolation. Indeed, incidents of safety violations due to
executing applications in a weakly-isolated environment have been reported on web services in
production (SciMed Bug 2016; Starbucks Bug 2016), including in safety-critical applications such as
bitcoin exchanges (Bitcoin Bug 2016; Poloniex Bug 2016). While enforcing serializability for all

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:3

transactions would be su�cient to avoid these errors and anomalies, it would likely be an overly
conservative strategy; indeed, 75% of the invariants studied in (Bailis et al. 2015) were shown to be
preserved under some form of weak isolation. When to use weak isolation, and in what form, is
therefore a prominent question facing all database programmers.1

A major problem with weak isolation as currently speci�ed is that its semantics in the context of
user programs is not easily understood. The original proposal (Gray et al. 1976) de�nes multiple
“degrees” of weak isolation in terms of implementation details such as the nature and duration
of locks held in each case. The ANSI SQL 92 standard de�nes four levels of isolation (including
serializability) in terms of various undesirable phenomena (e.g., dirty reads - reading data written by
an uncommitted transaction) each is required to prevent. While this is an improvement, this style
of de�nition still requires programmers to be prescient about the possible ways various undesirable
phenomena might manifest in their applications, and in each case determine if the phenomenon can
be allowed without violating application invariants. This is understandably hard, especially in the
absence of any formal underpinning to de�ne weak isolation semantics. Adya (Adya 1999) presents
the �rst formal de�nitions of some well-known isolation levels in the context of a sequentially
consistent (SC) database. However, there has been little progress relating Adya’s system model to a
formal operational semantics or a proof system that can facilitate rigorous correctness arguments.
Consequently, reasoning about weak isolation remains an error prone endeavor, withmajor database
vendors (MySQL 2016; Oracle 2016; PostgreSQL 2016) continuing to document their isolation levels
primarily in terms of the undesirable phenomena a particular isolation level may induce, placing
the burden on the programmer to determine application correctness.

Recent results on reasoning about application invariants in the presence ofweak consistency (Bale-
gas et al. 2015; Burckhardt et al. 2014; Gotsman et al. 2016; Li et al. 2014, 2012) address broadly
related concerns. Weak consistency is a phenomenon that manifests on replicated data stores, where
atomic operations are concurrently executed against di�erent replicas, resulting in an execution
order inconsistent with any sequential order. In contrast, weak isolation is a property of concurrent
transactions interfering with one another, resulting in an execution order that is not serializable.
Unlike weak consistency, weak isolation can manifest even in an unreplicated setting, as evident
from the support for weakly-isolated transactions on conventional (unreplicated) databases as
mentioned above.

In this paper, we propose a program logic for weakly-isolated transactions along with automated
veri�cation support to allow developers to verify the soundness of their applications, without
having to resort to low-level operational reasoning as they are forced to do currently. We develop a
set of syntax-directed compositional proof rules that enable the construction of correctness proofs
for transactional programs in the presence of a weakly-isolated concurrency control mechanism.
Realizing that the proof burden imposed by these rules may discourage applications programmers
from using them, we also present an inference procedure that automatically veri�es the weakest
isolation level for a transaction while ensuring its invariants are maintained. The key to inference
is a novel formulation of database state (represented as sets of tuples) as a monad, and in which
database computations are interpreted as state transformers over these sets. This interpretation
leads to an encoding of database computations amenable for veri�cation by o�-the-shelf SMT
solvers. The paper makes the following contributions:

(1) We analyze properties of weak isolation in the context of a DSL embedded in OCaml that
treats SQL-based relational database operations (e.g., inserts, selects, deletes, updates, etc.)
as computations over an abstract database state.

1This position has been echoed by database researchers who lament the lack of a better understanding of this problem; see
e.g., http://www.bailis.org/blog/understanding-weak-isolation-is-a-serious-problem.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:4 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

(2) We develop an operational semantics and a compositional rely-guarantee style proof system
for this language capable of relating high-level application invariants to database state,
parameterized by a weak isolation semantics that selectively exposes the visibility of these
operations to other transactions.

(3) We devise an inference algorithm capable of discovering the weakest isolation level that is
sound with respect to a transaction’s high-level consistency requirements. The algorithm
interprets database operations as state transformers expressed in a language amenable for
translation into a decidable fragment of �rst-order logic, and is thus suitable for automated
veri�cation using o�-the-shelf SMT solvers.

(4) We present details of an implementation along with an evaluation study on real data-
base benchmarks that justify our approach, and demonstrate the utility of our inference
mechanism.

Our results provide the �rst formalization of weakly-isolated transactions, along with an expressive
and compositional proof automation framework capable of verifying the safety of high-level
consistency conditions attached to these transactions. Collectively, these contributions allow
weakly-isolated transactions to enjoy the same rigorous reasoning capabilities as their strongly-
isolated (serializable) counterparts.
The remainder of the paper is organized as follows. The next section provides motivation

and background on serializable and weakly-isolated transactions. §3 presents an operational
semantics for a core language that supports weakly-isolated transactions, parameterized over
di�erent isolation notions. §4 formalizes the proof system that we use to reason about program
invariants, and establishes the soundness of these rules with respect to the semantics. §5 describes
the inference algorithm, and the state transformer encoding. We describe our implementation
in §6, and provide case studies and benchmark results in §7. Related work is given in §8, and §9
concludes.

2 MOTIVATION
We present our ideas in the context of a DSL embedded in OCaml that manages an abstract database
state that can be manipulated via a well-de�ned SQL interface. Arbitrary database computations
can be built around this interface, which can then be run as transactions using the atomically_do
combinator provided by the DSL.

Fig. 1 shows a simpli�ed version of the TPC-C new_order transaction written in this language.
TPC-C is a widely-used and well-studied Online Transaction Processing (OLTP) benchmark that
models an order-processing system for a wholesale parts supply business. The business logic is
captured in 5 database transactions that operate on 9 tables; new_order is one such transaction
that uses District, Order, New_order, Stock, and Order_line tables. The transaction acts on the
behalf of a customer, whose id is c_id, to place a new order for a given set of items (item_reqs),
to be served by a warehouse under the district identi�ed by d_id. Fig. 2 illustrates the relationship
among these di�erent tables.

The transaction manages order placement by invoking appropriate SQL functionality, captured
by various calls to functions de�ned by the SQLmodule. All SQL operators supported by the module
take a table name (a nullary constructor) as their �rst argument. The higher-order SQL.select1
function accepts a boolean function that describes the selection criteria, and returns any record that
meets the criteria (it models the SQL query SELECT . . . LIMIT 1). SQL.update also accepts
a boolean function (its 3rd argument) to select the records to be updated. Its 2nd argument is a
function that maps each selected record to a new (updated) record. SQL.insert inserts a given
record into the speci�ed table in the database.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:5

let new_order (d_id , c_id , item_reqs) = atomically_do @@ fun () ->

let dist = SQL.select1 District (fun d -> d.d_id = d_id) in

let o_id = dist.d_next_o_id in

begin

SQL.update (* UPDATE *) District

(* SET *)(fun d -> {d with d_next_o_id = d.d_next_o_id + 1})

(* WHERE *)(fun d -> d.d_id = d_id);

SQL.insert (* INSERT INTO *) Order (* VALUES *){o_id=o_id;

o_d_id=d_id; o_c_id=c_id; o_ol_cnt=S.size item_reqs; };

foreach item_reqs @@ fun item_req ->

let stk = SQL.select1 (* SELECT * FROM *) Stock

(* WHERE *)(fun s -> s.s_i_id = item_req.ol_i_id &&

s.s_d_id = d_id)(* LIMIT 1 *) in

let s_qty � = if stk.s_qty >= item_req.ol_qty + 10

then stk.s_qty - item_req.ol_qty

else stk.s_qty - item_req.ol_qty + 91 in

SQL.update Stock (fun s -> {s with s_qty = s_qty �})

(fun s -> s.s_i_id = item_req.ol_i_id);

SQL.insert Order_line {ol_o_id=o_id; ol_d_id=d_id;

ol_i_id=item_req.ol_i_id; ol_qty=item_req.ol_qty}

end

Fig. 1. TPC-C new_order transaction

The new_order transaction inserts a new Order record, whose id is the sequence number of the
next order under the given district (d_id). The sequence number is stored in the corresponding
District record, and updated each time a new order is added to the system. Since each order may
request multiple items (item_reqs), an Order_line record is created for each requested item to
relate the order with the item. Each item has a corresponding record in the Stock table, which keeps
track of the quantity of the item left in stock (s_qty). The quantity is updated by the transaction
to re�ect the processing of new orders (if the stock quantity falls below 10, it is automatically
replenished by 91).

TPC-C de�nes multiple invariants, called consistency conditions, over the state of the application
in the database. One such consistency condition is the requirement that for a given order o, the
order-line-count �eld (o.o_ol_cnt) should re�ect the number of order lines under the order; this
is the number of Order_line records whose ol_o_id �eld is the same as o.o_id. In a sequential
execution, it is easy to see how this condition is preserved. A new Order record is added with
its o_id distinct from existing order ids, and its o_ol_cnt is set to be equal to the size of the
item_reqs set. The foreach loop runs once for each item_req, adding a new Order_line record
for each requested item, with its ol_o_id �eld set to o_id. Thus, at the end of the loop, the number
of Order_line records in the database (i.e., the number of records whose ol_o_id �eld is equal to
o_id) is guaranteed to be equal to the size of the item_reqs set, which in turn is equal to the Order
record’s o_ol_cnt �eld; these constraints ensure that the transaction’s consistency condition is
preserved.
Because the aforementioned reasoning is reasonably simple to perform manually, verifying

the soundness of TPC-C’s consistency conditions would appear to be feasible. Serializability
aids the tractability of veri�cation by preventing any interference among concurrently execut-
ing transactions while the new_order transaction executes, essentially yielding serial behaviors.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:6 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

d_next_o_idd_id
District

o_ol_cnto_c_ido_d_ido_id
Order

s_qtys_d_ids_i_id
Stock

ol_qtyol_i_idol_d_idol_o_id
Order_line

211

1 11 7 1

20 11 80

1

21 11 93

11 20 20

(a) A valid TPC-C database. The only ex-
isting order belongs to the district with
d_id=11. Its id (o_id) is one less than the
district’s d_next_o_id, and its order count
(o_ol_cnt) is equal to the number of order
line records whose ol_o_id is equal to the
order’s id.

d_next_o_idd_id
District

o_ol_cnto_c_ido_d_ido_id
Order

s_qtys_d_ids_i_id
Stock

ol_qtyol_i_idol_d_idol_o_id
Order_line

1 11 7 1

20 11 70

1

21 11 83

11 20 20

2 11 9 2

2 11 20 10
2 11 21 10

11 3

(b) The database in Fig. 2a a�er correctly executing a
new_order transaction. A new order record is added
whose o_id is equal to the d_next_o_id from Fig. 2a.
The district’s d_next_o_id is incremented. The order’s
o_ol_cnt is 2, reflecting the actual number of order line
records whose ol_o_id is equal to the order’s id (2).

Fig. 2. Database schema of TPC-C’s order management system. The naming convention indicates primary
keys and foreign keys. For e.g., ol_id is the primary key column of the order line table, whereas ol_o_id is a
foreign key that refers to the o_id column of the order table.

 SELECT(District, d_id) ! dist

 UPDATE(District, d_id) SET
 d_next_o_id = d_next_o_id + 1

.

.

.
Commit

T2 SELECT(District, d_id) ! dist
 UPDATE(District, d_id) SET
 d_next_o_id = d_next_o_id + 1

.

.

.
Commit

T1

Fig. 3. An RC execution involving two in-
stances (T1 and T2) of the new_order trans-
action depicted in Fig. 1. Both instances
read the d_id District record concur-
rently, because neither transaction is com-
mi�ed when the reads are executed. The
subsequent operations are e�ectively se-
quentialized, since T2 commits before T1.
Nonetheless, both transactions read the
same value for d_next_o_id resulting in
them adding Order records with the same
ids, which in turn triggers a violation of TPC-
C’s consistency condition.

Under weak isolation2, however, interferences of vari-
ous kinds are permitted, leading to executions super�-
cially similar to executions permitted by concurrent (racy)
programs (Gammie et al. 2015; Hawblitzel et al. 2015).
To illustrate, consider the behavior of the new_order
transaction when executed under a Read Committed (RC)
isolation level, the default isolation level in 8 of the 18
databases studied in (Bailis et al. 2013). An executing
RC transaction is isolated from dirty writes, i.e., writes
of uncommitted transactions, but is allowed to witness
the writes of concurrent transactions as soon as they
are committed. Thus, with two concurrent instances of
the new_order transaction (call them T1 and T2), both
concurrently placing new orders for di�erent customers
under the same district (d_id), RC isolation allows the
execution shown in Fig. 3.
The �gure depicts an execution as a series of SQL

operations. In the execution, the new_order instance
T1 (green) reads the d_next_o_id �eld of the district
record for d_id, but before it increments the �eld, an-
other new_order instance T2 (red) begins its execution
and commits. Note that T2 reads the same d_next_o_id
value as T1, and inserts new Order and Order_line

2Weak isolation does not violate atomicity as long as the witnessed e�ects are those of committed transactions

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:7

records with their o_id and ol_o_id �elds (resp.) equal
to d_next_o_id. T2 also increments the d_next_o_id �eld, which T1 has already acccessed. This
is allowed because reads typically do not obtain a mutually exclusive lock on most databases. After
T2’s commit,T1 resumes execution and adds new Order and Order_line �elds with the same order
id as T1. Thus, at the end of the execution, Order_line records inserted by T1 and T2 all bear the
same order id. There are also two Order records with the same district id (d_id) and order id, none
of whose o_ol_cnt re�ects the actual number of Order_line records inserted with that order id.
This clearly violates TPC-C’s consistency condition.

This example does not exhibit any of the anomalies that characterize RC isolation (Berenson et al.
1995)3. For instance, there are no lost writes since both concurrent transactions’ writes are present
in the �nal state of the database. Program analyses that aim to determine appropriate isolation by
checking for possible manifestations of RC-induced anomalies would fail to identify grounds for
promoting the isolation level of new_order to something stronger. Yet, if we take the semantics
of the application into account, it is quite clear that RC is not an appropriate isolation level for
new_order.
While reasoning in terms of anomalies is cumbersome and inadequate, reasoning about weak

isolation in terms of traces (Adya 1999; Cerone et al. 2015) on memory read and write actions can
complicate high-level reasoning. A possible alternative would be to utilize concurrent program
veri�cation methods where the implementation details of weak isolation are interleaved within the
program, yielding a (more-or-less) conventional concurrent program. But, considering the size and
complexity of real-world transaction systems, this strategy is unlikely to scale.

In this paper, we adopt a di�erent approach that lifts isolation semantics (not their implementa-
tions) to the application layer, providing a principled framework to simultaneously reason about
application invariants and isolation properties. To illustrate this idea informally, consider how
we might verify that new_order is sound when executed under Snapshot Isolation (SI), a stronger
isolation level than RC. Snapshot isolation allows transactions to be executed against a private
snapshot of the database, thus admitting concurrency, but it also requires that there not be any
write-write con�icts (i.e., such a con�ict occurs if concurrently executing transactions modify
the same record) among concurrent transactions when they commit. Write-write con�icts can
be eliminated in various ways, e.g., through con�ict detection followed by a rollback, or through
exclusive locks, or a combination of both. For instance, one possible implementation of SI, close to
the one used by PostgreSQL (PostgreSQL 2016), executes a transaction against its private snapshot
of the database, but obtains exclusive locks on the actual records in the database before performing
writes. A write is performed only if the record that is to be written has not already been updated
by a concurrent transaction. Con�icts are resolved by abort and roll back.

As this discussion hints, implementations of SI on real databases such as PostgreSQL are highly
complicated, often running into thousands of lines of code. Nonetheless, the semantics of SI, in
terms of how it e�ects transitions on the database state, can be captured in a fairly simple model.
First, e�ects induced by one transaction (call itT) are not visible to another concurrently executing
one during T ’s execution. Thus, from T ’s perspective, the global state does not change during
its execution. More formally, for every operation performed by T , the global state T witnesses
before (�) and after (�0) executing the operation is the same (�0 = �). After T �nishes execution,
it commits its changes to the actual database, which may have already incorporated the e�ects of
concurrent transactions. In executions where T successfully commits, concurrent transactions are
guaranteed to not be in write-write con�ict with T . Thus, if � is the global state that T witnessed

3Berenson et al. characterize isolation levels in terms of the anomalies they admit. For example, RC is characterized by lost
writes because it admits the anomaly.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:8 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

when it �nished execution (the snapshot state), and �0 is the state to which T commits, then the
di�erence between � and �0 should not result in a write-write con�ict with T . To concretize
this notion, let the database state be a map from database locations to values, and let � denote a
transaction-local log that maps the locations being written to their updated values. The absence of
write-write con�icts between T and the di� between � and �0 can be expressed as: 8x 2 dom(�),
�0(x) = �(x). In other words, the semantics of SI can be captured as an axiomatization over
transitions of the database state (� �! �0) during a transaction’s (T) lifetime:

• While T executes, �0 = �.
• After T �nishes execution, but before it commits its local state � , 8(x 2 dom(�)). �0(x) =

�(x).
This simple characterization of SI isolation allows us to verify the consistency conditions associated
with the new_order transaction. First, since the database does not change (�0 = �) during execution
of the transaction’s body, we can reason about new_order as though it executed in complete isolation
until its commit point, leading to a veri�cation process similar to what would have been applied
when reasoning sequentially. When new_order �nishes execution, however, but before it commits,
the SI axiomatization shown above requires us to consider global state transitions � �! �0 that
do not include changes to the records (�) written by new_order, i.e., 8(x 2 dom(�)). �0(x) = �(x).
The axiomatization precludes any execution in which there are concurrent updates to shared
table �elds (e.g., d_next_o_id on the same District table), but does not prohibit interferences
that write to di�erent tables, or write to di�erent records in the same table. We need to reason
about the safety of such interferences with respect to new_order’s consistency invariants to verify
new_order.

We approach the veri�cation problem by �rst observing that a relational database is a signi�cantly
simpler abstraction than shared memory. Its primary data structure is a table, with no primitive
support for pointers, linked data structures, or aliasing. Although a database essentially abstracts
a mutable state, this state is managed through a well-de�ned �xed number of interfaces (SQL
statements), each tagged with a logical formula describing what records are accessed and updated.

This observation leads us away from thinking of a collection of database transactions as a simple
variant of a concurrent imperative program. Instead, we see value in viewing them as essentially
functional computations that manage database state abstractly, mirroring the structure of our DSL.
By doing so, we can formulate the semantics of database operations as state transformers that
explicitly relate an operation’s pre- and post-states, de�ning the semantics of the corresponding
transformer algorithmically, just like classical predicate transformer semantics (e.g., weakest pre-
condition or strongest post-condition). In our case, a transformer interprets a SQL statement in the
set domain, modeling the database as a set of records, and a SQL statement as a function over this
set. Among other things, one bene�t of this approach is that low-level loops can now be substituted
with higher-order combinators that automatically lift the state transformer of its higher-order
argument, i.e., the loop body, to the state transformer of the combined expression, i.e., the loop. We
illustrate this intuition on a simple example.

foreach item_reqs @@ fun item_req ->

SQL.update Stock (fun s -> {s with s_qty = k1})

(fun s -> s.s_i_id = item_req.ol_i_id);

SQL.insert Order_line {ol_o_id=k2; ol_d_id=k3;

ol_i_id=item_req.ol_i_id; ol_qty=item_req.ol_qty}

Fig. 4. Foreach loop from Fig. 1

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:9

Fig. 4 shows a (simpli�ed) snippet of code taken from Fig. 1. Some irrelevant expressions have
been replaced with constants (k1, k2, and k3). The body of the loop executes a SQL update followed
by an insert. Recall that a transaction reads from the global database (�), and writes to a transaction-
local database (�) before committing these updates. An update statement �lters the records that
match the search criteria from � and computes the updated records that are to be added to the
local database. Thus, the state transformer for the update statement (call it TU) is the following
function on sets4:

�(� ,�). � [� �= (�s.if table(s) = Stock ^ s.s_i_id = item_req.ol_i_id
then {hs_i_id = s.s_i_id; s_d_id = s.s_d_id; s_qty = k1i}
else ;)

Here, the set bind operator extracts record elements (s) from the database, checks the precondition
of the update action, and if satis�ed, constructs a new set containing a single record that is identical
to s except that it binds �eld s_qty to value k1. This new set is added (via set union) to the existing
local database state � .5

The transformer (TI (� ,�)) for the subsequent insert statement can be similarly constructed:
�(� ,�). � [{hol_o_id = k2; ol_d_id = k3; ol_i_id = item_req.ol_i_id; ol_qty = item_req.ol_qtyi}
Observe that both transformers are of the form T(� ,�) = � [F(�), where F is a function that returns
the set of records added to the transaction-local database (�). Let FU and FI be the corresponding
functions for TU and TI shown above. The state transformation induced by the loop body in Fig. 1
can be expressed as the following composition of FU and FI :

�(� ,�). � [FU (�) [FI (�)

The transformer for the loop itself can now be computed to be:
�(� ,�). � [item_reqs �= (�item_req. FU (�) [FI (�))

Observe that the structure of the transformermirrors the structure of the program itself. In particular,
SQL statements become set operations, and the foreach combinator becomes set monad’s bind
(�=) combinator. As we demonstrate, the advantage of inferring such transformers is that we can
now make use of a semantics-preserving translation from the domain of sets equipped with�= to
a decidable fragment of �rst-order logic, allowing us to leverage SMT solvers for automated proofs
without having to infer potentially complex thread-local invariants or intermediate assertions.
Sec. 5 describes this translation. In the exposition thus far, we assumed � remains invariant, which
is clearly not the case when we admit concurrency. Necessary concurrency extensions of the state
transformer semantics to deal with interference is also covered in Sec. 5. Before presenting the
transformer semantics, we �rst focus our attention in the following two sections on the theoretical
foundations for weak isolation, upon which this semantics is based.

3 T : SYNTAX AND SEMANTICS
Fig. 5 shows the syntax and small-step semantics of T , a core language that we use to formalize our
intuitions about reasoning under weak isolation. Variables (x), integer and boolean constants (k),
records (r) of named constants, sets (s) of such records, arithmetic and boolean expressions (e1 � e2),
and record expressions (h f̄ = ēi) constitute the syntactic class of expressions (e). Commands (c)
include SKIP, conditional statements, LET constructs to bind names, FOREACH loops, SQL statements,
their sequential composition (c1; c2), transactions (TXNi hIi{c}) and their parallel composition (c1 | | c2).
Each transaction is assumed to have a unique identi�er i , and executes at the top-level; our semantics
does not support nested transactions. The I in the TXN block syntax is the transaction’s isolation
4Bind (�=) has higher precedence than union ([). Angle braces (h. . .i) are used to denote records.
5For now, assume that the record being added is not already present in � .

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:10 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Syntax

x ,� 2 Variables f 2 Field Names i, j 2 N � 2 {+,�, , �,=} k 2 Z [B r 2 h f̄ = k̄i
� ,�, s 2 State B P

⇣
h f̄ = k̄i

⌘

Ie , Ic 2 IsolationSpec B (� ,�,�0) ! P
� 2 Values B k | r | s
e 2 Expressions B � | x | x . f | h f̄ = ēi | e1 � e2
c 2 Commands B LET x = e IN c | IF e THEN c1 ELSE c2 | c1; c2 | INSERT x

| DELETE �x .e | LET � = SELECT �x .e IN c | UPDATE �x .e1 �x .e2
| FOREACH x DO ��.�z.c | foreachhs1i s2 do �x .��.e

| TXNi hIi{c} | txni hI,� ,�i{c} | c1 | |c2 | SKIP
E 2 Eval Ctx ::= • | •| |c2 | c1 | |• | •; c2 | txni hI,� ,�i{•}

Local Reduction � ` ([c]i ,�) �! ([c 0]i ,� 0)

E�I�����
r .id < dom(� [�)

r 0 = hr with txn = i; del = falsei
� ` ([INSERT r]i ,�) �! ([SKIP]i ,� [{r 0})

E�S�����

s = {r 2 � | eval([r/x]e) = true} c 0 = [s/�]c
� ` ([LET � = SELECT �x .e IN c]i ,�) �! ([c 0]i ,�)

E�D�����
dom(�) \ dom(s) = ;

s = {r 0 | 9(r 2 �). eval([r/x]e) = true

^ r 0 = hr with del = true; txn = ii}
� ` ([DELETE �x .e]i ,�) �! ([SKIP]i ,� [s)

E�U�����
dom(�) \ dom(s) = ;

s = {r 0 | 9(r 2 �). eval([r/x]e2) = true ^
r 0 = h[r/x]e1 with id = r .id; txn = i; del = r .deli}
� ` ([UPDATE �x .e1 �x .e2]i ,�) �! ([SKIP]i ,� [s)

E�F������1 � ` ([FOREACH s DO ��.�z.c]i ,�) �! ([foreachh;i s do ��.�z.c]i ,�)
E�F������2 � ` ([foreachhs1i {r }] s2 do ��.�z.c]i ,�) �! ([[r/z][s1/�]c;

foreachhs1 [{r }i s2 do ��.�z.c]i ,�)
E�F������3 � ` ([foreachhsi ; do ��.�z.c]i ,�) �! ([SKIP]i ,�)

Top-Level Reduction (c,�) �! (c 0,�0)

E�T���S����

(TXNi hIi{c},�) �! (txni hI, ;,�i{c},�)

E�T��
Ie (� ,�,�0) � ` ([c]i ,�) �! ([c 0]i ,� 0)

(txni hI,� ,�i{c},�0) �! (txni hI,� 0,�0i{c 0},�0)

E�C�����
Ic (� ,�,�0)

(txni hI,� ,�i{SKIP},�0) �! (SKIP,� B �0)

Fig. 5. T : Syntax and Small-step semantics

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:11

speci�cation, whose purpose is explained below. Certain terms that only appear at run-time are
also present in c . These include a txn block tagged with sets (� and �) of records representing local
and global database state, and a runtime foreach expression that keeps track of the set (s1) of items
already iterated, and the set (s2) of items yet to be iterated. Note that the surface-level syntax of
the FOREACH command shown here is slightly di�erent from the one used in previous sections;
its higher-order function has two arguments, � and z, which are invoked (during the reduction)
with the set of already-iterated items, and the current item, respectively. This form of FOREACH
lends itself to inductive reasoning that will be useful for veri�cation (Sec. 4). Our language ensures
that all e�ectful actions are encapsulated within database commands, and that all shared state
among processes are only manipulated via transactions and its supported operations. In particular,
we do not consider programs in which objects resident on e.g., the OCaml heap are concurrently
manipulated by OCaml expressions as well as database actions.

We de�ne a small-step operational semantics for this language in terms of an abstract machine
that executes a command, and updates either a transaction-local (�), or global (�) database, both of
which are modeled as a set of records of a pre-de�ned type, i.e., they all belong to a single table. The
generalization to multiple tables is straightforward, e.g., by having the machine manipulate a set of
sets, one for each table. The semantics assumes that records in � can be uniquely identi�ed via their
id �eld, and enforces this property wherever necessary. Certain hidden �elds are treated specially
by the operational semantics, and are hidden from the surface language. These include a txn �eld
that tracks the identi�er of the transaction that last updated the record, and a del �eld that �ags
deleted records in � . For a set S of records, we de�ne dom(S) as the set of unique ids of all records
in S . Thus |dom(�) | = |�|. During its execution, a transaction may write to multiple records in
�. Atomicity dictates that such writes should not be visible in � until the transaction commits.
We therefore associate each transaction with a local database (�) that stores such uncommitted
records6. Uncommitted records include deleted records, whose del �eld is set to true. When the
transaction commits, its local database is atomically �ushed to the global database, committing
these heretofore uncommitted records. The �ush operation (B) is de�ned as follows:

8r . r 2 (� B �) , (r .id < dom(�) ^ r 2 �) _ (r 2 � ^ ¬r .del)
Let �0 = � B �. A record r belongs to �0 i� it belongs to � and has not been updated in � , i.e.,
r .id < dom(�), or it belongs to � , i.e., it is either a new record, or an updated version of an old
record, provided the update is not a deletion (¬r .del). Besides the commit, �ush also helps a
transaction read its own writes. Intuitively, the result of a read operation inside a transaction must
be computed on the database resulting from �ushing the current local state (�) to the global state
(�). The abstract machine of Fig. 5, however, does not let a transaction read its own writes. This
simpli�es the semantics, without losing any generality, since substituting � B� for � at select places
in the reduction rules e�ectively allows reads of uncommitted transaction writes to be realized, if
so desired.

The small-step semantics is strati�ed into a transaction-local reduction relation, and a top-level
reduction relation. The transaction-local relation (� ` (c,�) �! (c 0,� 0)) de�nes a small-step
reduction for a command inside a transaction, when the database state is �; the command c reduces
to c 0, while updating the transaction-local database � to � 0. The de�nition assumes a meta-function
eval that evaluates closed terms to values. The reduction relation for SQL statements is de�ned
straightforwardly. INSERT adds a new record to � after checking the uniqueness of its id. DELETE
�nds the records in � that match the search criteria de�ned by its boolean function argument, and
adds the records to � after marking them for deletion. SELECT bounds the name introduced by LET
to the set of records from � that match the search criteria, and then executes the bound command c .
6While SQL’s UPDATE admits writes at the granularity of record �elds, most popular databases enforce record-level locking,
allowing us to think of “uncommitted writes” as “uncommitted records”.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:12 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

UPDATE uses its �rst function argument to compute the updated version of the records that match
the search criteria de�ned by its second function argument. Updated records are added to � .

The reduction of FOREACH starts by �rst converting it to its run-time form to keep track of iterated
items (s1), as well as yet-to-be-iterated items (s2). Iteration involves invoking its function argument
with s1 and the current element x (note:] in {x }] s2 denotes a disjoint union). The reduction
ends when s2 becomes empty. The reduction rules for conditionals, LET binders, and sequences are
standard, and omitted for brevity.
The top-level reduction relation de�nes the small-step semantics of transactions, and their

parallel composition. A transaction comes tagged with an isolation speci�cation I, which has two
components Ie and Ic , that dictate the timing and nature of interferences that the transaction can
witness, during its execution (Ie), and when it is about to commit (Ic). Formally, Ie and Ic are
predicates over the (current) transaction-local database state (�), the state (�) of the global database
when the transaction last took a step, and the current state (�0) of the global database. Intuitively,
�0 , � indicates an interference from another concurrent transaction, and the predicates Ie and Ic
decide if this interference is allowed or not, taking into account the local database state (�). For
instance, as described in §2, an SI transaction on PostgreSQL de�nes I as follows:

Ie (� ,�,�0) = �0 = �
Ic (� ,�,�0) = 8(r 2 �) (r 0 2 �). r 0.id = r .id) r 0 2 �0

This de�nition dictates that no change to the global database state can be visible to an SI transaction
while it executes (Ie), and there should be no concurrent updates to recordswritten by the transaction
by other concurrently executing ones (Ic). To simplify the presentation, we use I instead of Ie and
Ic when its destructed form is not required.
The reduction of a TXNi hIi{c} begins by �rst converting it to its run-time form txni hI,� ,�i{c},

where � = ;, and � is the current (global) database. Rule E�T�� reduces txni hI,� ,�i{c} under a
database state (�0), only if the transaction-body isolation speci�cation (Ie) allows the interference
between � and �0. Rule E�C����� commits the transaction txni hI,� ,�i{c} by �ushing its uncom-
mitted records to the database. This is done only if the interference between � and �0 is allowed at
the commit point by the isolation speci�cation (Ic). The distinction between Ie and Ic allows us to
model the snapshot semantics of realistic isolation levels that isolate a transaction from interference
during its execution, but expose interferences at the commit point.

Local Context Independence As mentioned previously, our operational semantics does not let
a transaction read its own writes. It also does not let a transaction overwrite its own writes, due to
the premise dom(�)\dom(s) = ; on the E�D����� and E�U����� rules. We refer to this restriction
as local context independence. This restriction is easy to relax in the operational semantics and
the reasoning framework presented in the next section; our inference procedure described in §5,
however, has a non-trivial dependence on this assumption. Nonetheless, we have encountered
few instances in practice where enforcing local context independence turns out to be a severe
restriction. Indeed, all of the transactions we have considered in our benchmarks (e.g., TPC-C)
satisfy this assumption.

3.1 Isolation Specifications
A distinctive characteristic of our development is that it is parameterized on a weak isolation
speci�cation I that can be instantiated with the declarative characterization of an isolation guarantee
or a concurrency control mechanism, regardless of the actual implementation used to realize it.
This allows us to model a range of isolation properties that are relevant to the theory and practice
of transaction processing systems without appealing to speci�c implementation artifacts like locks,
versions, logs, speculation, etc. A few well-known properties are discussed below:

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:13

Unique Ids. As the new_order example (§2) demonstrates, enforcing global uniqueness of
ordered identi�ers requires stronger isolation levels than the ones that are default on most databases
(e.g., Read Committed). Alternatively, globally unique sequence numbers, regardless of the isolation
level, can be requested from a relational database via SQL’s UNIQUE and AUTO_INCREMENT keywords.
Our development crucially relies on the uniqueness of record identi�ers7, which are checked locally
for uniqueness by the E�I����� rule. The global uniqueness of locally unique identi�ers can be
captured as an isolation property thus:

Iid (� ,�,�
0) = 8(r 2 �). r .id < dom(�)) r .id < dom(�0)

Iid ensures that if the id of a record is globally unique when it is added to a transaction’s � , it
remains globally unique until the transaction commits. This would be achieved within our semantic
framework by prohibiting the interference from a concurrent transaction that adds the same id. The
axiom thus simulates a global counter protected by an exclusive lock without explicitly appealing
to an implementation artifact.

Write-Write Con�icts. Databases often employ a combination of concurrency control methods,
both optimistic (e.g., speculation and rollback) and pessimistic (e.g., various degrees of locking), to
eliminate write-write (ww) con�icts among concurrent transactions. We can specify the absence of
such con�icts using our tri-state formulation thus:

Iww (� ,�,�0) = 8(r 0 2 �) (r 2 �). r .id = r 0.id) r 2 �0

That is, given a record r 0 2 � , if there exists an r 2 � with the same id (i.e., r 0 is an updated
version of r), then r must be present unmodi�ed in �0. This prevents a concurrent transaction
from changing r , thus simulating the behavior of an exclusive lock or a speculative execution that
succeeded (Note: a transaction writing to r always changes r because its txn �eld is updated).

Snapshots Almost all major relational databases implement isolation levels that execute trans-
actions against a static snapshot of the database that can be axiomatized thus:

Iss (� ,�,�0) = �0 = �

Read-Only Transactions. Certain databases implement special privileges for read-only trans-
actions. Read-only behavior can be enforced on a transaction by including the following proposition
as part of its isolation invariant:

Iro (� ,�,�0) = � = ;

In addition to these properties, various speci�c isolation levels proposed in the database or
distributed systems literature, or implemented by commercial vendors can also be speci�ed within
this framework:

Read Committed (RC) and Monotonic Atomic View (MAV). RC isolation allows a transac-
tion to witness writes of committed transactions at any point during the transaction’s execution.
Although it o�ers only weak isolation guarantees, it nonetheless prevents witnessing dirty writes
(i.e., writes performed by uncommitted transactions). Monotonic Atomic View (MAV) (Bailis et al.
2013) is an extension to RC that guarantees the continuous visibility of a committed transaction’s
writes once they become visible in the current transaction. That is, a MAV transaction does not
witness disappearing writes, which can happen on a weakly consistent machine. Due to the SC
nature of our abstract machine (there is always a single global database state �; not a vector of
states indexed by vector clocks), and our choice to never violate atomicity of a transaction’s writes,
both RC and MAV are already guaranteed by our semantics. Thus, de�ning Ie and Ic to true ensures
RC and MAV behavior under our semantics.
7The importance of unique ids is recognized in real-world implementations. For example, MySQL’s InnoDB engine
automatically adds a 6-byte unique identi�er if none exists for a record.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:14 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Repeatable Read (RR) By de�nition, multiple reads to a transactional variable in a Repeatable
Read transaction are required to return the same value. RR is often implemented (for e.g., in (Bailis
et al. 2013; MySQL 2016)) by executing the transaction against a (conceptual) snapshot of the
database, but committing its writes to the actual database. This implementation of RR can be
axiomatized as Ie = Iss and Ic = true . However, this speci�cation of RR is stronger than the ANSI
SQL speci�cation, which requires no more than the invariance of already read records. In particular,
ANSI SQL RR allows phantom reads, a phenomenon in which a repeated SELECT query might
return newly inserted records that were not previously returned. This speci�cation is implemented,
for e.g., in Microsoft’s SQL server, using record-level exclusive read locks, that prevent a record
from being modi�ed while it is read by an uncommitted transaction, but which does not prohibit
insertion of new records. The ANSI SQL RR speci�cation can be axiomatized in our framework,
but it requires a minor extension to our operational semantics to track a transaction’s reads. In
particular, the records returned by SELECT should be added to the local database � , but without
changing their transaction identi�ers (txn �elds), and �ush (B) should only �ush the records that
bear the current transaction’s identi�er. With this extension, ANSI SQL RR can be axiomatized
thus:

Ie (� ,�,�0) , 8(r 2 �).r 2 �) r 2 �0
Ic (� ,�,�0) , true

If a record r belongs to both � and �, then it must be a record written by a di�erent transaction
and read by the current transaction (since the current transaction’s records are not yet present in
�). By requiring r 2 �0, Ie guarantees the invariance of r , thus the repeatability of the read.
Snapshot Isolation (SI) The concept of executing a transaction against a consistent snapshot

of the database was �rst proposed as Snapshot Isolation in (Berenson et al. 1995). SI doesn’t admit
write-write con�icts, and the original proposal, which is implemented in Microsoft SQL Server,
required the database to roll-back an SI transaction if con�icts are detected during the commit.
This behavior can be axiomatized as Ie = Iss (execution against a snapshot), and Ic = Iww (avoiding
write-write con�icts during the commit). Note that the same axiomatization applies to PostgreSQL’s
RR, although its implementation (described in Sec. 2) di�ers considerably from the original proposal.
Thus, reasoning done for an SI transaction on MS SQL server carries over to PostgreSQL’s RR and
vice-versa, demonstrating the bene�ts of reasoning axiomatically about isolation properties.

Serializability (SER) The speci�cation of serializability is straightforward:
Ie (� ,�,�0) = �0 = �
Ic (� ,�,�0) = �0 = �

4 THE REASONING FRAMEWORK
We now describe a proof system that lets us prove the correctness of a T program c w.r.t its high-
level consistency conditions I , on an implementation that satis�es the isolation speci�cations (I)
of its transactions8. Our proof system is essentially an adaptation of a rely-guarantee reasoning
framework (Jones 1983) to the setting of weakly isolated database transactions. The primary
challenge in the formulation deals with how we relate a transaction’s isolation speci�cation (I) to
its rely relation (R) that describes the transaction’s environment, so that interference is considered
only insofar as allowed by the isolation level. Another characteristic of the transaction setting
that a�ects the structure of the proof system is atomicity; we do not permit a transaction’s writes
to be visible until it commits. In the context of rely-guarantee, this means that the transaction’s
guarantee (G) should capture the aggregate e�ect of a transaction, and not its individual writes.
While shared memory atomic blocks also have the same characteristic, the fact that transactions
8Note the di�erence between I and I. The former constitute proof obligations for the programmer, whereas the latter
describes a transaction’s assumptions about the operational characteristics of the underlying system.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:15

R ` {P } [c]i {Q } {I ,R} c {G, I }

RG�S�����

P (� ,�) ^ x = {r | r 2 � ^ [r/�]e}) P 0(� ,�) R ` {P 0} [c]i {Q } stable(R, P 0)
R ` {P } [LET x = SELECT ��.e IN c]i {Q }

RG�I�����

stable(R, P)
8� ,� 0,�, i . P (� ,�) ^ j < dom(� [�) ^ � 0 = � [{hx with id = j; txn = i; del = falsei}) Q (� 0,�)

R ` {P } [INSERT x]i {Q }
RG�U�����

stable(R, P) 8� ,� 0,�. P (� ,�) ^ � 0 = � [{r 0 | 9(r 2 �).[r/x]e2 ^
r 0 = h[r/x]e1 with id = r .id; txn = i; del = falsei}) Q (� 0,�)
R ` {P } [UPDATE �x .e1 �x .e2]i {Q }

RG�D�����
stable(R, P)

8� ,� 0,�. P (� ,�) ^ � 0 = � [{r 0 | 9(r 2 �). [r/x]e ^ r 0 = hr with txn = i; del = truei}) Q (� 0,�)
R ` {P } [DELETE �x .e]i {Q }

RG�F������
stable(R,Q) stable(R,�) stable(R, P)

P) [;/�]� R ` {� ^ z 2 x } [c]i {Qc }
Qc) [� [{z}/�]� [x/�]�) Q

R ` {P } [FOREACH x DO ��.�z.c]i {Q }

RG�C�����
{I ,R} TXNi hIi{c} {G, I }
I0) I R0 ✓ R G ✓ G 0

stable(R0, I0) 8�,�0. I (�) ^G 0(�,�0)) I (�0)
{I ,R0} TXNi hI0i{c} {G 0, I }

RG�T��

stable(R, I) stable(R, I) Re = R\Ie Rc = R\Ic P (� ,�) , � = ; ^ I (�)
Re ` {P } c {Q } stable(Rc ,Q) 8� ,�. Q (� ,�)) G (�,� B �) 8�,�0. I (�) ^G (�,�0)) I (�0)

{I ,R} TXNi hIi{c} {G, I }

Fig. 6. T : Rely-Guarantee rules

are weakly-isolated introduces non-trivial complexity. Unlike an atomic block, the e�ect of a
transaction is not a sequential composition of the e�ects of its statements because each statement
can witness a potentially di�erent version of the state.

4.1 The Rely-Guarantee Judgment
Fig. 6 shows an illustrative subset of the rely-guarantee (RG) reasoning rules for T . We de�ne
two RG judgments: top-level ({I ,R} c {G, I }), and transaction-local (R ` {P } [c]i {Q }). Recall that
the standard RG judgment is the quintuple {P ,R} c {G,Q }. Instead of separate P and Q assertions,
our top-level judgment uses I as both a pre- and post-condition, because our focus is on verifying
that a T program preserves a databases’ consistency conditions9. A transaction-local RG judgment
9The terms consistency condition, high-level invariant, and integrity constraint are used interchangeably throughout the
paper.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:16 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

does not include a guarantee relation because transaction-local e�ects are not visible outside a
transaction. Also, the rely relation (R) of the transaction-local judgment is not the same as the
top-level rely relation (R) because it must take into account the transaction’s isolation speci�cation
(I). Intuitively, R is R modulo I. Recall that a transaction writes to its local database (�), which is
then �ushed when the transaction commits. Thus, the guarantee of a transaction depends on the
state of its local database at the commit point. The pre- and post-condition assertions (P and Q) in
the local judgment facilitate tracking the changes to the transaction-local state, which eventually
helps us prove the validity of the transaction’s guarantee. Both P andQ are bi-state assertions; they
relate transaction-local database state (�) to the global database state (�). Thus, the transaction-local
judgment e�ectively tracks how transaction-local and global states change in relation to each other.

4.1.1 Stability. A central feature of a rely-guarantee judgment is a stability condition that
requires the validity of an assertion � to be una�ected by interference from other concurrently
executing transactions, i.e., the rely relation R. In conventional RG, stability is de�ned as follows,
where � and � 0 denote states:

stable(R,�) , 8� ,� 0. � (�) ^ R (� ,� 0)) � (� 0)

Due to the presence of local and global database states, and the availability of an isolation speci�ca-
tion, we use multiple de�nitions of stability in Fig. 6, but they all convey the same intuition as above.
In our setting, we only need to prove the stability of an assertion (�) against those environment
steps which lead to a global database state on which the transaction itself can take its next step
according to its isolation speci�cation (I).

stable(R,�) , 8� ,�,�0.� (� ,�) ^ R⇤ (�,�0) ^ I(� ,�,�0)) � (� ,�0)

A characteristic of RG reasoning is that stability of an assertion is always proven w.r.t to R, and not
R⇤, although interference may include multiple environment steps, and R only captures a single
step. This is nonetheless sound due to inductive reasoning: if � is preserved by every step of R,
then � is preserved by R⇤, and vice-versa. However, such reasoning does not extend naturally to
isolation-constrained interference because R⇤ modulo I is not same as R⇤; the former is a transitive
relation constrained by I, whereas the latter is the transitive closure of a relation constrained by I.
This means, unfortunately, that we cannot directly replace R⇤ by R in the above condition.

To obtain an equivalent form in our setting, we require an additional condition on the isolation
speci�cation, which we call the stability condition on I. The condition requires I to admit the
interference of multiple R steps (i.e., R⇤ (�,�00), for two database states � and �00), only if it also
admits interference of each R step along the way. Formally:

stable(R, I) , 8� ,�,�0,�00. I(� ,�,�00) ^ R (�0,�00)) I(� ,�,�0) ^ I(� ,�0,�00)

It can be easily veri�ed that the above stability condition is satis�ed by the isolation axioms from
Sec. 3.1. For instance, Iss , the snapshot axiom, is stable because if a the state is unmodi�ed between
� and �00, then it is clearly unmodi�ed between � and �0, and also between �0 and �00, where
�0 is an intermediary state. Modifying and restoring the state � is not possible because each new
commit bears a new transaction id di�erent from the transaction ids (txn �elds) present in �.

The stability condition on I guarantees that an interference from R⇤ is admissible only if the inter-
ference due to each individual R step is admissible. In other words, it makes isolation-constrained R⇤
relation equal to the transitive closure of the isolation-constrained R relation. We call R constrained
by isolation I as R modulo I (R\I; written equivalently as R), which is the following ternary relation:

(R\I) (� ,�,�0) , R (�,�0) ^ I(� ,�,�0)
It is now enough to prove the stability of an RG assertion � w.r.t R\I:

stable((R\I),�) , 8� ,�,�0. � (� ,�) ^ (R\I) (� ,�,�0)) � (� ,�0)

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:17

This condition often signi�cantly simpli�es the form of R\I irrespective of R. For example, when
a transaction is executed against a snapshot of the database (i.e. Iss), R\Iss will be the identity
function, since any non-trivial interference will violate the �0 = � condition imposed by Iss .

4.1.2 Rules. RG�T�� is the top-level rule that lets us prove a transaction preserves the high-
level invariant I when executed under the required isolation as speci�ed by I. It depends on a
transaction-local judgment to verify the body (c) of a transaction with id i . The precondition P of c
must follow from the fact that the transaction-local database (�) is initially empty, and the global
database satis�es the high-level invariant I . The rely relation (Re) is obtained from the global rely
relation R and the isolation speci�cation Ie as explained above. Recall that Ie constrains the global
e�ects visible to the transaction while it is executing but has not yet committed, and P andQ of the
transaction-local RG judgment are binary assertions; they relate local and global database states.
The local judgment rules require one or both of them to be stable with respect to the constrained
rely relation Re .

For the guarantee G of a transaction to be valid, it must follow from the post-condition Q of the
body, provided that Q is stable w.r.t the commit-time interference captured by Rc . Rc , like Re , is
computed as a rely relation modulo isolation, except that commit-time isolation (Ic) is considered.
The validity of G is captured by the following implication:

8� ,�. Q (� ,�)) G (�,� B �)

In other words, ifQ relates the transaction-local database state (�) to the state of the global database
(�) before a transaction commits, thenG must relate the states of the global database before and after
the commit. The act of commit is captured by the �ush action (� B�). Once we establish the validity
of G as a faithful representative of the transaction, we can verify that the transaction preserves the
high-level invariant I by checking the stability of I w.r.t G, i.e., 8�,�0. I (�) ^G (�,�0)) I (�0).
The RG�C����� rule lets us safely weaken the guarantee G, and strengthen the rely R of a

transaction. Importantly, it also allows its isolation speci�cation I to be strengthened (both Ie and
Ic). This means that a transaction proven correct under a weaker isolation level is also correct
under a stronger level. Parametricity over the isolation speci�cation I, combined with the ability to
strengthen I as needed, admits a �exible proof strategy to prove database programs correct. For
example, programmers can declare isolation requirements of their choice through I, and then prove
programs correct assuming the guarantees hold. The soundness of strengthening I ensures that a
program can be safely executed on any system that o�ers isolation guarantees at least as strong as
those assumed.
Salient rules of transaction-local RG judgments are shown in Fig. 6. These rules (RG�U�����,

RG�S�����, RG�D�����, and RG�I�����) re�ect the structure of the corresponding reduction rule
from Fig. 5. The rule RG�F������ de�nes the RG judgment for a FOREACH loop. As is characteristic
of loops, the reasoning is pivoted on a loop invariant� that needs to be stable w.r.t R. � must be
implied by P , the pre-condition of FOREACH, when no elements have been iterated, i.e, when � = ;.
The body of the loop can assume the loop invariant, and the fact that z is an element from the set x
being iterated, to prove its post-condition Qc . The operational semantics ensures that z is added
to � at the end of the iteration, hence Qc must imply [� [{z}/�]� . When the loop has �nished
execution, �, the set of iterated items, is the entire set x . Thus [x/�]� is true at the end of the loop,
from which the post-condition Q must follow. As with the other rules, Q needs to be stable. The
rules for conditionals, sequencing etc., are standard, and hence elided.

4.2 Semantics and Soundness
We now formalize the semantics of the RG judgments de�ned in Fig. 6, and state their soundness
guarantees.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:18 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

De�nition 4.1 (Interleaved step andmulti-step relations). Interleaved step relations interleave
global and transaction-local reductions with interference as captured by the corresponding rely
relations. They are de�ned thus:

(c,�) �!R (c 0,�0)
def
= (c,�) �! (c 0,�0) _ (c 0 = c ^ R (�,�0)) global

([c]i ,� ,�) �!R ([c 0]i ,� 0,�0)
def
= � ` ([c]i ,�) �! ([c 0]i ,� 0) ^ �0 = � transaction-local

_ (c 0 = c ^ � 0 = � ^ R(� ,�,�0))
An interleaved multi-step relation (�!⇤R) is the re�exive transitive closure of the interleaved step
relation.

De�nition 4.2 (Semantics of RG judgments). The semantics of the global and transaction-local
RG judgments are de�ned thus:

R ` {P } [c]i {Q }
def
= 8� ,� 0,�,�0. P (� ,�) ^ ([c]i ,� ,�) �!⇤R ([SKIP]i ,� 0,�0)) Q (� 0,�0)

{I ,R} c {G, I } def
= 8�. I (�)) (8�0. (c,�) �!⇤R (SKIP,�0)) I (�0))

^ txn-guaranteed(R,G, c,�)

The txn-guaranteed predicate used in the semantics of the global RG judgment is de�ned below:

txn-guaranteed(R,G, c,�)
def
= 8c 0, c 00�0,�00.(c,�) �!⇤R (c 0,�0) ^ (c 0,�0) �! (c 00,�00)) G (�0,�00)

Thus, if {I ,R} c {G, I } is a valid RG judgment, then (a) every interleaved multi-step reduction of c
preserves the database integrity constraint (consistency condition) I , and (b) the e�ect that every
transaction in c has on the database state is captured byG . We can now assert the soundness of the
RG judgments in Fig. 6 as follows10:

T������ 4.3 (S��������). The rely-guarantee judgments de�ned by the rules in Fig. 6 are sound
with respect to the semantics of De�nition 4.2.

P���� S�����. The most important rule is the top-level rule RG�T��, which proves that a
transaction c which begins its execution in global database state satisfying I and encountering
interference R while executing under isolation speci�cation I �nishes its execution in a database
state also satisfying I , and also guarantees that its commit step satis�es G. The rule uses the
transaction-local RG judgment Re ` {P } c {Q }. By E�T���S����, the local and global database
states at the start of a transaction satisfy P , and the only challenge is that environment steps in an
execution covered by Re ` {P } c {Q } are in Re , while the top-level judgment requires environment
steps in R. We show that it is enough to consider only those environment steps in Re . First, we use
an inductive argument and stability of Ie (stable(R, Ie)) to show that any execution in which the
transaction completes all its steps must always preserve the isolation speci�cation Ie after every
environment step. Intuitively, this is because once Ie gets broken after some environment step, it
will continue to remain broken and the transaction would not be able to proceed (according to
E�T��). Since Re contains exactly those environment steps which preserve Ie , the local-level RG
judgment can be soundly used, which guarantees that after the transaction �nishes its execution,
its local state � and global state � will satisfy the assertion Q . Environment steps between the last
step of the transaction and its commit step can modify the global state, and hence we also require
Q to be stable against R. Again, we use an inductive argument, the stability of Ic , and the fact that
the transaction must execute its commit step to show that all environment steps must preserve Ic ,
and hence it is enough to require stable(Rc ,Q). Q guarantees that the commit step is in G , and G
in turn guarantees that after execution, the global database state will obey the invariant I .
10Full proofs for the major theorems and lemmas de�ned in this paper are available from (?).

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:19

x ,�,� ,� 2 Variables � 2 P0 � 2 P1
s B x | � | � | {x | �} | exists(�,�, s) | s1 �= �x .s2 | if � then s1 else s2 | s1 [s2

Fig. 7. Syntax of the set language S

5 INFERENCE
The rely-guarantee framework presented in the previous section facilitates modular proofs for
weakly-isolated transactions, but imposes a non-trivial annotation burden. In particular, it requires
each statement (c) of the transaction to be annotated with a stable pre- (P) and post-condition
(Q), and loops to be annotated with stable inductive invariants (�). While weakest pre-condition
style predicate transformers can help in inferring intermediate assertions for regular statements,
loop invariant inference remains challenging, even for the simple form of loops considered here.
As an alternative, we present an inference algorithm based on state transformers that alleviates
this burden. The idea is to infer the logical e�ect that each statement has on the transaction-local
database state � (i.e., how it transforms �), and compose multiple such e�ects together to describe
the e�ect of the transaction as a whole. Importantly, this approach generalizes to loops, where
the e�ect of a loop can be inferred as a well-de�ned function of the e�ect of its body, thanks
to certain pleasant properties enjoyed by the database programs modeled by our core language.
Interpreting database semantics as functional transformations on sets (described in terms of their
logical e�ects) enables an inference mechanism that can leverage o�-the-shelf SMT solvers for
automated veri�cation.
At the core of our approach is a simple language (S) to express set transformations (see Fig. 7).

The language admits set expressions that include variables (x), literals of the form {x | �} where
� is a propositional (quanti�er-free) formula on x , a restricted form of existential quanti�cation
that binds a set � satisfying proposition � in a set expression s , a monadic composition of two set
expressions (s1 and s2) composed using a bind (�=) operation, a conditional set expression where
the condition is a propositional formula, and a union of two set expressions. Symbols � and �
are also variables in S, but are used to denote local and database states (also represented as sets),
respectively. Constant sets can be written using set literal expressions. For example, the set {1, 2}
can be written as {x | x = 1 _ x = 2}. The language is carefully chosen to be expressive enough
to capture the semantics of T statements (as well as SQL operations more generally), yet simple
enough to have a semantics-preserving translation amenable for automated veri�cation.
Fig. 13 shows the syntax-directed state transformer inference rules for T commands inside a

transaction TXNi . The rules compute, for each command c , a (meta) function F that returns a set
of records as an expression in S, given a global database �. Intuitively, F(�) abstracts the set of
records added to the local database � as a result of executing c under � (i.e., � ` ([c]i ,�) �!⇤R
([SKIP]i ,� [F(�)))11. Note that the function F we call state transformer here is actually the e�ect
part of the state transformer introduced in Sec. 2, which is a function T of form �(� ,�). � [F(�).
Nonetheless, for simplicity, we will continue to refer to F as state transformer. Since the execution
is subject to isolation-constrained interference, the inference judgment depends on the isolation-
constrained rely relation R, which is used to enforce the stability of the state transformer F. Recall
that R is a tri-state rely relation over � , � and �0, that admits an interference from � and �0

depending on the local database state � . Thus, the stability of the state transformer F of c with
respect to R needs to take into account the (possible) prior state of the local database � , which
depends on the context (sequence of previous commands) of c , and computed by the corresponding
11Recall that the operational semantics treats deletion of records as the addition of the deleted record with its del �eld set
to true in the local store.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:20 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Fctxt ` c =)hi,R, I i F

Fctxt ` INSERT x =)hi,R, I i TFctxt[�(�). {r | r = {hx with del = false; txn = ii}]UhR, I i

G = �r . if [r/x]e2 then {r 0 | r 0 = h[r/x]e1 with id = r .id; del = r .del; txn = ii} else ;
Fctxt ` UPDATE �x .e1 �x .e2 =)hi,R, I i TFctxt[�(�). � �= G]UhR, I i

G = �r . if [r/x]e then {r 0 | r 0 = hr with del = true; txn = ii} else ;
Fctxt ` DELETE �x .e =)hi,R, I i TFctxt[�(�). � �= G]UhR, I i

Fctxt ` c =)hi,R, I i F
Fctxt ` LET x = e IN c =)hi,R, I i �(�). [e/x] F(�)

Fctxt ` c =)hi,R, I i F
G = �r . if [r/x]e then {r 0 | r 0 = r } else ; F0 = TFctxt[�(�). � �= G]UhR, I i

Fctxt ` LET � = SELECT �x .e IN c =)hi,R, I i �(�). [F0(�)/�] F(�)

Fctxt ` c1 =)hi,R, I i F1 Fctxt ` c2 =)hi,R, I i F2
Fctxt ` IF e THEN c1 ELSE c2 =)hi,R, I i �(�). if e then F1 (�) else F2 (�)

Fctxt ` c1 =)hi,R, I i F1 Fctxt [F1 ` c2 =)hi,R, I i F2
Fctxt ` c1; c2 =)hi,R, I i F1 [F2

Fctxt ` c =)hi,R, I i F
Fctxt ` FOREACH x DO ��.�z. c =)hi,R, I i �(�). x �= (�z. F(�))

Fig. 8. T : State transformer semantics.

state transformer Fctxt. Thus, the semantics of the state transformer can be understood in terms of
the RG judgment as following (formalized as Theorem C.20 in Sec. 5.1):

R ` {�(� ,�). � = Fctxt (�)} [c]i {�(� ,�). � = Fctxt (�) [F(�)}
In the above RG judgment, let P denote the pre-condition �(� ,�). � = Fctxt (�), and letQ denote the
post-condition �(� ,�). � = Fctxt (�) [F(�). The stability condition on the state transformer F can
be derived from the stability condition onQ . Observe that forQ to be stable, Fctxt (�0) [F(�0) must
be equal to Fctxt (�) [F(�), where � and �0 are related by R (ignore I for the moment). Assuming
that P is stable, Fctxt (�0) = Fctxt (�) is already given, leaving F(�0) = F(�) to be enforced. Thus, the
stability of F in in the context of Fctxt (written Fctxt[F]) is de�ned as following:

stable(R, Fctxt[F]) , 8�,�0,� . R(Fctxt (�) [F(�),�,�0)) F(�) = F(�0)

where � are the variables that occur free in F; this is possible because of how the inference rules are
structured. The equality in S translates to equivalence in �rst-order logic, as we describe later. In
the inference rules, stability is enforced constructively by a meta-function T·UhR, I i, which accepts a
transformer F (in its context Fctxt) and returns a new transformer that is guaranteed to be stable
under R. T·UhR, I i achieves the stability guarantee by abstracting away the bound global state (�) in
an unstable F to an existentially bound �0 as described below:

TFctxt[F]UhR, I i = F if stable(R, Fctxt[F]).
= �(�). exists(�0, I (�0), F(�0)) otherwise. �0 is a fresh name.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:21

Observe that when F is not stable, TFUhR, I i returns a transformer F0 that simply ignores its �
argument in favor of a generic �0, making F0 trivially stable. It is safe to assume I (�0) because
all veri�ed transactions must preserve the invariant, and hence only valid database states will
ever be witnessed. From the perspective of RG reasoning, T·UhR, I i e�ectively weakens the post-
condition of a statement, as done by the RG�C����� rule for transaction-bound commands. The
weakening semantics chosen by T·UhR, I i, while being simple, is nonetheless useful because of the
I (�0) assumption imposed on an existentially bound �0. The example in Fig. 9 demonstrates. Here,

let add_interest acc_id pc = atomically_do @@ fun () ->

let a = SQL.select1 BankAccount (fun acc -> acc.id = acc_id) in

let y = a.bal + pc*a.bal in

SQL.update BankAccount (fun acc -> {acc with bal = acc.bal + y})

(fun acc -> acc.id = acc_id)

Fig. 9. A transaction that deposits an interest to a bank account.

an add_interest transaction adds a positive interest (determined by pc) to the balance of a bank
account, which is required to be non-negative (I (�) , 8(r 2 �). r .bal � 0). The transaction starts
by issuing a select1 query, whose transformer F is essentially a singleton set containing a record r
whose id is acc_id (i.e., F(�) = {r | r 2 � ^ r .id = acc_id}). However, F is unstable because F(�0)
may not be the same set as F(�) when �0 , �. A record r 2 � whose id = acc_id may have its
balance updated by a concurrent withdraw or deposit transaction in �0, making the record in �0

di�erent from the record in �. Hence the stability check fails. Fortunately, the weakening operator
(T·UhR, I i) allows us to weaken the e�ect to exists(�, I (�), {r | r 2 � ^ r .id = acc_id}), which
e�ectively asserts that the select1 query returns a record with id = acc_id from some database
state that satis�es the non-negative balance invariant I . This weakened assertion is nonetheless
enough to deduce that a.bal � 0, and subsequently prove that a.bal + pc ⇤ a.bal � 0, allowing us
to verify the add_interest transaction.

The state transformer rules, like the earlier RG rules, closely follow the corresponding reduction
rules in Fig. 5, except that their language of expression is S. For instance, while the reduction
rule for UPDATE declaratively speci�es the set of updated records, the state transformer rule uses
S’s bind operation to compute the set. Other SQL rules do likewise. The rules for LET binders,
conditionals, and sequences compose the e�ects inferred for their subcommands. Thus, the e�ect of
a sequence of commands c1; c2 is the union of e�ects F1 and F2 of c1 and c2, respectively, except that
F2 is computed in a context that includes F1 (we write F1[F2 as a shorthand for �(�). F1 (�)[F2 (�)).
The inference rule for FOREACH takes advantage of the S’s bind operator to lift the e�ect inferred
for the loop body to the level of the loop. Since records added to � in each iteration of FOREACH are
independent of the previous iteration (recall that we make a local context independence assumption
about database programs; Sec. 3), sequential composition of the e�ects of di�erent iterations is
the same as their parallel composition. Since the loop body is executed once per each z 2 x ,
the e�ect of the the loop is a union of e�ects (F) for all z 2 x , all applied to the same state
(�). That is, Floop (�) =

S
z2x Fbod� (�). From the de�nition of the set monad’s bind operator,

Floop (�) = x �= (�z. Fbod� (�)), which mirrors the de�nition of the rule.

5.1 Soundness of Inference
We now formally state the correspondence between the inference rules given above and the RG
judgment of §4:

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:22 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

J� | � | . . .Kh� i = (>, �(�, r). r 2 �) | (>, �(�, r). r 2 �) | . . . |� | = |� |
J{x | �}Kh� i = (>, �(�, r). [r/x]�) |� | = |� |
Jif � then s1 else s2Kh� i = (�1 ^ �2, �(�, r). if � then G1 (�, r) (�1,G1) = Js1Kh� i

else G2 (�, r) (�2,G2) = Js2Kh� i
Js1 [s2Kh� i = (�1 ^ �2, (�1,G1) = Js1Kh� i

�(�, r).G1 (�, r) _ G2 (�, r)) (�2,G2) = Js2Kh� i
Js1 �= �x .s2Kh� i = (�1 ^ �2 ^ 8� .8a.8b . �1 (�) , fresh(�1) fresh(�2) fresh(�)

G1 (� ,a) ^ G2 (� ,a,b)) �(� ,b) (�1,G1) = Js1Kh� i
^8� .8b .9a. �2 (�) , (�2,G2) = J[a/x]s2Kh�,ai

�(� ,b)) G1 (� ,a) ^ G2 (� ,a,b), fresh(a) fresh(b)
�(�, r). �1 (�) ^ �2 (�) ^ �(�, r)) |� | = |� |

Jexists(�,�, s)Kh� i = (�s ^ 8� .8a.8b . f (� ,a) ^ f (� ,b)) a = b fresh(a) fresh(b)
^8� .9a. f (� ,a) fresh(f)
^8� .8a.8b . � (�) , f (� ,a) ^ [a/�]� fresh(�) fresh(�)

^�(� ,b) = Gs (� ,b), (�s ,Gs) = J[a/�]sKh� i
�(�, r). � (�) ^ �(�, r)) |� | = |� |

Fig. 10. Encoding S in first-order logic

T������ 5.1. For all i ,R,I ,c ,Fctxt, F, if stable(R, I), stable(R, Fctxt) and Fctxt ` c =)hi,R, I i F,
then:

R ` {�(� ,�). � = Fctxt (�) ^ I (�)} [c]i {�(� ,�). � = Fctxt (�) [F(�)}

P���� S�����. The proof follows by structural induction on c . Let P = �(� ,�). � = Fctxt (�) ^ I (�)
and Q = �(� ,�).� = Fctxt (�) [F(�). The base cases correspond to INSERT, UPDATE and DELETE
statements, where the proof is straightforward. The proofs for SELECT, sequencing, and condi-
tionals use the inductive hypothesis to infer the RG-judgments present in the premises of their
corresponding RG-rules. The interesting case is the FOREACH statement, for which we use the
loop invariant � (� ,�) , � = Fctxt (�) [(� �= (�z. F(�))), (where assuming that c is the body
of the loop, c =)hi,R, I i F) to prove all the premises of RG�F������. Using the same notation
as the rule RG�F������, � refers to the records already processed in previous iterations of the
loop, while z refers to the record being processed in the current iteration. At the beginning of the
loop [�/�]� (� ,�) just reduces to � = Fctxt (�) which is implied by the pre-condition P . From the
inductive hypothesis, we can infer that each iteration corresponds to the application of F. Since all
iterations are assumed to be independent of each other, and z is bound to a record in x for each
iteration, we conclude that at the end of every iteration, the loop invariant [� [{z}/�]� will be
satis�ed.

5.2 From S to the first-order logic
Theorem C.20 lets us replace the local judgment of the RG�T�� rule (Fig. 6) by a state transformer
inference judgment. The soundness of a transaction’s guarantee can now be established w.r.t the
e�ect F of the body. The RG�T�� rule so updated is shown below (F; = �(�). ; denotes an empty
context):

stable(R, I) stable(R, I) Re = R\Ie Rc = R\Ic F; ` c =)hi,Re , I i F
stable(Rc , F;[F]) 8�. G (�, F(�)) 8�,�0. I (�) ^G (�,�0)) I (�0)

{I ,R} TXNi hIi{c} {G, I }
Automating the application of the RG�T�� rule for a transaction requires automating the multiple
implication checks in the premise. While R, G, I and I are formulas in �rst-order logic (FOL)

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:23

with a relatively simple structure, F is an expression in the set language S (Fig. 7) with a possibly
complex structure. Fortunately, however, there exists a semantics-preserving translation from S to
a restricted subset of �rst-order logic (FOL) that lends itself to automatic reasoning.
The algorithm (J·Kh·i) shown in Fig. 10 translates an S expression (s) to FOL. The translation is

based on encoding a set of element type T as a unary predicate on T . The predicate is represented
as a meta function that accepts an x : T and returns a quanti�er-free proposition that evaluates
to true (>) if and only if x is present in the set. Alternatively, the translation may also encode
the set as a predicate in the logic itself, in which case a quanti�ed proposition constraining the
predicate is also generated. For instance, consider the set {1, 2}. The predicate describing the set
can be encoded as the function ��.� = 1 _ � = 2, with no further constraints, or it can be encoded
as the function ��.�(�) with an associated constraint, � 2 P1 = 8� . �(�) , � = 1 _ � = 2, de�ning
the uninterpreted predicate �. The translation adopts one or the other approach, depending on the
need. For uniformity, we consider the encoding of a set as pair (�,G), where G is a meta function,
and � is a FOL formula constraining any uninterpreted predicates used in G.

Due to the presence of bind (�=) inS, a set expression s may contain free variables introduced by
an enclosing binder. For instance, consider the S expression s1 �= (�x .{� |� = x + 1}), where s1 is
an integer set (expression). The subexpression {� |� = x + 1} (call it s2) contains x as a free variable.
In such cases, the predicate associated with the subexpression should also be indexed by its free
variables so that a unique set exists for each instantiation of the free variables. Thus, the predicate
(G) associated with the subexpression from the above example should be ��1.��2. �2 = �1 + 1, so
that the setG x1 is di�erent from the setG x2 for distinct x1,x2 2 s1. Intuitively, the bind expression
s1 �= (�x .{� |� = x + 1}) denotes the set S

x 2s1
G x .

The translation algorithm (Fig. 10) takes free variables into account. Given a set expression
s 2 S, whose (possible) free variables are � in the order of their introduction (top-most binder
�rst), JsKh� i returns the encoding of s as (�,G). The meta-function G is a predicate indexed by the
(possible) free variables of s , and thus its arity is |� | + 1. Note that � is only a sequence of variables
introduced by the enclosing binders of s , and not all may actually occur free in s . Nonetheless, its
predicate G is always indexed by |� | free variables for uniformity. The translation encodes database
state as an uninterpreted sort. Considering that the state is actually a set of records, we de�ne an
uninterpreted relation “2” to relate records and states. Thus, a variable set expression � denoting a
database state is encoded as the predicate �(�, r). r 2 �, where |� | = |� | (predicates are uncurried
for simplicity; � is a comma-separated sequence; r < S is a special variable). The constraints
associated with the encoding of a state are trivial (denoted >). The set literal expression {x | �} is
encoded straightforwardly. The conditional set expression is encoded as an if-then-else predicate
in FOL, where the predicates on true and false branches are computed from the set subexpressions
s1 and s2, respectively. The conjunction of constraints �1 and �2, from Js1Kh� i and Js2Kh� i (resp.),
is propagated upwards as the constraint of the conditional expression. A set union expression is
encoded similarly.
The �rst-order encoding of a bind expression describes the semantics of the set monad’s bind

operator in FOL. Let s1 be a set, and let f be a function that maps each variable in s1 to a new
set. Then, s2 = s1 �= f if and only if for all � 2 s2, there exists an x 2 s1 such that � = f (x),
and forall x 2 s1, f (x) 2 s2. The encoding essentially adds new constraints to this e�ect. The
translation �rst encodes s1 and s2 to obtain (�1,G1) and (�2,G2), respectively. Since s2 is under
a new binder that binds x , the free variable sequence of s2 is � ,x . In the interest of hygiene, we
substitute a fresh a for x , making the sequence � ,a. The set s is encoded as a new uninterpreted
predicate � indexed by s’s free variables (�). Since the set denoted by � is the result of the bind
s1 �= �x .s2, �rst-order constraints de�ning the bind operation (as described above) are generated.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:24 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

The constraints relate the predicates G1 and G2, representing s1 and s2 (resp.), to the uninterpreted
predicate � that represents s . The constraints are assigned names (�1 and �2) to give them an easy
handle.
The �rst-order encoding of the exists(�,�, s) expression essentially Skolemizes the existential.

Skolemizing is the process of substituting an existentially bound x in �x 2 P1 with f (�), where f
is a fresh uninterpreted function (called the Skolem function), and � are the free variables in �x
bound by enclosing universal quanti�ers. Due to the decidability restrictions (Sec. 5.3), the only
uninterpreted functions we admit in our logic are boolean (i.e., predicates/relations). Consequently,
we cannot de�ne the Skolem function f directly. Instead, we de�ne it via an uninterpreted relation,
by explicitly asserting the function property:

(8� .8a.8b . f (� ,a) ^ f (� ,b)) a = b) ^ (8� .9a. f (� ,a))
We then replace the existentially bound � with a new universally bound a in � and s , such that
f (� ,a) holds, before encoding the existentially bound s .
Example Let us reconsider the TPC-C new_order transaction from Sec. 2. Recall that the state
transformer (T) for the foreach loop shown in Fig. 4 is (k1, k2, and k3 are constants):

�(� ,�). � [item_reqs �= (�item_req. FU (�) [FI (�))

where:
FU = �(�). � �= (�s .if table(s) = Stock ^ s .s_i_id = item_req.ol_i_id

then {hs_i_id = s .s_i_id; s_d_id = s .s_d_id; s_qty = k1i}
else ;)

FI = �(�). {hol_o_id = k2; ol_d_id = k3; ol_i_id = item_req.ol_i_id;
ol_qty = item_req.ol_qtyi}

For any �, FU (�) and FI (�) are expressions in S, so can be translated to FOL by the encoding
algorithm in Fig. 10. Since the iteration variable item_req occurs free in these expressions, the
appropriate application of the encoding algorithm is JFU (�)Khitem_reqi and JFI (�)Khitem_reqi, which
results in (�U ,GU) and (�I ,GI), respectively, where �U , �I , GU , GI are as shown below:
�U = 8item_req.8s .8s 0. �1 (item_req) ,

(s 2 �) ^ (if table(s) = Stock ^ s .s_i_id = item_req.ol_i_id
then s 0 = hs_i_id = s .s_i_id; s_d_id = s .s_d_id; s_qty = k1i
else ?)) �0 (item_req, s 0)

^ 8item_req.8s 0.9s . �2 (item_req) ,
�0 (item_req, s 0)) s 2 � ^ if table(s) = Stock ^ s .s_i_id = item_req.ol_i_id

then s 0 = hs_i_id = s .s_i_id; s_d_id = s .s_d_id; s_qty = k1i
else ?

GU = �(item_req, r). �1 (item_req) ^ �2 (item_req) ^ �0 (item_req, r)
�I = >
GI = �(item_req, r). r = hol_o_id = k2; ol_d_id = k3; ol_i_id = item_req.ol_i_id;

ol_qty = item_req.ol_qtyi
Since the transformer (T) of the foreach loop is not nested does not contain any free iteration
variables, the appropriate application of the encoding algorithm is JT(� ,�)Kh;i, which results in the
(�I ^ �U ^ �1 ^ �2,G), where �1, �2, and G are as de�ned below:
�1 = 8item_req.8s . �3 , item_req 2 item_reqs ^ GU (item_req, s 0) _ GI (item_req, s 0)) �1 (s)
�2 = 8s .9item_req. �4 , �1 (s)) item_req 2 item_reqs ^ GU (item_req, s 0) _ GI (item_req, s 0)
G = �(r). �3 ^ �4 ^ �1 (r)

5.3 Decidability
Observe that the encoding shown in Fig. 10 maps to a fragment of FOL that satis�es the following
syntactic properties:

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:25

• All function symbols, modulo those that are drawn from P0 and P1, are uninterpreted and
boolean.
• All quanti�cation is �rst-order; second-order objects, such as sets and functions, are never
quanti�ed.
• Quanti�ers appear only at the prenex position, i.e., at the beginning of a quanti�ed formula.

The simple syntactic structure of the fragment already makes is amenable for automatic reasoning
via an o�-the-shelf SMT solver, such as Z3. The decidability of this fragment, however, is more
subtle and discussed below.

Consider a set expression s with no free variables (i.e., � = ;, like T(� ,�) from the above example).
Let (�,G) = JsKh;i. Note that � is a conjunction of (a). �i ’s, where each �i results from encoding a
subexpression si of s , and (b). a �s , resulting from encoding s itself (i.e., its top-level expression).
From Fig. 10, it is clear that�s is either> (for the �rst four cases), or it is a prenex-quanti�ed formula,
where quanti�cation is either 82, or 9, or 89. Generalizing this observation, for a set expression
s with |� | free variables, �s , if quanti�ed, is a prenex-quanti�ed formula, where quanti�cation
assumes one among the forms of 8 |� |+2, or 8 |� |9, or 8 |� |+19. In other words, the number of 8
quanti�ers preceding an 9 quanti�er is utmost one more than the number of free variables (�) in s .
For the convenience of this discussion, let us call 8 |� |+19 as the prenex signature of �s .
Next, in Fig. 10, observe that the (ordered) set � is extended only in the encoding rule for�=.

Since an occurrence of�= adds a quanti�er to |� |, if s is a bind expression nested inside a top-level
bind expression (like FU (�) from the above example), then the prenex signature of �s is 829.
Furthermore, if the subexpressions of s are neither bind nor exists expressions, then none of the �i ’s
are quanti�ed, and the prenex signature of � =

V
i �i ^�s remains 829. A similar observation holds

when s is an exists expression nested inside a top-level bind expression. Since exists is generated as
a result of stabilizing a SQL command transformer, which is always a non-nested bind expression,
the subexpression (s 0) of exists is a non-nested bind expression. s 0 is however nested inside a
top-level bind expression, hence its prenex signature is 829. Since exists does not extend � , the
prenex signature of s remains 829. When s is an expression other than�= or exists, then �s is not
a quanti�ed formula, and its prenex signature is trivially subsumed by 829. Thus, for the subset of
S, where bind expressions are restricted to one level of nesting, the FOL formulas generated by the
encoding have the prenex signature as 829.
The fragment of FOL that admits formulas with prenex signatures of the form 829⇤ is called

the Gödel-Kálmar-Schütte (GKS) fragment (Börger et al. 1996), which is known to be decidable.
The language of encoding, however, is a combination of GKS with (a). P0, the theory from which
quanti�er-free propositions (�) that encode object language expressions are drawn, and (b). P1,
the theory from which invariants (I) are drawn. Thus, the encoding of the subset of S described
above is decidable if the combination of GKS+ P0 + P1 is decidable. We write S[P0,P1] to highlight
the parameterization of S on P0 and P1. The discussion in the previous paragraph points to the
existence of non-trivial subsets in S[P0,P1] that are decidable:
T������ 5.2. There exist S0[P0,P1] ⇢ S[P0,P1] such that S0 is decidable if GKS + P0 + P1 is

decidable.

One interesting example of such an S0 is the subset described above: S with bind expressions
con�ned to one level of nesting. We denote this subset asS1[P0,P1], for which we assert decidability:

C�������� 5.3. S1[P0,P1] is decidable if GKS + P0 + P1 is decidable.

S1 is a useful subset of S, for it corresponds to T programs without nested foreach loops.
Observe that the new_order transaction (Fig. 1) belongs to this subset. Indeed, S1, while being a

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:26 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

type table_name = District | Order | Order_line | Stock

type district = {d_id: int; d_next_o_id: int}

type order = {o_id: int; o_d_id: int; o_c_id: int; o_ol_cnt: int}

type order_line = {ol_o_id: int; ol_d_id: int; ol_i_id: int; ol_qty: int}

type stock = {s_i_id: int; s_d_id:int; s_qty: int}

Fig. 11. OCaml type definitions corresponding to the TPC-C schema from Fig. 2

restricted version of S, is nonetheless expressive enough to cover all the benchmarks we considered
in Sec. 7.

A useful instantiation of S1 is S[BV,GKS+BV], where BV is the theory of bit-vector arithmetic,
which is often used to encode the �nite-bit integer arithmetic of real programs. Finite-bit integer
arithmetic has a �nite axiomatization in GKS. For instance, 32-bit integers can be encoded as 232 dis-
tinct constants of an uninterpreted sortT , while integer operations like addition and multiplication
can be encoded as uninterpreted functions whose properties are enumerated for the entire domain
of T . Thus BV is subsumed by GKS. Since the latter is decidable, the combination is decidable:

T������ 5.4. S1[BV,GKS + BV] is decidable.

This instantiation requires I to be drawn from GKS+BV, which is expressive enough to describe
common database integrity constraints, such as referential integrity, non-negativeness of all integer
values in a column etc. The isolation speci�cations presented in §3.1 are already simple �rst-order
formulas that can be encoded in GKS. Furthermore, it is also reasonable to expect the guarantee (G)
of a transaction to be expressible in the same logic as its inferred F, since F (without the stability
check) is essentially a complete characterization of the transaction, while G is only an abstraction.
Thus, with S1[BV,GKS + BV] as the language of inference, the veri�cation problem for weakly
isolated transactions is decidable.

6 IMPLEMENTATION
We have implemented our DSL to de�ne transactions as monadic computations in OCaml (modulo
some syntactic sugar), and our automatic reasoning framework as an extra frontend pass (called
ACID�����) in the ocamlc 4.03 compiler12. The input to ACID����� is a program in our DSL that
describes the schema of the database as a collection of OCaml type de�nitions, and transactions as
OCaml functions, whose top-level expression is an application of the atomically_do combinator.
For instance, TPC-C’s schema from Fig. 2 can be described via the OCaml type de�nitions shown
in Fig. 11. ACID����� also requires a speci�cation of the program in the form of a collection
of guarantees (G), one per transaction, and an invariant I that is a conjunction of the integrity
constraints on the database. An auxiliary DSL that includes the �rst-order logic (FOL) combinators
has been implemented for this purpose. ACID�����’s veri�cation pass follows OCaml’s type
checking pass, hence the concrete artifact of veri�cation is OCaml’s typed AST. The tool is already
equipped with an axiomatization of PostgreSQL and MySQL’s isolation levels expressed in our
FOL DSL. Other data stores can be similarly axiomatized. The concrete result of veri�cation is an
assignment of an isolation level of the selected data store to each transaction in the program.
At the top-level, ACID����� runs a loop that picks an unveri�ed transaction and progressively

strengthens its isolation level until it passes veri�cation. If the selected data store provides a
serializable isolation level, and if the program is sequentially correct, then the veri�cation is
guaranteed to succeed. Within the loop, ACID����� �rst computes the various rely relations needed
12The source code is available at available at https://github.com/gowthamk/acidi�er

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

https://github.com/gowthamk/acidifier

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:27

for veri�cation (R, Rl , and Rc). It then traverses the AST of a transaction, applying the inference
rules to construct a state transformer, checks its stability, and weakens it (T·UhR, I i) if it is not stable.
The result of traversing the transaction’s AST is therefore a state transformer (F) that is stable w.r.t
Rl , which is also stabilized against Rc (using T·UhR, I i), and then checked against the transaction’s
stated guarantee (G). If the check passes, then the guarantee is veri�ed to check if it preserves the
invariant I . The successful result from both checks results in the transaction being certi�ed correct
under the current choice of its isolation level. Successful veri�cation of all transactions concludes
the top-level execution, returning the inferred isolation levels as its output. ACID����� uses the
Z3 SMT solver as its underlying reasoning engine. Each implication check described above is �rst
encoded in FOL, applying the translation described in §5 wherever necessary.

6.1 Pragmatics
Real-World Isolation Levels The axiomatization of the isolation levels presented in §3.1 leaves
out certain nuances of their implementations on real data stores, which need to be taken into
account for veri�cation to be e�ective in practice. We take these into account while linking
ACID����� with store-speci�c semantics (isolation speci�cations, etc.). As an example, consider
how PostgreSQL implements an UPDATE operation. UPDATE �rst selects the records that meet the
search criteria from the snapshot against which it is executing (the snapshot is established at the
beginning of the transaction if the isolation level is SI, or at the beginning of the UPDATE statement
if the isolation level is RC). The selected records are then visited in the actual database (if they
still exist), write locks are obtained, and the update is performed, provided that each matched
record still meets UPDATE’s search criteria. If a record no longer meets the search criteria (due to
a concurrent update), it is excluded from the update, and the write lock is immediately released.
Otherwise, the record remains locked until the transaction commits.

Clearly, this sequence of events is not atomic, unlike the assumption made by our formal model
because the implementation admits interference between the updates of individual records that
meet the search criteria. Nonetheless, through a series of relatively straightforward deductions, we
can show that PostgreSQL’s UPDATE is in fact equivalent (in behavior) to a sequential composition
of two atomic operations c1; c2, where c1 is e�ectively a SELECT operation with the same search
criteria as UPDATE, and c2 is a slight variation of the original UPDATE that updates a record only if a
record with the same id is present in the set of records returned by SELECT:

UPDATE (�x . e1) (�x . e2) �! LET � = SELECT (�x . e1) IN UPDATE (�x . e1 ^ x .id 2 dom(�)) (�x . e2)

The intuition behind this translation is the observation that all interferences possible during the
execution of the UPDATE can be accommodated between the time the records are selected from
the snapshot, and the time they are actually updated. ACID����� performs this translation if the
selected store is PostgreSQL, allowing it to reason about UPDATE operations in a way that is faithful
to its semantics on PostgreSQL. ACID����� also admits similar compensatory logic for certain
combinations of isolation levels and operations on MySQL.

Set functions SQL’s SELECT query admits projections of record �elds, and also application of
auxiliary functions such as MAX and MIN, e.g., SELECT MAX(ol_o_id) FROM Order_line WHERE
. . ., etc. We admit such extensions as set functions in our DSL (e.g., project, max, min), and
axiomatize their behavior. For instance:

s2 = project s1 (�z. e) , 8�. � 2 s2 , 9(x 2 s1). � = [x/z]e
x = max s , x 2 s ^ 8(� 2 s). � x

There are however certain set functions whose behavior cannot be completely axiomatized in FOL.
These include sum, count etc. For these, we admit imprecise axiomatizations.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:28 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

type table_name = Student | Course | Enrollment

type student = {s_id: id; s_name: string}

type course = {c_id: id; c_name: string; c_capacity: int}

type enrollment = {e_id: id; e_s_id: id; e_c_id: id}

let enroll_txn sid cid =

let crse = SQL.select1 [Course] (fun c -> c.c_id = cid) in

let s_c_enrs = SQL.select [Enrollment] (fun e -> e.e_s_id = sid &&

e.e_c_id = cid) in

if crse.c_capacity > 0 && Set.is_empty s_c_enrs then

(SQL.insert Enrollment {e_id=new_id (); e_s_id=sid; e_c_id=cid};

SQL.update Course (fun c -> {c with c_capacity = c.c_capacity - 1})

(fun c -> c.c_id = cid)) else ()

let deregister_txn sid =

let s_enrs = SQL.select [Enrollment] (fun e -> e.e_s_id = sid) in

if Set.is_empty s_enrs then

SQL.delete Student (fun s -> s.s_id = sid) else ()

Fig. 12. Courseware Application

Annotation Burden ACID����� signi�cantly reduces the annotation burden in verifying a
weakly isolated transactions by eliminating the need to annotate intermediate assertions and loop
invariants. Guarantees (G) and global invariants (I), however, still need to be provided. Alternatively,
a weakly isolated transactionT can be veri�ed against a generic serializability condition, eliminating
the need for guarantee annotations. In this mode, ACID����� �rst infers the transformer FSER of T
without considering any interference, which then becomes its guarantee (G). Doing likewise for
every transaction results in a rely relation (R) that includes FSER of every transaction. Veri�cation
now proceeds by taking interference into account, and verifying that each transaction still yields
the same F as its FSER . The result of this veri�cation is an assignment of (possibly weak) isolation
levels to transactions which nonetheless guarantees behavior equivalent to a serializable execution.

7 EVALUATION
In this section, we present our experience in running ACID����� on two di�erent applications:
Courseware: a course registration system described by (Gotsman et al. 2016), and TPC-C.

Courseware The Courseware application allows new courses to be added (via an add_course
transaction), and new students to be registered (via a register transaction) into a database. A
registered student can enroll (enroll) in an existing course, provided that enrollment has not
already exceeded the course capacity (c_capacity). A course with no enrollments can be canceled
(cancel_course). Likewise, a student who is not enrolled in any course can be deregistered
(deregister). Besides Student and Course tables, there is also an Enrollment table to track the
many-to-many enrollment relationship between courses and students. The simpli�ed code for the
Courseware application with only enroll and deregister transactions is shown in Fig. 12. The
application is required to preserve the following invariants on the database:

(1) I1: An enrollment record should always refer to an existing student and an existing course.
(2) I2: The capacity (c_capacity) of a course should always be a non-negative quantity.

Both I1 and I2 can be violated under weak isolation. I1 can be violated, for example, when
deregister runs concurrently with enroll, both at RC isolation. While the former transac-
tion removes the student record after checking that no enrollments for that student exists, the latter

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:29

new_order delivery payment order_status stock_level
MySQL SER SER RC RC RC
PostgreSQL SI SI RC RC RC

Table 1. The discovered isolation levels for TPC-C transactions

transaction concurrently adds an enrollment record after checking the student exists. Both can
succeed concurrently, resulting in an invalid state. Invariant I2 can be violated by two enrolls,
both reading c_capacity=1, and both (atomically) decrementing it, resulting in c_capacity=-1.
We ran ACID����� on the Courseware application (Fig. 12) after annotating transactions with their
respective guarantees, and asserting I = I1 ^ I2 as the correctness condition. The guarantees Ge
and Gd for enroll and deregister transactions, respectively, are shown below:

Ge (�,�0) , �0s = �s ^ 9cid.9sid.
�0c = �c �= �c . if c .c_id = cid

then exists(c 0, c 0.id = c .id ^ c 0.c_name = c .c_name
^ c 0.c_capacity � 0, {c 0})

else {c}
^ �e = �0e �= �e . if e .e_c_id = cid ^ e .e_s_id = sid then ; else {e}

Gd (�,�
0) , �0c = �c ^ �0e = �e ^ 9sid. if 8(e 2 �e). e .e_s_id , sid

then �0s = �s �= �s . if s .id = sid then ; else {s}
else �0s = �s

For the sake of this presentation we split � into three disjoint sets of records, �s , �c , and �e ,
standing for Student, Course, and Enrollment tables, respectively. Observing that the set language
S (Sec. 5), besides being useful for automatic veri�cation, also facilitates succinct expression of
transaction semantics, we de�neGe andGd in a combination of FOL and S. Ge essentially says that
the enroll transaction leaves the Student table unchanged, while it may update the c_capacity
�eld of a Course record to a non-negative value (even when it doesn’t update, it is the case that
c 0.c_capacity � 0, because c 0 = c , and c 2 �c , and we know that I2 (�c)). Ge also conveys
that enroll might insert a new Enrollment record by stating that �e , the Enrollment table in
the pre-state, contains all records e from �0e , the table in the post-state, except when e .e_c_id
and e .e_s_id match cid and sid, respectively. The guarantee Gd of deregister asserts that the
transaction doesn’t write to Course and Enrollment tables. The transaction might however delete
a Student record bearing an id=sid (formally, �0s = �s �= �s . if s .id = sid then ; else {s}), for
some sid for which no corresponding Enrollment records are present in the pre-state (in other
words, 8(e 2 �e). e .e_s_id , sid).

With help of the guarantees, such as those described above, ACID����� was able to automatically
discover the aforementioned anomalous executions, and was subsequently able to infer that the
anomalies can be preempted by promoting the isolation level of enroll and deregister to SER
(on both MySQL and PostgreSQL), leaving the isolation levels of remaining transactions at RC. The
total time for inference and veri�cation took less than a minute running on a conventional laptop.

TPC-C The simpli�ed schema of the TPC-C benchmark has been described in Sec. 2. In addition
to the tables shown in Fig. 2, the TPC-C schema also has Warehouse and New_order tables that are
relevant for veri�cation. To verify TPC-C, we examined four of the twelve consistency conditions
speci�ed by the standard, which we name I1 to I4:

(1) Consistency condition I1 requires that the sales bottom line of each warehouse equals the
sum of the sales bottom lines of all districts served by the warehouse.

(2) Conditions I2 and I3 e�ectively enforce uniqueness of ids assigned to Order and New_order
records, respectively, under a district.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:30 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

(3) Condition I4 requires that the number of order lines under a district must match the sum
of order line counts of all orders under the district.

Similar to the example discussed in Sec. 2, there are a number of ways TPC-C’s transactions
violate the aforementioned invariants under weak isolation. ACID����� was able to discover all
such violations when verifying the benchmark against I =

V
i Ii , with guarantees of all three

transactions provided. The isolation levels were subsequently strengthened as shown in Table. 1.
As before, inference and veri�cation took less than a minute.

To sanity-check the results of ACID�����, we conducted experiments with a high-contention
OLTP workload on TPC-C aiming to explore the space of correct isolation levels for di�erent
transactions. The workload involves a mix of all �ve TPC-C transactions executing against a
TPC-C database with 10 warehouses. Each warehouse has 10 districts, and each district serves 3000
customers. There are a total of 5 transactions in TPC-C, and given that MySQL and PostgreSQL
support 3 isolation levels each, there are a total of 35 = 243 di�erent con�gurations of isolation
levels for TPC-C transactions on MySQL and PostgreSQL. We executed the benchmark with all 243
con�gurations, and found 171 of them violated at least one of the four invariants we considered.
As expected, the isolation levels that ACID����� infers for the TPC-C transactions do not result in
invariant violations, either on MySQL or on PostgreSQL, and were determined to be the weakest
safe assignments possible.

8 RELATEDWORK
Specifying weak isolation. Adya (Adya 1999) speci�es several weak isolation levels in terms

of dependency graphs between transactions, and the kinds of dependencies that are forbidden
in each case. The operational nature of Adya’s speci�cations make them suitable for runtime
monitoring and anomaly detection (Cahill et al. 2008; Revilak et al. 2011; Zellag and Kemme 2014),
whereas the declarative nature of our speci�cations make them suitable for formal reasoning about
program behavior. (Sivaramakrishnan et al. 2015) specify isolation levels declaratively as trace
well-formedness conditions, but their speci�cations implicitly assume a complete trace with only
committed transactions, making it di�cult to reason about a program as it builds the trace. (Cerone
et al. 2015) specify isolation levels with atomic visibility, but their speci�cations are also for
complete traces. Both the aforementioned speci�cation frameworks use the vocabulary introduced
in (Burckhardt et al. 2014). However, none of them are equipped with a reasoning framework that
can use such speci�cations to verify programs under weak isolation.

Recent work described in (Crooks et al. 2017) also explores the use of a state-based interpretation
of isolation as we do, and like our approach, develops speci�cations of weak isolation that are not
tied to implementation-speci�c artifacts. However, they do not consider veri�cation (manual or
automated) of client programs, and it is not immediately apparent if their speci�cation formalism
is amenable for use within a veri�cation toolchain. (Warszawski and Bailis 2017) present a dynamic
analysis for weak isolation that attempts to discover weak isolation anomalies from SQL log �les.
Their solution, while capable of identifying database attacks due to the use of incorrect isolation
levels, does not consider how to verify application correctness, infer proper isolation levels, or
formally reason about the relationship between weak-isolation levels and application invariants.
Reasoning under weak isolation. (Fekete et al. 2005) propose a theory to characterize non-

serializable executions that arise under ��. They also propose an algorithm that allocates either
�� or ��� isolation levels to transactions while guaranteeing serializability. (Cerone and Gotsman
2016) improve on Adya’s �� speci�cation and use it to derive a static analysis that determines
the safety of substituting �� with a weaker variant called Parallel Snapshot Isolation (Sovran et al.
2011). These e�orts focus on establishing the equivalence of executions between a pair of isolation

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:31

levels, without taking application invariants into account. (Bernstein et al. 2000) propose informal
semantic conditions to ensure the satisfaction of application invariants under weaker isolation
levels. All these techniques are tailor-made for a �nite set of well-understood isolation levels
(rooted in (Berenson et al. 1995)).

Reasoning under weak consistency. There have been several recent proposals to reason about
programs executing under weak consistency (Alvaro et al. 2011; Bailis et al. 2014; Balegas et al.
2015; Gotsman et al. 2016; Li et al. 2014, 2012). All of them assume a system model that o�ers a
choice between a coordination-free weak consistency level (e.g., eventual consistency (Alvaro et al.
2011; Bailis et al. 2014; Balegas et al. 2015; Li et al. 2014, 2012)) or causal consistency (Gotsman
et al. 2016; Lesani et al. 2016)). All these e�orts involve proving that atomic and fully isolated
operations preserve application invariants when executed under these consistency levels. In
contrast, our focus in on reasoning in the presence of weakly-isolated transactions under a strongly
consistent store. (Gotsman et al. 2016) adapt Parallel Snapshot Isolation to a transaction-less setting
by interpreting it as a consistency level that serializes writes to objects; a dedicated proof rule is
developed to help prove prove program invariants hold under this model. By parameterizing our
proof system over a gamut of weak isolation speci�cations, we avoid the need to de�ne a separate
proof rule for each new isolation level we may encounter.

Inference. (Vafeiadis 2010; Vafeiadis, Viktor 2010) describe action inference, an inference procedure
for computing rely and guarantee relations in the context of RGSep (Vafeiadis, Viktor and Parkinson,
Matthew 2007), an integration of rely-guarantee and separation logic (Reynolds 2002) that allows
one to precisely reason about local and shared state of a concurrent program. The ideas underlying
action inference have been used to prove memory safety, linearizability, shape invariant inference,
etc. of �ne-grained concurrent data structures. While our motivation is similar (automated inference
of intermediate assertions and local invariants), the context of study (transactions vs. shared-
memory concurrency), the objects being analyzed (relational database tables vs. concurrent data
structures), the properties being veri�ed (integrity constraints over relational tables vs. memory
safety, or linearizability of concurrent data structure operations) and the analysis technique used
to drive inference (state transformers vs. abstract interpretation) are quite di�erent.
9 CONCLUSIONS
To improve performance, modern database systems employ techniques that weaken the strong
isolation guarantees provided by serializable transactions in favor of alternatives that allow a
transaction to witness the e�ects of other concurrently executing transactions that happen commit
during its execution. Typically, it is the responsibility of the database programmer to determine if
an available weak isolation level would violate a transaction’s consistency constraints. Although
this has proven to be a di�cult and error-prone process, there has heretofore been no attempt to
formalize notions of weak isolation with respect to application semantics, or consider how we
might verify the correctness of database programs that use weakly-isolated transactions. In this
paper, we provide such a formalization. We develop a rely-guarantee proof framework cognizant
of weak isolation semantics, and build on this foundation to devise an inference procedure that
facilitates automated veri�cation of weakly-isolated transactions, and have applied our ideas on
widely-used database systems to justify their utility. Our solution enables database applications to
leverage the performance advantages o�ered by weak isolation, without compromising correctness.

ACKNOWLEDGEMENTS
We thank KC Sivaramakrishnan for numerous helpful discussions about weak isolation, and for
thorough analysis of the material presented in this paper. We are grateful to the anonymous
reviewers, and our shepherd, Peter Müller, for their careful reading and insightful comments.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:32 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

This material is based upon work supported by the National Science Foundation under Grant No.
CCF-SHF 1717741 and the Air Force Research Lab under Grant No. FA8750-17-1-0006.

REFERENCES
Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. Ph.D.

Dissertation. Cambridge, MA, USA. AAI0800775.
Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak. 2011. Consistency Analysis in Bloom: a CALM and

Collected Approach. In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings. 249–260.

Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, andMark Callaghan. 2013. LinkBench: ADatabase Benchmark
Based on the Facebook Social Graph. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’13). ACM, New York, NY, USA, 1185–1196. https://doi.org/10.1145/2463676.2465296

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Highly Available
Transactions: Virtues and Limitations. PVLDB 7, 3 (2013), 181–192.

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, JosephM. Hellerstein, and Ion Stoica. 2014. Coordination Avoidance
in Database Systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185–196. https://doi.org/10.14778/2735508.2735509

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2015. Feral Concurrency
Control: An Empirical Investigation ofModernApplication Integrity. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1327–1342. https://doi.org/10.1145/2723372.
2737784

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. HAT, Not CAP: Towards Highly Available
Transactions. In Proceedings of the 14th USENIX Conference on Hot Topics in Operating Systems (HotOS’13). USENIX
Association, Berkeley, CA, USA, 24–24. http://dl.acm.org/citation.cfm?id=2490483.2490507

Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2015.
Putting the Consistency back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer
System (EuroSys ’15). Bordeaux, France. http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A Critique of ANSI SQL
Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD ’95).
ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/223784.223785

Arthur J. Bernstein, Philip M. Lewis, and Shiyong Lu. 2000. Semantic Conditions for Correctness at Di�erent Isolation Levels.
In Proceedings of the 16th International Conference on Data Engineering (ICDE ’00). IEEE Computer Society, Washington,
DC, USA, 57–. http://dl.acm.org/citation.cfm?id=846219.847381

Philip A. Bernstein and Sudipto Das. 2013. Rethinking Eventual Consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13). ACM, New York, NY, USA, 923–928. https://doi.org/10.
1145/2463676.2465339

Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency Control - Theory and Algorithms. ACM Trans.
Database Syst. 8, 4 (Dec. 1983), 465–483. https://doi.org/10.1145/319996.319998

Bitcoin Bug 2016. How I Stole Roughly 100 BTC From an Exchange and How I Could Have Stolen More! (2016).
https://goo.gl/4SqaP2

Ergon Börger, Erich Grädel, and Yuri Gurevich. 1996. The Classical Decision Problem. Springer-Verlag Telos.
Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated Data Types: Speci�cation,

Veri�cation, Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA, 271–284. https://doi.org/10.1145/2535838.2535848

Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable Isolation for Snapshot Databases. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (SIGMOD ’08). ACM, New York, NY, USA, 729–738.
https://doi.org/10.1145/1376616.1376690

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consistency Models with
Atomic Visibility. In 26th International Conference on Concurrency Theory (CONCUR 2015) (Leibniz International Proceedings
in Informatics (LIPIcs)), Luca Aceto and David de Frutos Escrig (Eds.), Vol. 42. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

Andrea Cerone and Alexey Gotsman. 2016. Analysing Snapshot Isolation. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing (PODC).

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is Believing: A Client-Centric Speci�cation of
Database Isolation. In Proceedings of the ACM Conference on Principles of Distributed Computing (PODC). 73–82.

Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. 1985. Consistency in a Partitioned Network: A Survey. ACM
Comput. Surv. 17, 3 (Sept. 1985), 341–370. https://doi.org/10.1145/5505.5508

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

https://doi.org/10.1145/2463676.2465296
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.1145/2723372.2737784
http://dl.acm.org/citation.cfm?id=2490483.2490507
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
https://doi.org/10.1145/223784.223785
http://dl.acm.org/citation.cfm?id=846219.847381
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/319996.319998
https://goo.gl/4SqaP2
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/1376616.1376690
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/5505.5508

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:33

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of Consistency and Predicate Locks in a Database
System. Commun. ACM 19, 11 (Nov. 1976), 624–633. https://doi.org/10.1145/360363.360369

Alan Fekete. 2005. Allocating Isolation Levels to Transactions. In Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS ’05). ACM, New York, NY, USA, 206–215. https://doi.org/10.
1145/1065167.1065193

Alan Fekete, Shirley N. Goldrei, and Jorge Pérez Asenjo. 2009. Quantifying Isolation Anomalies. Proc. VLDB Endow. 2, 1
(Aug. 2009), 467–478. https://doi.org/10.14778/1687627.1687681

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005. Making Snapshot Isolation
Serializable. ACM Trans. Database Syst. 30, 2 (June 2005), 492–528. https://doi.org/10.1145/1071610.1071615

Peter Gammie, Antony L. Hosking, and Kai Engelhardt. 2015. Relaxing Safely: Veri�ed On-the-�y Garbage Collection for
x86-TSO. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 99–109. https://doi.org/10.1145/2737924.2738006

Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. 2008. Database Systems: The Complete Book (2 ed.). Prentice
Hall Press, Upper Saddle River, NJ, USA.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant
Web Services. SIGACT News 33, 2 (June 2002), 51–59. https://doi.org/10.1145/564585.564601

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m Strong Enough:
Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2016). ACM, New York, NY, USA, 371–384. https://doi.org/10.
1145/2837614.2837625

J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. 1976. Granularity of Locks and Degrees of Consistency in a Shared
Data Base. 365–394.

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and Modular Re�nement Reasoning for
Concurrent Programs. In Computer Aided Veri�cation: 27th International Conference. Springer International Publishing,
449–465. https://doi.org/10.1007/978-3-319-21668-3_26

C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans. Program. Lang. Syst.
5, 4 (Oct. 1983), 596–619. https://doi.org/10.1145/69575.69577

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certi�ed Causally Consistent Distributed Key-value
Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 357–370. https://doi.org/10.1145/2837614.2837622

Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the
Choice of Consistency Levels in Replicated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 281–292. http://dl.acm.org/citation.
cfm?id=2643634.2643664

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-
replicated Systems Fast As Possible, Consistent when Necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 265–278. http:
//dl.acm.org/citation.cfm?id=2387880.2387906

MySQL 2016. Transaction Isolation Levels. (2016). https://dev.mysql.com/doc/refman/5.6/en/
innodb-transaction-isolation-levels.html Accessed: 2016-07-1 10:00:00.

Oracle 2016. Data Concurrency and Consistency. (2016). https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.
htm Accessed: 2016-07-1 10:00:00.

Poloniex Bug 2016. BTC Stolen from Poloniex. (2016). https://bitcointalk.org/index.php?topic=499580
PostgreSQL 2016. Transaction Isolation. (2016). https://www.postgresql.org/docs/9.1/static/transaction-iso.html Accessed:

2016-07-1 10:00:00.
Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil. 2011. Precisely Serializable Snapshot Isolation (PSSI). In Proceedings

of the 2011 IEEE 27th International Conference on Data Engineering (ICDE ’11). IEEE Computer Society, Washington, DC,
USA, 482–493. https://doi.org/10.1109/ICDE.2011.5767853

J C Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th Annual IEEE Symposium on Logic
in Computer Science. IEEE Comput. Soc, 55–74.

SciMed Bug 2016. Avoid Race Conditions that Violate Uniqueness Validation - Rails. (2016). http://goo.gl/0QhMQj
Dennis Shasha and Philippe Bonnet. 2003. Database Tuning: Principles, Experiments, and Troubleshooting Techniques. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.
KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consistent

Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2015). ACM, New York, NY, USA, 413–424. https://doi.org/10.1145/2737924.2737981

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1065167.1065193
https://doi.org/10.1145/1065167.1065193
https://doi.org/10.14778/1687627.1687681
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/2737924.2738006
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2837614.2837622
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html
https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm
https://bitcointalk.org/index.php?topic=499580
https://www.postgresql.org/docs/9.1/static/transaction-iso.html
https://doi.org/10.1109/ICDE.2011.5767853
http://goo.gl/0QhMQj
https://doi.org/10.1145/2737924.2737981

27:34 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional Storage for Geo-replicated Systems. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA,
385–400. https://doi.org/10.1145/2043556.2043592

Starbucks Bug 2016. Hacking Starbucks for unlimited co�ee. (2016). http://sakurity.com/blog/2015/05/21/starbucks.html
Viktor Vafeiadis. 2010. Automatically Proving Linearizability. In Proceedings of the 22nd International Conference on Computer

Aided Veri�cation (CAV’10). Springer-Verlag, Berlin, Heidelberg, 450–464. https://doi.org/10.1007/978-3-642-14295-6_40
Vafeiadis, Viktor. 2010. RGSep Action Inference. In Proceedings of the International Conference on Veri�cation, Model Checking,

and Abstract Interpretation. 345–361.
Vafeiadis, Viktor and Parkinson, Matthew. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR 2007 –

Concurrency Theory. Springer Berlin Heidelberg, Berlin, Heidelberg, 256–271.
Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications.

In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD ’17). ACM, New York, NY,
USA, 5–20. https://doi.org/10.1145/3035918.3064037

Kamal Zellag and Bettina Kemme. 2014. Consistency Anomalies in Multi-tier Architectures: Automatic Detection and
Prevention. The VLDB Journal 23, 1 (Feb. 2014), 147–172. https://doi.org/10.1007/s00778-013-0318-x

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

https://doi.org/10.1145/2043556.2043592
http://sakurity.com/blog/2015/05/21/starbucks.html
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/3035918.3064037
https://doi.org/10.1007/s00778-013-0318-x

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:35

A FULL OPERATIONAL SEMANTICS
Syntax

x ,� 2 Variables f 2 Field Names i, j 2 N � 2 {+,�, , �,=} k 2 Z [B r 2 { f̄ = k̄ }
� ,�, s 2 State B P

⇣
{ f̄ = k̄ }

⌘

Ie , Ic 2 IsolationSpec B (� ,�,�0) ! P
� 2 Values B k | r | s
e 2 Expressions B k | x | x . f | { f̄ = ē} | e1 � e2
c 2 Commands B SKIP | LET x = e IN c | IF e THEN c1 ELSE c2 | c1; c2 | INSERT x

| DELETE �x .e | LET x = SELECT �x .e IN c | UPDATE �x .e1 �x .e2
| FOREACH x DO ��.�z.c | foreachhs1i s2 do �x .��.e

| TXNi hIe , Ic i{c} | TXNi hIe , Ic ,� ,�i{c} | c1| |c2
E 2 Eval Ctx ::= • | •| |c2 | c1 | |• | •; c2 | TXNi hIe , Ic ,� ,�i{•}

Local Reduction � ` (c,�) �! (c 0,� 0)

E�I�����
j < dom(� [�)

r 0 = hr with id = j; txn = i; del = falsei
� ` ([INSERT r]i ,�) �! ([SKIP]i ,� [{r 0})

E�D�����
s = {r 0 | 9(r 2 �). eval([r/x]e) = true

^ r 0 = hr with del = true; txn = ii}
dom(s) \ dom(�) = ;

� ` ([DELETE �x .e]i ,�) �! ([SKIP]i ,� [s)

E�S�����
s = {r 2 � | eval([r/x]e) = true} c 0 = [s/�]c

� ` ([LET � = SELECT �x .e IN c]i ,�) �! ([c 0]i ,�)
E�U�����

s = {r 0 | 9(r 2 �). eval([r/x]e2) = true ^ r 0 = h[r/x]e1 with
id = r .id; txn = i; del = r .deli} dom(�) \ dom(s) = ;

� ` ([UPDATE �x .e1 �x .e2]i ,�) �! (SKIP,� [s)
E�S��1

� ` ([c1]i ,�) �! ([c10]i ,� 0) c1 , SKIP

� ` ([c1; c2]i ,�) �! ([c10; c2]i ,� 0)

E�S��2

� ` ([c1]i ,�) �! ([SKIP]i ,� 0)
� ` ([c1; c2]i ,�) �! ([c2]i ,� 0)

E�I�T���
eval(e) = true

� ` ([IF e THEN c1 ELSE c2]i ,�) �! ([c1]i ,�)

E�I�F����
eval(e) = false

� ` ([IF e THEN c1 ELSE c2]i ,�) �! ([c2]i ,�)

E�F������1 � ` ([FOREACH s DO ��.�z.c]i ,�) �! ([foreachh;i s do ��.�z.c]i ,�)
E�F������2 � ` ([foreachhs1i {r }] s2 do ��.�z.c]i ,�) �! ([[r/z][s1/�]c; foreachhs1 [{r }i s2 do ��.�z.c]i ,�)
E�F������3 � ` ([foreachhsi ; do ��.�z.c]i ,�) �! ([SKIP]i ,�)

Top-Level Reduction (c,�) �! (c 0,�0)
E�T���S����

(TXNi hIe , Ic i{c},�) �! (TXNi hIe , Ic , ;,�i{c},�)

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:36 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

E�T��
Ie (� ,�,�0) � ` ([c]i ,�) �! ([c 0]i ,� 0)

(TXNi hIe , Ic ,� ,�i{c},�0) �! (TXNi hIe , Ic ,� 0,�0i{c 0},�0)
E�C�����
Ic (� ,�,�0)

(TXNi hIe , Ic ,� ,�i{SKIP},�0) �! (SKIP,� B �0)

B RELY-GUARANTEE REASONING
Txn-Local Reasoning R ` {P } [c]i {Q }
RG�I�����

stable(R, P)

8� ,� 0,�, i . P (� ,�) ^ j < dom(� [�)

^ � 0 = � [{hx with id = j; txn = i; del = falsei}) Q (� 0,�)

R ` {P } [INSERT x]i {Q }
RG�D�����

stable(R, P)

8� ,� 0,�. P (� ,�) ^ � 0 = � [{r 0 | 9(r 2 �). [r/x]e
^ r 0 = hr with txn = i; del = truei}) Q (� 0,�)

R ` {P } [DELETE �x .e]i {Q }
RG�U�����

stable(R, P)

8� ,� 0,�. P (� ,�) ^ � 0 = � [{r 0 | 9(r 2 �).[r/x]e2 ^
r 0 = h[r/x]e1 with id = r .id; txn = i; del = falsei}) Q (� 0,�)

R ` {P } [UPDATE �x .e1 �x .e2]i {Q }
RG�S�����

R ` {P 0} [c]i {Q } stable(R, P)

P 0(� ,�) , P (� ,�)

^x = {r 0 | 9(r 2 �). [r/�]e2}
R ` {P } [LET � = SELECT �x .e IN c]i {Q }

RG�F������
stable(R,Q) stable(R,�)

P) [�/�]� R ` {� ^ z 2 x } [c]i {Qc }
Qc) [� [{z}/�]� [x/�]�) Q

R ` {P } [FOREACH x DO ��.�z.c]i {Q }
RG�S��

R ` {P } [c1]i {Q
0 } R ` {Q 0 } [c2]i {Q }

stable(R,Q
0
)

R ` {P } [c1; c2]i {Q }

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:37

RG�I�
R ` {P ^ e} [c1]i {Q } R ` {P ^ ¬e} [c2]i {Q }

stable(R, P)

R ` {P } [IF e THEN c1 ELSE c2]i {Q }
RG�C�����

R ` {P } [c]i {Q }
P 0) P Q) Q 0 stable(R, P 0) stable(R,Q 0)

R ` {P 0} [c]i {Q 0}

Top-Level Reasoning {I ,R} c {G, I }
RG�T��

stable(R, I) stable(R, I) P (� ,�) , � = ; ^ I (�)
Re = R\Ie Rc = R\Ic Re ` {P } c {Q } stable(Rc ,Q)

8� ,�. Q (� ,�)) G (�,� B �) 8�,�0. I (�) ^G (�,�0)) I (�0)

{I ,R} TXNi hIi{c} {G, I }
RG�P��

{I ,R [G2} t1 {G1, I }
{I ,R [G1} t2 {G2, I }
{I ,R} t1 | |t2 {G1 [G2, I }

RG�C�����2

{I ,R} TXNi hIi{c} {G, I }
I0) I R0 ✓ R stable(R0, I0)

G ✓ G 0 8�,�0. I (�) ^G 0(�,�0)) I (�0)

{I ,R0} TXNi hI0i{c} {G 0, I }

C SOUNDNESS OF RG-REASONING
De�nition C.1 (Step-indexed re�exive transitive closure). For all A : Type, R : A! A! P, and n : N, the

step-indexed re�exive transitive closure Rn of R is the smallest relation satisfying the following properties:
• 8(x : A).R0 (x ,x)
• 8(x ,�, z : A).R (x ,�) ^ Rn�1 (�, z)) Rn (x , z)

De�nition C.2 (Interleaved step relation). The interleaved step relation (denoted as!R) interleaves trans-
action local reduction with interference from concurrent transactions captured as the Rely relation (R). It is
de�ned as follows:

(t ,�) !R (t
0
,�
0
)

def
= (t = t

0 ^ R (�,�0)) _ ((t ,�) ! (t
0
,�
0
))

The interleaved multistep relation (denoted as!n
R) is the step-indexed re�exive transitive closure of!R .

Given a transaction t = txnhI,� ,�i{c}, we use the notation t .� , t .�, t .I and t .c to denote the various
components of t . Below, we provide a more precise de�nition of the transaction-local RG judgement:

R ` {P } [c]i {Q }
def
= 8t ,�,�0.P (t .� ,�) ^ t .c = c ^ (t ,�) !n

R (t2,�
0
) ! (t

0
,�
0
) ^ t 0 .c = SKIP ^Q (t

0
.� ,�

0
)

Note that even though R is a ternary relation, its step-indexed re�exive-transitive closure can be de�ned
in a similar fashion as R. In the above de�nition, we have explicitly stated that the last step in the reduction
sequence is taken by the transaction (and not by the environment), �nishing in the state satisfying the assertion

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:38 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Q . The nature of interference before and after the last step of the transaction are di�erent (after the last step
and before the commit step, the interference is controlled by Ic , while before the last step, the interference is
controlled by Ie).

L���� C.3. If stable(R,Q), then 8� ,�,�0,k .Q (� ,�) ^ Rk (�,�0)) Q (� ,�0)

P����. We use induction on k .
Base Case: For k = 0, � = �0 and hence Q (� ,�0).
Inductive Case: For the inductive case, assume that for k 0, 8� ,�,�0.Q (� ,�) ^ Rk

0
(�,�0)) Q (� ,�0).

Given � ,�,�1 such thatQ (� ,�), Rk 0+1 (� ,�1), we have to showQ (� ,�1). There exists �0 such that Rk 0 (�,�0)
and R (�0,�1). By the inductive hypothesis, Q (� ,�0). stable(R,Q) is de�ned as follows:

stable(R,Q) = 8� ,�,�0.Q (� ,�) ^ R (�,�0)) Q (� ,�0)

Instantiating the above statement with � ,�0,�1, we get Q (� ,�1) ⇤

T������ C.4. RG-Txn is sound.

P����.
stable(R, I) HI

stable(R, I) H I

P (� ,�) , � = ; ^ I (�) HP

Re (� ,�,�0) , 9�1.R (�,�0) ^ Ie (� ,�1,�) ^ Ie (� ,�1,�0) HRl
Re ` {P } c {Q } Hc

Rc (� ,�,�0) , 9�1.R (�,�0) ^ Ic (� ,�1,�) ^ Ic (� ,�1,�0) HRc

stable(Rc ,Q) HQ

8� ,�. Q (� ,�)) G (�,� B �) HQG

8�,�0. I (�) ^G (�,�0)) I (�0) HG

Let ts = TXNi hIi{c}. Consider � such that I (�), and let (ts ,�) !n
R (SKIP,�

0
). We have to show (1) I (�0)

and (2) step-guaranteed(R,G, ts ,�). We break down the sequence of reductions into four parts :
• �1 = (ts ,�) !n1

R (ts ,�1) ! (t ,�1), where initially only the environment takes steps and the last
step in the sequence is the start of the transaction using the rule E-Txn-Start.

• �2 = (t ,�1) !n2
R (t

0
,�2), which begins from t taking its �rst step at state �1 and ends at the �rst

con�guration where t 0 .c = SKIP.
• �3 = (t

0
,�2) !n3

R (SKIP,�3) which ends at the step where t commits.
• �4 = (SKIP,�3) !n4

R (SKIP,�
0
) where only the environment takes a step.

In the sequence �1, Rn1 (�,�1). By I (�),HI and Lemma 3.3, I (�1). By the rule E-Txn-Start, t .� = �, t .� = �1
and t .c = c . Hence P (t .� ,�1).

Expanding the de�nition of the assertion Hc and instantiating it with � = �1 and �
0
= �2, we would get

Q (t
0
.� ,�2). However, the environment steps in sequence �2 are in R, while the environment steps in assertion

Hc are in Re . By de�nition of Re , every step of Re corresponds to a unique step in R. We will now show that
only those environment steps in R which correspond to steps in Re can happen in the sequence �2. We will
show this in two steps. In the �rst step, we will prove that for all con�gurations (tp ,�p) in the sequence �2
except possibly the last con�guration, Ie (tp .� , tp .�,�p).

Wewill prove this by contradiction. Assume that there is a con�guration (t1,�b) such that¬Ie (t1.� , t1.�,�b).
Let (t1,�

0
b) ! (t

0
1,�

0
b) be the next step in �2 taken by the transaction. We know that this step always exists

because the last step in �2 is taken by the transaction. Then Ie (t1.� , t1.�,�
0
b). All steps between (t1,�b) and

(t1,�
0
b) are taken by the environment, i.e. Rk (�b ,�

0
b) for some k . However, ¬Ie (t1.� , t1.�,�b), the assertion

H I and a simple induction on k would imply that ¬Ie (t1.� , t1.�,�
0
b). This is a contradiction. Hence, for all

con�gurations (tp ,�p) in the sequence �2 except possibly the last con�guration, Ie (tp .� , tp .�,�p).

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:39

Now, we will show that every environment step in �2 corresponds to a step in Re . Assume that (t1,�a) !R
(t1,�b) is an environment step such thatR (�a ,�b). Then, we know that Ie (t1.� , t1.�,�b) and Ie (t1.� , t1.�,�a).
Hence, t1.� provides the existence of �1 in the de�nition of Re . Thus, Re (t1.� ,�a ,�b). This implies that we
can use Hc and make the assertion Q (t

0
.� ,�2).

Note that t 0 .� = �2. Also, since all the changes in the global database state have so far been made by the
environment, I (�2).

�3 = (t
0
,�2) !n3�1

R (t
0
,�
0
2) ! (SKIP,�3), where the �rst n3 � 1 steps are only performed by the

environment. Since the transaction commits at state �02, by the E-Commit rule, Ic (t
0
.� ,�2,�

0
2). We will now

show that all environment steps in the above sequence must be correspond to steps in Rc . Again, we will
show this in two steps. Letm = n3 � 1 and (t

0
,�2) !R (t

0
,�21) !R (t

0
,�22) . . . !R (t

0
,�2m) ! (SKIP,�3).

We will show that Ic (t
0
.� ,�2,�2k) for all k, 1 k m.

We will prove this by contradiction. Suppose for some i , ¬Ic (t
0
.� ,�2,�2i). Consider j such that R j (�2i ,�

0
).

Then, by H I and a simple induction on j, we can show that ¬Ic (t
0
.� ,�2,�

0
2). However, this is a contradiction.

Hence, 8k , Ic (t
0
.� ,�2,�2k).

Now, we will show that every environment step in �3 corresponds to a step in Rc . Consider the step
(t
0
,�2k) !R (t

0
,�2(k+1)). We have Ic (t

0
.� ,�2,�2(k+1)) and Ic (t

0
.� ,�2,�2k). Hence, �2 provides the exis-

tence of �1 in the de�nition of Rc . Thus, Rc (t
0
.� ,�2k ,�2(k+1)).

By HQ , Q (t
0
.� ,�2) and by stable(Rc ,Q) we have Q (t

0
.� ,�

0
2). Since all state changes upto �

0
2 have been

made by the environment, I (�02). By HQG, G (�
0
2, t
0
.� B �

0
2). By the E-Commit rule, �3 = (t

0
.� B �

0
2). Hence,

G (�
0
2,�3). All the steps of the transaction except the commit step do not change the global database state and

the commit step satis�es G. This proves the step-guaranteed assertion. Finally, by HG, I (�3).
All the steps in (SKIP,�3) !n4

R (SKIP,�
0
) are performed by the environment. Since I (�3), by HI and

Lemma 3.3, I (�0). ⇤

T������ C.5. RG-Select is sound

P����. Given the premises of RG-Select, t ,� such that t .c ⇠ LET x = SELECT ��.e IN c , (t ,�) !m
R

(t2,�
0
) ! (t

0
,�
0
), P (t .� ,�) and t 0 .c = SKIP, we have to show thatQ (t

0
.� ,�

0
). The reduction sequence can be

broken down into following parts:
• �1 = (t ,�) !n1

R (t ,�1) ! (t1,�1) where initially only the environment takes steps, and ends with
the application of the E-Select rule.

• �2 = (t1,�1) !n2
R (t2,�

0
) ! (t

0
,�
0
) which corresponds to the execution of c

In �1, Rn1 (t .� ,�,�1). By P (t .� ,�) and stable(R, P), we get P (t .� ,�1). By applying the E-Select rule,
t1.� = t .� , t1.c = [s/x]c , where s = {r 2 �1 | eval([r/�]e) = true}. By de�nition of P 0, P 0(t1.� ,�1). The
following property holds trivially:

R ` {P ^ x = s} [c]i {Q } , R ` {P } [[s/x]c]i {Q }
Since R ` {P 0} [c]i {Q }, by the above property, R ` {P } [[s/x]c]i {Q }. Since P (t1.� ,�1), by de�nition of

R ` {P } [[s/x]c]i {Q }, we get Q (t
0
.� ,�0).

⇤

T������ C.6. RG-Update is sound

P����. Given the premises of RG-Update, t ,� such that t .c = UPDATE �x .e1 �x .e2, (t ,�) !m
R (t2,�

0
) !

(t
0
,�
0
), P (t .� ,�) and t 0 .c = SKIP, we have to show that Q (t

0
.� ,�

0
).

Since only a single step needs to be taken by the transaction (by applying the E-Update rule), t2.c = t .c ,
t2.� = t .� and Rm (t .� ,�,�0). By stable(R, P), P (t2.� ,�0). According to E-Update, t 0 .� = t2.� [{r 0 | 9(r 2
�0). eval([r/x]e2) = true ^ r 0 = h[r/x]e1 with id = r .id; txn = i; del = falsei }. From the premise of
RG-Update, we know that

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:40 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

8� ,� 0,�. P (� ,�) ^ � 0 = � [{r 0 | 9(r 2 �). [r/x]e2 = true

^ r 0 = h[r/x]e1 with id = r .id; txn = i; del = falsei}) Q (� 0,�)

Instantiating the above statement with � = t2.� and � = �0, we get Q (� 0,�0). However, � 0 = t
0
.� . Hence,

Q (t
0
.� ,�0). ⇤

T������ C.7. RG-Insert is sound

P����. Given the premises of RG-Insert, t ,� such that t .c = INSERT x , (t ,�) !m
R (t2,�

0
) ! (t

0
,�
0
),

P (t .� ,�) and t 0 .c = SKIP, we have to show that Q (t
0
.� ,�

0
).

Since only a single step needs to be taken by the transaction (by applying the E-Insert rule), t2.c = t .c ,
t2.� = t .� and Rm (t .� ,�,�0). By stable(R, P), P (t2.� ,�0). Since the transaction takes is able to take the step
according to the rule E-Insert, P must assert that x is bound to a record r , and x must have been substituted
with r , thus t 0 .� = t2.� [{hr with id = j; txn = i; del = falsei} and j < dom(t2.� [�0). From the premise
of RG-Insert, we know that

8� ,� 0,�, i . P (� ,�) ^ j < dom(� [�) ^ � 0 = � [{hx with id = j; txn = i; del = falsei}) Q (� 0,�)

Instantiating the above statement with � = t2.� and � = �0, we getQ (� 0,�0). Since x = r , � 0 = t
0
.� . Hence,

Q (t
0
.� ,�). ⇤

T������ C.8. RG-Delete is sound

P����. Given the premise of RG-Delete t ,� such that t .c = DELETE �x .e , (t ,�) !m
R (t2,�

0
) ! (t

0
,�
0
),

P (t .� ,�) and t 0 .c = SKIP, we have to show that Q (t
0
.� ,�

0
).

Since only a single step needs to be taken by the transaction (by applying the E-Delete rule), t2.c = t .c ,
t2.� = t .� and Rm (t .� ,�,�0). By stable(R, P), P (t2.� ,�0). According to E-Delete, t 0 .� = t2.� [{r 0 | 9(r 2
�0). eval([r/x]e) = true ^ r 0 = hr with id = r .id; txn = i; del = true}}. From the premise of RG-Delete,
we know that

8� ,� 0,�. P (� ,�) ^� 0 = �[{r 0 | 9(r 2 �). [r/x]e = true^ r 0 = hr with id = r .id; txn = i; del = truei}) Q (� 0,�)

Instantiating the above statement with � = t2.� and � = �0, we get Q (� 0,�0). However, � 0 = t
0
.� . Hence,

Q (t
0
.� ,�0). ⇤

T������ C.9. RG-Foreach is sound

P����.
stable(R,Q) HQ

stable(R,�) HI

stable(R, P) HP

P) [�/�]� H1
R ` {� ^ z 2 x } [c]i {Qc } Hc

Qc) [� [{z}/�]� H2

Given t ,� such that t .c = FOREACH x DO ��.�z.c , (t ,�) !n
R (t2,�

0
) ! (t

0
,�
0
), P (t .� ,�) and t 0 .c = SKIP, we

have to show that Q (t
0
.� ,�

0
).

The operational semantics of foreach (E-Foreach1, E-Foreach2, E-Foreach3) essentially execute the com-
mand c for a number of iterations, where in each iteration, z is bound to a record r 2 x, while y is bound to a
set containing records which were bound to z in previous iterations. z is bound to a di�erent record in each
iteration, and the loop stops when all records in x are iterated over.

Assuming that |x | = s , the reduction sequence for foreach will have the following structure :

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:41

(t ,�) !m
R (t1,�1) !n1

R (t
0
2,�

0
2) !

n
0
1
R (t2,�2) !n2

R (t
0
3,�

0
3) !

n
0
2
R (t3,�3) . . . (ts ,�s) !ns

R (t
0
s+1,�

0
s+1) !l

R (t
0
,�
0
)

The reduction sequence �i = (ti ,�i) !ni
R (t

0
i+1,�

0
i+1) corresponds to the execution of the command

c in the ith iteration, such that the �rst and last steps in �i are not environment steps. The sequence
�0 = (t ,�) !m

R (t1,�1) corresponds to the steps E-Foreach1 and E-Foreach2 along with environment steps.

Similarly, the sequence � 0i = (t
0
i+1,�

0
i+1) !

n
0
1
R (ti+1,�2) corresponds to the execution of the E-Foreach2 step

required to prepare the (i + 1)th iteration along with environment steps.
Let x = {r1, . . . , rs }, and assume that the records are picked in the increasing order. Then at the start of the

ith iteration, z is bound to ri , while y is bound to {r1, . . . , ri�1}. We will show that [{r1, . . . , ri }/�]� holds at
the end of iteration i , for all 1 i s . More precisely, we will show [{r1, . . . , ri }/�]� (t

0
i+1.� ,�

0
i+1). We will

use induction on i .
Base Case: The steps E-Foreach1 and E-Foreach2 do not change � . Also, P (t .� ,�) and stable(R, P).

Hence, at the end of the sequence �0, P (t1.� ,�1). By H1, this implies [�/�]� (t1.� ,�1). The sequence
�1 = (t1,�1) !n1

R (t
0
2,�

0
2) corresponds the execution of c in the �rst iteration with z bound to r1 and y bound

to �. Clearly,� (t1.� ,�1) ^ z 2 x holds. Hence, by Hc , Qc (t
0
2.� ,�

0
2). By H2, this implies [{r1}/�]� (t

0
2.� ,�

0
2).

Inductive Case: Assume that [{r1, . . . , rk�1}/�]� (t
0
k .� ,�

0
k). The next sequence of reductions (t

0
k ,�

0
k) !

n
0
k
R

(tk ,�k) only corresponds to the execution of the E-Foreach2 step for the kth iteration and environment steps.
E-Foreach2 does not change � , and since stable(R,�), we get [{r1, . . . , rk }/�]� (tk .� ,�k). At the start of
the next iteration, z is bound to rk , and y is bound to {r1, . . . , rk�1}. Hence, � (tk .� ,�k) ^ z 2 x . By Hc,
this impliesQc (t

0
k+1.� ,�

0
k+1). By H2, this implies [� [z/�]� (t

0
k+1.� ,�

0
k+1) = [{r1, . . . , rk }/�]� (t

0
k+1.� ,�

0
k+1).

This proves the inductive step.
Hence, at the end of the sth iteration, [x/�]� (t

0
s+1.� ,�

0
s+1). This implies Q (t

0
s+1.� ,�

0
s+1). Finally, the last

part of the reduction, (t 0s+1,�
0
s+1) !l

R (t
0
,�
0
) corresponds environment steps and E-Foreach3 (as the last

step). Since stable(R,Q) and E-Foreach3 does not change � , we have Q (t
0
.� ,�).

⇤

T������ C.10. RG-Seq is sound

P����.
{P } [c1]i {Q

0 } H1
{Q 0 } [c2]i {Q } H2
stable(R,Q

0
) H3

Given t ,� such that t .c = c1; c2, (t ,�) !m
R (t2,�

0
) ! (t

0
,�
0
), P (t .� ,�) and t 0 .c = SKIP, we have to show that

Q (t
0
.� ,�

0
). We can divide the reduction sequence into three parts :

• (t ,�) !m1
R (t

0
m ,�1) ! (tm ,�1), where tm .c = c2. We denote this sequence as �1.

• (tm ,�1) !m2
R (tm ,�

0
1) where all steps are taken by the environment. This sequence is denoted as �2.

• (tm ,�
0
1) !

m3
R (t2,�

0
) ! (t

0
,�
0
). This sequence is denoted as �3.

By the premise of the E-Seq1 and E-Seq2 rules, all the reductions in the sequence �1 are also applica-
ble to c1. Hence, consider transaction s such that s .c = c1, s .� = t .� . Then, there exists the sequence
(s,�) !m1

R (s2,�1) ! (s
0
,�1) with s

0
.c = SKIP, s0 .� = tm .� . Since P (s .� ,�), by H1, Q 0 (s0 .� ,�1). This implies

Q
0
(tm .� ,�1).
In the sequence �2, all steps are taken by the environment. By H3, Q 0 (tm .� ,�

0
1).

Since tm .c = c2, by H3, Q (t
0
.� ,�

0
).

⇤

T������ C.11. RG-If is sound

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:42 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

P����.
{P ^ e} [c1]i {Q } H1
{P ^ ¬e} [c2]i {Q } H2
stable(R, P) H3

Given t ,� such that t .c = IF e THEN c1 ELSE c2, (t ,�) !m
R (t2,�

0
) ! (t

0
,�
0
), P (t .� ,�) and t

0
.c = SKIP,

we have to show that Q (t
0
.� ,�

0
). Assume that eval(e) = true. We divide the sequence of steps into two

parts:
• �1 = (t ,�) !n1

R (t ,�1) ! (t1,�1) where initially only the environment takes steps, and the last step
is taken by the transaction using E-IfTrue.

• �2 = (t1,�1) !n2
R (t2,�

0
) ! (t

0
,�
0
).

Since P (t .� ,�) and Rn1 (t .� ,�,�1), by H3, we have P (t .� ,�1). By applying the rule E-IfTrue, we have
t1.� = t .� , t1.c = c1. Hence, P (t1.� ,�1). By the de�nition of H1, Q (t

0
,�0). A similar proof follows for the case

eval(e) = false
⇤

L���� C.12. If stable(R,Q) and R0 ✓ R, then stable(R0,Q)

P����. Given � ,�,�0 such that Q (� ,�) and R0(� ,�,�0), we have to show that Q (� ,�0). Since R0 ✓ R,
R(�,�0). Hence, by stable(R,Q), Q (� ,�0). ⇤

L���� C.13. If {I ,R} TXNi hIi{c} {G, I } and R
0 ✓ R, then {I ,R0} TXNi hIi{c} {G, I }

P����. Let t = TXNi hIi{c}. Then, given � such that I (�) and (t ,�) !n
R0 (SKIP,�

0
), we have to show (1)

I (�
0
) and (2) step-guaranteed(R0,G [ID, t ,�). Since R0 ✓ R, every environment step in the above reduction

sequence is in R. Thus, (t ,�) !n
R0 (SKIP,�

0
), which by de�nition of {I ,R} TXNi hIi{c} {G [ID, I } implies I (�0).

The same argument holds for step-guaranteed(R0,G [ID, t ,�). ⇤

T������ C.14. RG-Par is sound

P����.
{I ,R [G2} t1 {G1, I } H1
{I ,R [G1} t2 {G2, I } H2

Consider� such that I (�), and let (t1 | |t2,�) !n
R (SKIP,�

0
). We have to show (1) I (�0) and (2) step-guaranteed(R,G1[

G2, t1 | |t2,�).
Suppose that t1 commits before t2 in the execution sequence. Consider the sequence upto (and including)

the commit step of t1, i.e. (t1 | |t2,�) !n1
R (t

0
1 | |t

0
2,�1) ! (t

0
2,�

0
1). In this sequence, all steps apart from the

steps taken by t1 belong to R [ID, since any step taken by t2 cannot change the global database state. Hence,

there exists the sequence (t1,�) !n
0
1

R (t
0
1,�1) ! (SKIP,�

0
1) (the steps taken by t2 can be removed). Since

R ✓ R [G2, by H1 and Lemma 3.13, I (�01) and G1 (�1,�
0
1). Now, consider the entire sequence from the

perspective of t2. All steps taken by t1 except the commit step do not change the global database state, and
the change during the commit step belongs to G1. Hence, all steps in the sequence apart from the steps taken
by t2 belong to R [G1 [ID. Hence, there exists a sequence (t2,�) !n

0

R[G1
(SKIP,�

0
). By H2, I (�0).

Finally, the commit step of t1 belongs toG1, while the commit step of t2 belongs toG2, and every other step
of either transaction does not change the global database state. Hence, step-guaranteed(R,G1[G2, t1| |t2,�).
The proof for the case where t2 commits before t1 would be similar. ⇤

T������ C.15. RG-Conseq is sound

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:43

P����.
R ` {P } [t]i {Q } H1
P 0) P H2
Q) Q 0 H3

Given t ,� such that (t ,�) !m
R (t2,�

0
) ! (t

0
,�
0
), P 0(t .� ,�) and t 0 .c = SKIP, we have to show thatQ 0(t 0 .� ,�0).

By H2, P (t .� ,�). Then, expanding the de�nition in H1, we get Q (t
0
.� ,�0). By H3, Q 0(t 0 .� ,�0). ⇤

T������ C.16. RG-Conseq2 is sound

P����.
{I ,R} TXNi hIi{c} {G, I } H1
I0) I H2
R0 ✓ R H2
stable(R0, I0) H3
G ✓ G 0 H4
8�,�0. I (�) ^G 0(�,�0)) I (�0) H5

Let t = TXNi hI0i{c}. Given � such that I (�) and reduction sequence � = (t ,�) !n
R0 (SKIP,�

0), we have to
show that I (�0) and step-guaranteed(R0,G 0, t ,�). First, we will show that the above reduction sequence is
valid even if the isolation level of t is changed to I. Assume that the transaction performsm steps in � . We
will use induction onm to show that every step of the transaction is valid for isolation level I.

For the base case, the �rst step is always valid irrespective of any isolation level. For the inductive case,
assume that all steps upto the kth step of the transaction in t are valid with isolation level I. Let the (k + 1)th
step of the transaction be (t1,�1) ! (t2,�1). Then I0(t1.� , t1.�,�1). By H2, I(t1.� , t1.�,�1). Hence, the
k + 1th step is also valid for isolation level I. This shows that the entire reduction sequence is valid even
if the isolation level of t is changed to I. Let t 0 = TXNi hI0i{c}. Since R0 ✓ R, it follows that the reduction
sequence � 0 = (t 0,�) !n

R (SKIP,�0) comprising of the same steps as � is valid. By H1, I (�0). Finally, by
step-guaranteed(R,G, t 0,�), all global database state changes caused by t 0 in � 0 are in G. But these are the
same global database stage changes in � . Since G ✓ G 0, these state changes are also in G 0. ⇤

T������ C.17. If Ie = Iss , then 8� ,�,�0.Re (� ,�,�0)) � = �0

P����. First, we show that

8� ,�,�0,�00. ¬Ie (� ,�,�0) ^ R (�0,�00)) ¬Ie (� ,�,�00)
Given � ,�,�0 such that ¬Ie (� ,�,�0), � , �0. Since R (�0,�00) corresponds to the commit of a transaction,
either the transaction is read-only, in which case �0 = �00 and hence � , �00 which implies ¬Ie (� ,�,�00), or
the transaction modi�es/inserts a record, in which case it will also add its own unique transaction id to the
record, so that � , �00, which again implies the result.

Now, consider � ,�,�0 such that Re (� ,�,�0).By de�nition of Re , there exists �1 such that Ie (� ,�1,�0).
Hence, �1 = �0. Now, Ie (� ,�1,�), because otherwise, if¬Ie (� ,�1,�), then by the earlier result,¬Ie ((� ,�1,�0)
which is a contradiction. Hence, �1 = �. This implies that � = �0. ⇤

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:44 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Fctxt ` c =)hi,R, I i F

Fctxt ` INSERT x =)hi,R, I i TFctxt[�(�). {r | r = {hx with del = false; txn = ii}]UhR, I i

G = �r . if [r/x]e2 then {r 0 | r 0 = h[r/x]e1 with id = r .id; del = r .del; txn = ii} else ;
Fctxt ` UPDATE �x .e1 �x .e2 =)hi,R, I i TFctxt[�(�). � �= G]UhR, I i

G = �r . if [r/x]e then {r 0 | r 0 = hr with del = true; txn = ii} else ;
Fctxt ` DELETE �x .e =)hi,R, I i TFctxt[�(�). � �= G]UhR, I i

Fctxt ` c =)hi,R, I i F
Fctxt ` LET x = e IN c =)hi,R, I i �(�). [e/x] F(�)

Fctxt ` c =)hi,R, I i F
G = �r . if [r/x]e then {r 0 | r 0 = r } else ; F0 = TFctxt[�(�). � �= G]UhR, I i

Fctxt ` LET � = SELECT �x .e IN c =)hi,R, I i �(�). [F0(�)/�] F(�)

Fctxt ` c1 =)hi,R, I i F1 Fctxt ` c2 =)hi,R, I i F2
Fctxt ` IF e THEN c1 ELSE c2 =)hi,R, I i �(�). if e then F1 (�) else F2 (�)

Fctxt ` c1 =)hi,R, I i F1 Fctxt [F1 ` c2 =)hi,R, I i F2
Fctxt ` c1; c2 =)hi,R, I i F1 [F2

Fctxt ` c =)hi,R, I i F
Fctxt ` FOREACH x DO ��.�z. c =)hi,R, I i �(�). x �= (�z. F(�))

Fig. 13. T : State transformer semantics.

T������ C.18. For all i ,R,I ,c ,Fctxt,s , F, if stable(R, I), stable(R, Fctxt) and Fctxt ` c =)hi,R, I i F, then:
R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [c]i {�(� ,�). � = s [Fctxt (�) [F(�)}

P����. Hypothesis:

stable(R, I) H1
Fctxt ` c =)hi,R, I i F H2

Proof by induction on H2.
We prove the statement separately for every type of c . The base cases correspond to the SQL statements

INSERT, UPDATE and DELETE. We note that

stable(R, Fctxt) , 8�,�0.R(Fctxt (�),�,�0)) Fctxt (�) = Fctxt (�0)
Case : INSERT. We have to show that 8R, I , Fctxt, F, s if stable(R, I), stable(R, Fctxt) and

Fctxt ` INSERT x =)hi,R, I i TFctxt[F]UhR, I i, then
R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [INSERT x]i {�(� ,�).� = s [Fctxt (�) [TFctxt[F]UhR, I i (�)}

Wewill prove the premises of the RG�I����� rule. Here, P , �(� ,�). � = s[Fctxt (�) ^ I (�). By stable(R, I)
and stable(R, Fctxt), we have stable(R, P). Note that by the de�nition of F, we have stable(R, Fctxt[F])

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

Alone Together: Compositional Reasoning and Inference for Weak Isolation 27:45

and hence, TFctxt[F]UhR, I i = F. Q , �(� ,�).� = s [Fctxt (�) [F(�). Given � ,�, i such that P (� ,�) and
� 0 = � [{x with del = false; txn = i}, it follows from de�nition of F that Q (� 0,�). Thus, all premises of
RG�I����� are satis�ed.

Case : UPDATE. We have to show that 8R, I , Fctxt, s, F if stable(R, I), stable(R, Fctxt) and
UPDATE �x .e1 �x .e2 =)hi,R, I i TFctxt[F]UhR, I i, then
R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [UPDATE �x .e1 �x .e2]i {�(� ,�).� = s [Fctxt (�) [TFctxt[F]UhR, I i (�)}
We will prove the premises of the RG�U����� rule. Here, P , �(� ,�). � = s [Fctxt (�) ^ I (�) and Q ,
�(� ,�). � = s [Fctxt (�) [TFctxt[F]UhR, I i (� ,�). By stable(R, I) and stable(R, Fctxt), we have stable(R, P).
We can have either stable(R, Fctxt[F]) or ¬stable(R, Fctxt[F]). In either case, we will show that all premises
of RG�U����� are satis�ed.

Suppose stable(R, Fctxt[F]). Then TFctxt[F]UhR, I i = F. Then, given � ,� such that P (� ,�) and � 0 = � [
{r 0 | 9(r 2 �). [r/x]e2 = true ^ r 0 = [r/x]e1 with id = r .id; del = �.del; txn = i}, it follows from de�nition
of F that Q (� 0,�). Suppose ¬stable(R, Fctxt[F]). Then, TFctxt[F]UhR, I i = ��.exists(�0, I (�0), F(�0)). Also,
since P (� ,�), we have I (�). Hence, Q (� 0,�), since � provides the existential �0, and Fctxt (�) [F(�) is � 0.

Case: DELETE. We have to show that 8R, I , Fctxt, s, F if stable(R, I), stable(R, Fctxt) and
DELETE �x .e =)hi,R, I i TFctxt[F]UhR, I i, then
R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [DELETE �x .e]i {�(� ,�).� = s [Fctxt (�) [TFctxt[F]UhR, I i (�)}

We will prove the premises of the RG�D����� rule. Here, P , �(� ,�). � = s [Fctxt (�) ^ I (�) and Q ,
�(� ,�). � = s [Fctxt (�) [TFctxt[F]UhR, I i (�). By stable(R, I) and stable(R, Fctxt), we have stable(R, P).
We can have either stable(R, Fctxt[F]) or ¬stable(R, Fctxt[F]). In either case, we will show that all premises
of RG�D����� are satis�ed.

Suppose stable(R, Fctxt[F]). Then TFctxt[F]UhR, I i = F. Then, given � ,� such that P (� ,�) and � 0 =
� [{r 0 | 9(r 2 �). [r/x]e = true ^ r 0 = { f̄ = r . f̄ ; id = r .id; del = true}}, it follows from de�nition of F
that Q (� 0,�). Suppose ¬stable(R, Fctxt[F]). Then, TFctxt[F]UhR, I i = ��.exists(�0, I (�0), F(�0)).Also, since
P (� ,�), we have I (�). Hence, Q (� 0,�), since � provides the existential �0, and Fctxt (�) [F (�) is � 0.

Case: SELECT. Given R, I , sFctxt such that stable(R, I) and stable(R, Fctxt), Fctxt ` c =)hi,R, I i F,
G = �r . if [r/x]e then {r } else ;, and F 0 = TFctxt[��. (� �= G)]UhR, I i, we have to show that

R ` {�(� ,�). � = s[Fctxt (�) ^ I (�)} [LET � = SELECT �x .e IN c]i {�(� ,�).� = s[Fctxt (�)[[F 0(�)/�]F (�)}
We will prove all the premises of RG�S�����. Here, P , �(� ,�). � = s [Fctxt (�) ^ I (�), while

Q , �(� ,�).� = s [Fctxt (�) [[F 0(�)/�]F (�). By stable(R, I) and stable(R, Fctxt), we have stable(R, P).
By inductive hypothesis and Fctxt ` c =)hi,R, I i F we have

R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [c]i {�(� ,�).� = s [Fctxt (�) [F (�)}
Let

P 0(� ,�) , P (� ,�) ^ � = {r 2 �|[r/x]e}
Given � ,�, P 0 just binds � to a set of records which depend on �. We now have the following from the

inductive hypothesis:

R ` {P 0} [c]i {�(� ,�).� = s [Fctxt (�) [[F 0(�)/�]F (�)}
The reason is that � occurs free in c and by the inductive hypothesis, any binding of � can be used. Note

that if P 0(� ,�), then � = (� �= G). Suppose stable(R, Fctxt[��.(� �= G)]). Then given P 0(� ,�1), we have
� = F 0(�1). By stable(R, Fctxt[��.(� �= G)]), we have

�(� ,�).� = s [Fctxt (�) [[F 0(�1)/�]F (�) = �(� ,�).� = s [Fctxt (�) [[F 0(�)/�]F (s,�1)

If ¬stable(R, Fctxt[��.(� �= G)]), then

TFctxt[��.(� �= G)]UhR, I i = ��.exists(�0, I ,�0 �= G))

Then, given P 0(� ,�1), I (�1) and hence �1 gives the existential �0.

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

27:46 Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan

Case : IF-THEN-ELSE. Given R, I , s, Fctxt such that stable(R, I), stable(R, Fctxt), Fctxt ` c1 =)hi,R, I i F1,
Fctxt ` c2 =)hi,R, I i F2 , we have to show that

R ` {�(� ,�). � = s[Fctxt (�) ^ I (�)} [IF e THEN c1 ELSE c2]i {�(� ,�).� = s[Fctxt (�)[(if e then F1 (�) else F2 (�))}
We will prove all the premises of RG�I�. Here, P , �(� ,�). � = s [Fctxt (�) ^ I (�), whileQ , �(� ,�).� =

s [Fctxt (�) [(if e then F1 (�) else F2 (�)). By the inductive hypothesis and Fctxt ` c1 =)hi,R, I i F1, we know
that

R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [c1]i {�(� ,�).� = s [Fctxt (�) [F1 (�)}
The post-condition in the above statement can also be written as Q ^ e . Since e does not access the

global or local database, the above statement can be written as R ` {P ^ e} [c1]i {Q ^ e}. Similarly, R `
{P ^ ¬e} [c2]i {Q ^ ¬e}. By stable(R, I) and stable(R, Fctxt), we have stable(R, P). Thus, all the premises
of RG�I� are satis�ed.

Case : SEQ. Given R, I , Fctxt such that stable(R, I), stable(R, Fctxt), Fctxt ` c1 =)hi,R, I i F1, Fctxt [F1 `
c2 =)hi,R, I i F2 , we have to show that

R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [c1; c2]i {�(� ,�).� = s [Fctxt (�) [F1 (�) [F2 (�)}
We will prove all the premises of RG�S��. Here, P , �(� ,�). � = s [Fctxt (�) ^ I (�), while Q ,

�(� ,�).� = s [Fctxt (�) [F1 (�) [F2 (�). Let Q 0 , �(� ,�).� = s [Fctxt (�) [F1 (�). Then, by the inductive
hypothesis and Fctxt ` c1 =)hi,R, I i F1, we have R ` {P } [c1]i {Q 0}. Further, at this point, since the transaction
has not committed, all the changes in the global database state must be due to R. Since stable(R, I), we have
R ` {P } [c1]i {�(� ,�).Q 0(� ,�) ^ I (�)}.Further, by the inductive hypothesis and Fctxt [F1 ` c2 =)hi,R, I i F2,
we have R ` {�(� ,�).Q 0(� ,�) ^ I (�)} [c2]i {Q }. Finally, since the stabilization operator (TUhR, I i) is always
applied on F1 and stable(R, Fctxt), we have stable(R, �(� ,�).Q 0(� ,�) ^ I (�)). Thus, all premises of RG�S��
are satis�ed.

Case : FOREACH. Given R, I , Fctxt, s such that stable(R, I), stable(R, Fctxt), Fctxt ` c =)hi,R, I i F , we
have to show that

R ` {�(� ,�). � = s [Fctxt (�) ^ I (�)} [FOREACH x DO ��.�z. c]i {�(� ,�).� = s [Fctxt (�) [x �= (�z. F (�)}
We will prove all the premises of RG�F��E��� using the loop invariant� (� ,�) , � = s [Fctxt (�) [� �=

(�z. F(�)). Here P , �(� ,�). � = s [Fctxt (�) ^ I (�), whileQ , �(� ,�).� = s [Fctxt (�) [x �= (�z. F(�).
Since [�/�]� (� ,�) , � = s [Fctxt (�), P ! [�/�]� . By the inductive hypothesis and Fctxt ` c =)hi,R, I i F,
we have

R ` {�(� ,�). � = s [� �= (�z. F(�)) [Fctxt (�) ^ I (�)} [c]i {�(� ,�).� = s [� �= (�z. F(�)) [F (�)}
Binding z (which is free in c) to a record in x (i.e. z 2 x) in the pre-condition, the post condition in the

above statement implies � = s [(� [{z}) �= (�z. F(�)), which is nothing but [� [{z}/�]� (� ,�). Hence,�
is a loop invariant. Finally, [x/�]� ! Q .

From stable(R, I) and stable(R, Fctxt), we have stable(R, P). Since F has been stabilized using the
TUhR, I i function, and� is an assertion on the union of multiple applications of F , it follows that stable(R,�).
Using the same reasoning, stable(R,Q). Thus, all the premises of RG�F������ are satis�ed.

⇤

T������ C.19. For all i ,R,I ,c ,Fctxt, F, if stable(R, I), stable(R, Fctxt) and Fctxt ` c =)hi,R, I i F, then:
R ` {�(� ,�). � = Fctxt (�) ^ I (�)} [c]i {�(� ,�). � = Fctxt (�) [F(�)}

P����. Follows from the stronger version of this theorem (Theorem C.19) by substituting ; for s . ⇤

PACM Progr. Lang., Vol. 2, No. POPL, Article 27. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Motivation
	3 T: Syntax and Semantics
	3.1 Isolation Specifications

	4 The Reasoning Framework
	4.1 The Rely-Guarantee Judgment
	4.2 Semantics and Soundness

	5 Inference
	5.1 Soundness of Inference
	5.2 From S to the first-order logic
	5.3 Decidability

	6 Implementation
	6.1 Pragmatics

	7 Evaluation
	8 Related Work
	9 Conclusions
	References
	A Full Operational Semantics
	B Rely-Guarantee Reasoning
	C Soundness of RG-Reasoning

