A. PROOF OF THEOREM 3.3

A function \(f : \mathcal{L} \rightarrow \mathcal{L} \) is called distributive if, given \(L \subseteq \mathcal{L} \), \(f(\bigcup_{P \in L} P) = \bigcup_{P \in L} f(P) \).

Lemma A.1. The transfer function \(f_w \) is distributive for all basic blocks \(w \).

Proof. Since the transfer function \(f_w(P) \) (for all cases) operates individually on every \(\pi \in P \), \(f_w(P) = \bigcup_{\pi \in P} f_w(\{\pi\}) \). Given \(L \subseteq \mathcal{L} \),

\[
\bigcup_{P \in L} f_w(P) = \bigcup_{P \in L} \bigcup_{\pi \in P} f_w(\{\pi\}) = \bigcup_{\pi \in \bigcup_{P \in L} P} f_w(\{\pi\}) = f_w\left(\bigcup_{P \in L} P\right). \quad \Box
\]

It is known that in an AI framework, if the individual transfer functions are distributive, then the abstract fixpoint value \(OUT_w \) is equal to the join over all paths (JOP) of all abstract values possible at the start of \(w \). Let \(w_{\text{end}} \) be the unique end basic block (i.e., \(\not\exists w \), such that \((w_{\text{end}}, w) \in E \)). Given a walk \(\sigma = v_1 v_2 \ldots v_p \), let \(f_{\sigma} = f_{v_1} \circ f_{v_2} \circ \ldots \circ f_{v_p} \) be the cumulative transfer function of \(\sigma \) (in reverse direction). For a basic block \(w \), let \(\Sigma_w \) be the set of all walks in \(G \) from \(w \) to \(w_{\text{end}} \).

Lemma A.2. For all basic blocks \(w \), \(OUT_w = \bigcup_{\sigma \in \Sigma_w} f_{\sigma}(\phi) \).

Proof. \(\bigcup_{\sigma \in \Sigma_w} f_{\sigma}(\phi) \) is the (backward) JOP over all paths from \(w \) to \(w_{\text{end}} \), and since the transfer functions are distributive, this will be equal to \(OUT_w \) computed using fixpoint-based (backward) analysis. \(\Box \)

Lemma A.3. Given a concrete cache miss path \(\sigma = v_1 v_2 \ldots v_p \) of access to \(m \) in \(v \),

\[
\alpha_{v,m}(\sigma) \in f_{v_1} \circ f_{v_2} \circ \ldots \circ f_{v_p}(\{v\}).
\]

Proof. Consider the case when \(|\text{Acc}_a(v_1, m) \cup \bigcup_{i=2}^{p} \text{Acc}(v_i, s) \cup \text{Acc}_b(v, m)| \geq k \). Also, suppose \(|\alpha_{v,m}(\sigma)| \leq T \). We will show that for all \(i, 1 \leq i \leq p, \exists \pi \in f_{v_1} \circ f_{v_{i+1}} \circ \ldots \circ f_{v_p}(\{v\}) \) such that \(\alpha_{v,m}(v_1 \ldots v_p) = \pi \). We show this using induction on \(p - i \). For \(p - i = 0 \), that is, for \(f_{v_p} \), only Cases 1 and 2 of the transfer function will apply. If \(\text{Acc}(v_p, s) = \phi \), then \(\alpha_{v,m}(v_p) = \{v\} \), and hence the statement trivially holds. If \(\text{Acc}(v_p, s) \neq \phi \), then \(\alpha_{v,m}(v_p) \neq \{v\} \), and both Case 2 applies and \(v_p \) will be added to \(\pi = \{v\} \).

Now, assume the inductive hypothesis holds for some \(p - i \). We want to show the result for \(p - (i - 1) \). If \(i > 1 \), then again only Cases 1 and 2 apply. If \(\text{Acc}(v_{i-1}, s) = \phi \), then \(\alpha_{v,m}(v_{i-1} \ldots v_p) = \alpha_{v,m}(v_i \ldots v_p) \). Also, \(f_{v_{i-1}} \circ f_{v_i} \circ \ldots \circ f_{v_p}(\{v\}) = f_{v_i} \circ \ldots \circ f_{v_p}(\{v\}) \) (by Case 1). Hence, by the inductive hypothesis, \(\exists \pi \in f_{v_{i-1}} \circ f_{v_i} \circ \ldots \circ f_{v_p}(\{v\}) \) such that
that contains all basic blocks W that does not pass through v, then v_{i-1} will be added to π in $f_{v_i} \circ \cdots \circ f_{v_p}(v)$ (by Case 2).

Finally, consider the case when $i = 1$. Now, only Cases 3 and 4 apply. If $v_1 = v$, then $\alpha_{v,m}^T(v_1v_2 \cdots v_p v) = \alpha_{v,m}^T(v_2 \cdots v_p v)$. Hence, by inductive hypothesis, $\exists \pi \in f_{v_2} \circ \cdots \circ f_{v_p}(\{v\})$ such that $\alpha_{v,m}^T(v_2 \cdots v_p v) = \pi$. Case 3 applies and since $DB_{v,m}(\alpha_{v,m}(\pi)) \geq k$, $\pi \in f_{v_1}(\pi)$. If $v_1 \neq v$, then, since no suffix of the concrete cache miss path is also a concrete cache miss path, v_1 will be added to π by the transfer function f_{v_1} (Case 4). This completes the proof for the case when $|\alpha(\pi)| < T$ and $v_1 \neq v_{\text{start}}$. The proof for the two remaining cases (i.e., $v_1 = v_{\text{start}}$ and $|\alpha(\sigma)| = T$) will be similar. \square

Theorem 3.3. For every concrete cache miss path σ of access r in basic block v, there exists an abstract cache miss path $\pi \in \text{OUT}_{x_{\text{start}}}$ such that $\pi = \alpha_{v,m}(\sigma)$.

Proof. Let $\sigma = v_1 \cdots v_p v$. Let σ_e be a walk in G from v to w_{end} that does not pass through v. Then $f_{v}(\phi) = \phi$. By Lemma A.3, $\alpha_{v,m}(\sigma) \in f_{v_1} \circ f_{v_2} \circ \cdots \circ f_{v_p}(\phi) = f_{v_1}(\phi)$.

If $v_1 = v_{\text{start}}$, then π_σ_e is a walk from v_{start} to w_{end}, and hence, by Lemma A.2, $f_{\sigma(\sigma_e)}(\phi) \in \text{OUT}_{x_{\text{start}}}$.

If $v_1 \neq v_{\text{start}}$, then let σ_s be a walk from v_{start} to v_1. Now, either $DB_{v,m}(\alpha_{v,m}(\sigma)) \geq k$ or $|\alpha_{v,m}(\sigma)| = T$, and hence, for all w in σ_s, $f_w(\{\alpha_{v,m}(\sigma)\}) = \{\alpha_{v,m}(\sigma)\}$. Hence, $\alpha_{v,m}(\sigma) \in f_{\sigma(\sigma_s)}(\phi)$. Again, by Lemma A.2, this means that $\alpha_{v,m}(\sigma) \in \text{OUT}_{x_{\text{start}}}$.$\square$

B. PROOFS OF LEMMAS AND THEOREMS IN SECTION 4

Theorem 4.1. If an access to m in v does not have any abstract cache miss paths, then it is guaranteed to cause a cache hit.

Proof. By Theorem 3.3, if m does not have any abstract cache miss paths, then it also does not have any concrete cache miss paths. This implies that it can never cause a cache miss. \square

Theorem 4.2. If an access to m in v does not have any abstract cache miss paths that are completely inside an enclosing loop L, then m is persistent in loop L.

Proof. If the access m has an abstract cache miss path, then this path must contain a basic block that is outside the loop L. This implies that m cannot have a concrete cache miss path completely inside L. Hence, m can cause at most one cache miss for every entry to the loop L from outside the loop. \square

Lemma 4.4. Given a set of basic blocks $W = \{v_1, \ldots, v_k\}$ and basic block v ($v \not\in W$), if $\forall v_i, v_j \in W$, there exists a walk in G either from v_i to v_j or v_j to v_i that does not pass through v, and then there exists a walk in G that contains all the basic blocks in W and also does not pass through v.

Proof. We use induction on the size of the set W. If the size is 1, then the statement is trivial. Suppose the result holds when the size is k. Let $W = \{v_1, \ldots, v_k, v_{k+1}\}$. By inductive hypothesis, assume that there exists a walk σ in G that contains all basic blocks from v_1 to v_k (in increasing order). We know that if v_i, then exists a walk in G either from v_{k+1} to v_i or v_i to v_{k+1} that does not pass through v. Let j be the maximum subscript such that there is a walk from v_j to v_{k+1}. Now consider the subwalk of σ from v_1 to v_j, followed by the walk from v_j to v_{k+1}, followed by the walk from v_{k+1} to v_{j+1}, followed by the subwalk of σ from v_{j+1} to v_k. This is a walk in G that contains all basic blocks from W and does not pass through v. This proves the result. \square
Lemma 4.5. Miss paths \(\pi_1 \) and \(\pi_2 \) of two accesses in \(v \) do not conflict \(\Leftrightarrow \forall w_1 \in \pi_1, \forall w_2 \in \pi_2, \) and there exists a walk in \(G \) either from \(w_1 \) to \(w_2 \) or from \(w_2 \) to \(w_1 \) that does not pass through \(v \).

Proof. The forward direction is trivial, since we can take the required subwalk from the walk \(\sigma \) that contains all basic blocks of \(\pi_1 \) and \(\pi_2 \). For the reverse direction, we simply take \(W = \pi_1 \cup \pi_2 \) and apply Lemma 4.4, which implies that there is a walk in \(G \) that contains all the basic blocks of \(\pi_1 \) and \(\pi_2 \) and does not pass through \(v \). Note that by definition of miss paths, there always exists a walk between two basic blocks of the same miss path that does not pass through \(v \), and there is a walk in \(G \) from every basic block in the miss path to \(v \). This shows that \(\pi_1 \) and \(\pi_2 \) do not conflict with each other.

\(\square \)

Lemma 4.6. Given miss paths \(\pi_1 \) and \(\pi_2 \) of two accesses in \(v \), \(\pi_1 \) and \(\pi_2 \) do not conflict \(\Leftrightarrow \forall w_1 \in \pi_1 \cap \pi_2, (w_1 \in IN_{w_2} \lor w_2 \in IN_{w_1}). \)

Proof. By Lemma 4.5 and the correctness of the DFA \(D_v \). \(\square \)

Lemma 4.7. Given miss paths \(\pi_1, \ldots, \pi_m \) of accesses in \(v \), there exists a walk in \(G \) that contains all the miss paths and contains \(v \) at the end if and only if there is no pairwise conflict in the set \(\{\pi_1, \ldots, \pi_n\} \).

Proof. The forward direction is trivial, because if there exists a walk that contains every basic block of all miss paths, then it will contain a walk between every pair of basic blocks that does not pass through \(v \), and hence none of the miss paths will conflict with each other. For the reverse direction, we take \(W = \cup_{i=1}^{m} \pi_i \). Since there is no pairwise conflict between the miss paths, by Lemma 4.5, there exists a walk between two basic blocks of the same miss path that does not pass through \(v \), and hence these abstract cache miss paths will form a clique in the MPCG \(G_M \) of \(v \).

\(\square \)

Theorem 4.8. Given the MPCG \(G_M \) of basic block \(v \), the size of the maximum clique in \(G_M \) is an upper bound on the maximum number of cache misses that can occur in \(v \).

Proof. Suppose \(\{r_1, \ldots, r_m\} \) is a set of accesses in \(v \) that can become misses together. Then, there exists a concrete cache miss path \(\sigma_i \) for each \(r_i \) such that a walk in \(G \) contains all the concrete miss paths \(\sigma_i \). By Theorem 3.3, for every \(\sigma_i \), there exists an abstract cache miss path \(\pi_i = \alpha_{r_i}(\sigma_i) \). This implies that there exists a walk in \(G \) that contains all the basic blocks of \(\pi_i \) (for all \(i, 1 \leq i \leq m \)). By Lemma 4.7, this means that there is no pairwise conflict in the set \(\{\pi_1, \ldots, \pi_m\} \), and hence these abstract cache miss paths will form a clique in the MPCG \(G_M \) of \(v \).

\(\square \)

Lemma 4.9. Miss paths \(\pi_1 \) of access \(r_1 \), \(\pi_2 \) of \(r_2 \), \ldots, \(\pi_h \) of \(r_h \) in \(v \) can cause \(k \) misses in \(v \) in consecutive iterations of \(L \) \(\Leftrightarrow \) there exists a walk from \(v \) to \(v \) that contains exactly one instance of \(v_h \) and contains all the miss paths.

Proof. If \(v \) is executed in an iteration, it will bring all the cache blocks accessed by \(r_1, \ldots, r_h \) to the cache. Hence, for these accesses to miss the cache in the next iteration, the miss paths should all occur before \(v \) is executed in the next iteration, which will require a walk from \(v \) to \(v \) containing all the miss paths and passing through \(v_h \) once. On the other hand, if such a walk exists, then an execution along this walk can result in \(k \) misses in \(v \) in consecutive iterations.

\(\square \)

Lemma 4.10. Given miss paths \(\pi_1 \) of access \(r_1 \), \ldots, \(\pi_h \) of access \(r_h \) in \(v \), there exists a walk from \(v \) to \(v \) containing all the miss paths and exactly one instance of \(v_h \) \(\Leftrightarrow \forall v_1, v_2 \in \cup_{i=1}^{h} \pi_i, v_1 \sim v v_2 \lor v_2 \sim v v_1 \) and \(\forall v_1, v_2 \in \cup_{i=1}^{h} \pi_i \cup \{v\}, v_1 \sim v v_2 \lor v_1 \sim v v_2. \)
Proof. Let \(W = \bigcup_{i=1}^{k} \pi_i \). Let \(\sigma \) be the walk from \(v \) to \(v \) containing all miss paths and one instance of \(\nu_h \). The first part of the forward direction is trivial, since all the basic blocks in \(W \) will be present in the walk, and since \(v \) only occurs at the endpoints of the walk, there must be a walk between every pair of basic blocks in \(W \) that does not pass through \(v \). We partition \(W \) into two sets \(W_- \) and \(W_+ \), such that \(W_- \) contains all basic blocks of \(W \) that occur on \(\sigma \) before \(\nu_h \), and \(W_+ \) contains all basic blocks of \(W \) that occur on \(\sigma \) after \(\nu_h \). Then \(v \sim_{v_h} v' \) for all \(v' \in W_- \) and \(v \sim_{v_h} v \) for all \(v \in W_+ \). Also, for all \(v_1, v_2 \) in \(W_- \), either \(v_1 \sim_{v_h} v_2 \) or \(v_2 \sim_{v_h} v_1 \). Similarly, for all \(v_1, v_2 \) in \(W_+ \), either \(v_1 \sim_{v_h} v_2 \) or \(v_2 \sim_{v_h} v_1 \). Finally, for all \(v_1 \in W_- \), \(v_2 \in W_+ \), \(v_1 \sim_{v_h} v_2 \). This proves the forward direction.

For the reverse direction, we redefine \(W_- \) and \(W_+ \) as follows: \(W_- = \{ w \in W | v \sim_{v_h} w \} \) and \(W_+ = \{ w \in W | w \sim_{v_h} v \} \). Now, \(\forall v_1, v_2 \in W_- \), \(v_1 \sim_{v_h} v_2 \lor v_2 \sim_{v_h} v_1 \). Assume that \(v_1 \sim_{v_h} v_2 \). This walk will also not pass through \(v \), because otherwise \(v_1 \sim_{v_h} v \), and this would imply a walk between two instances of \(v \) that does not contain \(\nu_h \), which is a contradiction because \(\nu_h \) is the entry block of the innermost loop containing \(v \). Now, since \(\forall v_1, v_2 \in W_- \), \(v_1 \sim_{v_h} v_2 \lor v_2 \sim_{v_h} v_1 \), by Lemma 4.4, there exists a walk \(\sigma \) that contains all basic blocks in \(W_- \) and does not pass through \(\nu_h \). This walk will also not pass through \(v \). Similarly, there exists a walk \(\sigma \) that contains all basic blocks in \(W_+ \) and does not pass through \(\nu_h \). Now, the walk from \(v \) to the first basic block in \(\sigma \), followed by \(\sigma \), followed by the walk from the last basic block in \(\sigma \) to \(\nu_h \), followed by the walk from \(\nu_h \) to the first basic block in \(\sigma \), followed by the walk \(\sigma \) is the required walk between two instances of \(v \) that does contains all basic blocks in \(W \) and does not contain \(\nu_h \). \(\square \)

Lemma 4.11. Given basic blocks \(w_1, \ldots, w_k \) in loop \(L \) (or one of its inner loops), every walk containing these basic blocks contains at least \(k - 1 \) instances of \(\nu_h \) \(\Leftrightarrow \forall \nu_i \), \(w_j, 1 \leq i < j \leq k \), neither \(\nu_i \sim_{v_h} w_j \lor w_j \sim_{v_h} \nu_i \).

Proof. We prove the forward direction by contradiction. Suppose every walk containing \(w_1, \ldots, w_k \) contains at least \(k - 1 \) instances of \(\nu_h \). Assume, for the sake of contradiction, that \(\exists w_i, w_j \) such that \(w_i \sim_{v_h} w_j \). Now consider all basic blocks apart from \(w_j \). Clearly, there exists a walk that contains all these \(k - 1 \) basic blocks that contains \(k - 2 \) instances of \(\nu_h \) and ends at \(w_1 \) (this is because there exists a walk between every \(w_i \) and \(w_m \) that passes through \(v_i \)). Now, appending the walk between \(w_i \) and \(w_j \) that does not contain \(\nu_h \) gives a walk containing \(k - 2 \) instances of \(\nu_h \) and all the basic blocks, which is a contradiction.

The reverse direction can also be proved using contradiction. Suppose \(\forall w_i, w_j, 1 \leq i < j \leq k \), neither \(w_i \sim_{v_h} w_j \lor w_j \sim_{v_h} w_i \). Assume, for contradiction, that there exists a walk that contains all the basic blocks \(w_1, \ldots, w_k \) and \(k - 2 \) instances of \(\nu_h \). The instances of \(\nu_h \) partition this walk into \(k - 1 \) segments that do not contain \(\nu_h \). Since all \(k \) basic blocks \(w_1, \ldots, w_k \) are present in these segments, by the pigeon-hole principle, there must exist at least one segment that contains two basic blocks \(w_i, w_j \). However, this would mean a walk between these basic blocks that does not contain \(\nu_h \), which contradicts our assumption. \(\square \)

Theorem 4.13. Given miss paths \(\pi_1 \) of access \(r_1, \ldots, r_k \) in \(v \), where \(\pi_1, \ldots, \pi_k \in V_M \), if there exists \(W_C \subseteq \bigcup_{i=1}^{k} \pi_i \cup \{ v \} \) such that \(\forall w', w' \sim_{v_h} w \lor w \sim_{v_h} w' \) or \(w' \sim_{v_h} w \), then a walk from \(v \) to \(v \) containing all the basic blocks in \(W_C \), with \(v \) only coming at the endpoints, requires at least \(|W_C| \) instances of \(\nu_h \).

Proof. Let \(n = |W_C| \). First, consider the case where \(v \notin W_C \). Since \(v \notin W_C \), we know that \(\forall w \in W_C \), either \(v \sim_{v_h} w \) or \(w \sim_{v_h} v \). However, if \(\exists w, w' \in W_C \) such that \(v \sim_{v_h} w \) and \(w' \sim_{v_h} v \), then this would imply \(w' \sim_{v_h} w \), which is a contradiction. Hence, either
Table VII. Benchmarks, Code Size, Cache Configurations

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Source</th>
<th>Code Size (in Bytes)</th>
<th>Cache Configuration (No. of Sets-Block Size-Associativity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adpcm</td>
<td>Mälardalen</td>
<td>1,112</td>
<td>8-16-2</td>
</tr>
<tr>
<td>binarysearch</td>
<td>Mälardalen</td>
<td>272</td>
<td>4-16-2</td>
</tr>
<tr>
<td>expint</td>
<td>Mälardalen</td>
<td>432</td>
<td>4-16-2</td>
</tr>
<tr>
<td>compress</td>
<td>Mälardalen</td>
<td>3,880</td>
<td>8-32-4</td>
</tr>
<tr>
<td>crc</td>
<td>Mälardalen</td>
<td>2,216</td>
<td>4-32-2</td>
</tr>
<tr>
<td>ndes</td>
<td>Mälardalen</td>
<td>4,944</td>
<td>16-16-4</td>
</tr>
<tr>
<td>qurt</td>
<td>Mälardalen</td>
<td>2,504</td>
<td>4-32-4</td>
</tr>
<tr>
<td>ud</td>
<td>Mälardalen</td>
<td>1,944</td>
<td>8-16-4</td>
</tr>
<tr>
<td>countnegative</td>
<td>Mälardalen</td>
<td>840</td>
<td>4-16-2</td>
</tr>
<tr>
<td>lms</td>
<td>Mälardalen</td>
<td>3,680</td>
<td>8-32-2</td>
</tr>
<tr>
<td>qsort-exam</td>
<td>Mälardalen</td>
<td>1,208</td>
<td>8-16-2</td>
</tr>
<tr>
<td>select</td>
<td>Mälardalen</td>
<td>2,776</td>
<td>8-32-2</td>
</tr>
<tr>
<td>sqrt</td>
<td>Mälardalen</td>
<td>544</td>
<td>4-16-2</td>
</tr>
<tr>
<td>basicmath</td>
<td>MiBench</td>
<td>116,592</td>
<td>32-32-4</td>
</tr>
<tr>
<td>susan</td>
<td>MiBench</td>
<td>48,192</td>
<td>32-32-4</td>
</tr>
<tr>
<td>imref</td>
<td>StreamIt</td>
<td>48,336</td>
<td>32-32-4</td>
</tr>
<tr>
<td>audiobeam</td>
<td>StreamIt</td>
<td>47,272</td>
<td>32-32-4</td>
</tr>
<tr>
<td>Task 1</td>
<td>DEBIE-1</td>
<td>78,488</td>
<td>32-32-4</td>
</tr>
<tr>
<td>Task 4</td>
<td>DEBIE-1</td>
<td>152,328</td>
<td>128-32-4</td>
</tr>
<tr>
<td>Task 5</td>
<td>DEBIE-1</td>
<td>91,032</td>
<td>64-32-4</td>
</tr>
</tbody>
</table>

there is walk from \(v \) to all \(w \) in \(W_C \) or there is a walk from all \(w \) in \(W_C \) to \(v \), which does not contain \(v_h \). Suppose all walks are only from \(v \) to all basic blocks in \(W_C \). Now, by Lemma 4.11, a walk containing all \(n \) basic blocks in \(W_C \) requires at least \(n - 1 \) instances of \(v_h \). If \(w_e \) is the start basic block and \(w_e \) is the end basic block of this walk, then a walk from \(w_e \) to \(v \) will require another instance of \(v_h \). Hence, a walk from \(v \) to \(v \) containing all \(n \) basic blocks will require \(n \) instances of \(v_h \). The case when there is a walk from all \(w \) in \(W_C \) to \(v \) without passing through \(v_h \) can be proved in a similar manner.

If \(v \in W_C \), then by Lemma 4.11, a walk containing all basic blocks in \(W_C \) will require \(n - 1 \) instances of \(v_h \). If such a walk starts with \(v \) and ends with some basic block \(w_e \in W_C \), then since there is no walk from \(w_e \) to \(v \) that does not pass through \(v_h \), for such a walk to end, \(v \) will require one more instance of \(v_h \). Similarly, if such a walk ends with \(v \) but starts with some basic block \(w_s \in W_C \), then a walk from \(v \) to \(w_s \) will require another instance of \(v_h \). □