Cache analysis plays a very important role in obtaining precise Worst Case Execution Time (WCET) estimates of programs for real-time systems. While Abstract Interpretation based approaches are almost universally used for cache analysis, they fail to take advantage of its unique requirement: it is not necessary to find the guaranteed cache behavior that holds across all executions of a program. We only need the cache behavior along one particular program path, which is the path with the maximum execution time. In this work, we introduce the concept of cache miss paths, which allows us to use the worst-case path information to improve the precision of AI-based cache analysis. We use Abstract Interpretation to determine the cache miss paths, and then integrate them in the IPET formulation. An added advantage is that this further allows us to use infeasible path information for cache analysis. Experimentally, our approach gives more precise WCETs as compared to AI-based cache analysis, and we also provide techniques to trade-off analysis time with precision to provide scalability.